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Abstract

Protein half-life is an important feature of protein homeostasis (proteostasis). The increasing

number of in vivo and in vitro studies using high throughput proteomics provide estimates of

the protein half-lives in tissues and cells. However, protein half-lives in cells and tissues are

different. Due to the resource requirements for researching tissues, more data is available

from cellular studies than tissues. We have designed a multivariate linear model for predict-

ing protein half-life in tissue from its cellular properties. Inputs to the model are cellular half-

life, abundance, intrinsically disordered sequences, and transcriptional and translational

rates. Before the modeling, we determined substructures in the data using the relative dis-

tance from the regression line of the protein half-lives in tissues and cells, identifying three

separate clusters. The model was trained on and applied to predict protein half-lives from

murine liver, brain and heart tissues. In each tissue type we observed similar prediction pat-

terns of protein half-lives. We found that the model provides the best results when there is a

strong correlation between tissue and cell culture protein half-lives. Additionally, we clus-

tered the protein half-lives to determine variations in correlation coefficients between the

protein half-lives in the tissue versus in cell culture. The clusters identify strongly and weakly

correlated protein half-lives, further improves the overall prediction and identifies sub group-

ings which exhibit specific characteristics. The model described herein, is generalizable to

other data sets and has been implemented in a freely available R code.

Introduction

Proteostasis is a cellular process that includes control of concentrations, conformations, bind-

ing interactions, and locations of individual proteins[1]. Proteostasis integrates into other cel-

lular processes such as (external or internal) signal response, cellular proliferation, and aging.

It enables cells to change their physiology for successful organismal development and aging

while under constant challenges from intrinsic and environmental factors. An important

characteristic of proteostasis is the turnover rate of a protein (half-life). New technological

advances in proteomics field are enabling researchers to profile the proteome dynamics of cell

lines[2, 3], tissues, and living organisms in high throughput experiments[4], allowing for half-

life estimations for a large number of proteins[5]. These experiments create new opportunities
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for inferring the networks and pathways controlling cellular proteostasis and assist with under-

standing the sequence of regulatory events that lead to the integration of cellular processes

including gene expression, translation, post-translational protein modifications, and sub cellu-

lar localization. However, the analysis of the time course data from metabolic labeling experi-

ments, especially generalization of the results from cell lines to the tissues which is required for

such studies, poses several new challenges in bioinformatics, statistical data processing, and

modeling. While proteome dynamics data from cell lines is becoming readily available, the

labeling of living organisms is expensive and laborious. In addition, half-life measurements

in vivo are meaningful only for relatively long living proteins as it takes a few hours for the

administered labeling to be incorporated into a tissue in the body. However, this limitation is

not present in cultured cells, allowing half-lives as short as one to two hours to potentially be

measured. Therefore, computational techniques are needed to map the observations from cell

lines to the corresponding tissues. Another challenge, though not addressed here, is that tissues

are composed of different cell types, therefore requiring the combination of protein informa-

tion from multiple cell types. In this study, we make a first attempt at predicting protein turn-

over rates in tissues from their cellular properties (e.g. Fig 1), and propose a multivariate linear

model[6].

The model employs several cellular properties of proteins (e.g. protein half-life in the cell,

abundance, length, mRNA level, transcriptional and translational rates, and segments of

intrinsically disordered sequences) as explanatory variables, and the protein half-life in tissue

as the response variable. The model is trained on randomly selected data sets by minimizing

an objective function that is associated with the predictive results[7–9]. We have applied

the genetic algorithm[10] (GA) to minimize the objective function. The GA returns the opti-

mized values of model parameters which are then used to predict half-lives for the rest of the

proteins.

To reduce the deviation between the protein half-lives in tissues and cells, we first deter-

mine substructures (clusters) in the protein half-lives (cellular and tissue) data. The clustering

is based on the relative distance of a protein half-life from the linear regression line[11] be-

tween the protein half-lives in tissues and cells. Each cluster has its own multivariate linear

model and associated parameters [6].

Fig 1. A schematic diagram of in vivo protein half-life prediction from cellular properties.

https://doi.org/10.1371/journal.pone.0180428.g001
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Data

We used publicly available in vivo data sets from murine liver[7], brain[7], and heart[12], and

in vitro data sets from murine fibroblast (NIH3T3[2]), and myoblast (C2C12[13]) cell lines

for protein half-lives. The in vivo experiment used Nitrogen-15 (15N) isotope labeling in the

murine brain and liver study[7] and heavy water labeling in the heart[12] study. The cell lines

studies used stable isotope labeling with amino acids in cell cultures (SILAC)[14]. In these data

sets, there were 434 liver proteins common between cell culture and liver tissue and 354 brain

proteins common between cell culture and brain tissue. Of these, 366 common liver proteins

and 346 common brain proteins have longer half-lives in the tissue than in the cell cultures

(e.g. NIH3T3[2]). We have used these common protein data sets to train and validate the mul-

tivariate linear model of the protein half-life prediction. Finally, we have applied the model to

other two data sets; one from the in vitro[8] C2C12[13] myoblasts and another from the in
vivo murine heart experiment[12] (Supporting information).

Methods

We developed a model using proteins which have longer half-lives in the tissue than in cell cul-

ture and are common in both (91% of all data). However, the model is also applicable to those

common proteins that have shorter half-lives in the tissue than in cell culture (see Results). For

a first attempt, we were interested in predicting the protein half-lives for the former group

(longer tissue half-lives). Hence, we created our protein data sets from the experimental data

sets[7–9] following the first assumption. We applied a linear regression[11] model to the com-

mon protein half-life data sets[2, 7] (Fig 2 and S1 Fig) to first understand their linear

relationship.

The linear regression model has the following form:

Yt ¼ mXt þ wt ð1Þ

Here, Yt is the protein half-life in the tissue, Xt is protein half-life in the cell culture, m is the

slope, and wt is the intercept of the linear model.

The half-lives of proteins are scattered around the linear regression line (Fig 2 and S1 Fig),

demonstrating that a single, multivariate linear model cannot be a good predictor of protein

half-life. To improve the model prediction, we needed a method to systematically cluster the

data sets. Therefore, we searched for substructures in the protein half-life distribution as a way

to cluster the data sets. The answer was found in the correlation coefficient between the protein

half-lives at the tissue and cellular levels.

We clustered the proteins based on strongly and weakly correlated protein half-lives in cells

and tissues. The approach provided a systematic analytical perspective for clustering, while

improving the prediction of protein half-lives in tissues. We found that the correlation coeffi-

cient is the highest for some common liver proteins, which are the nearest to the regression

line (red line in Fig 2). Within 10% deviation from the regression line, we found 67 common

liver proteins that have correlation coefficients of 0.97 (Fig 3). This observation is consistent

for the brain and heart proteins (S2 and S3 Figs) as well.

The cluster within 10% deviation from the regression line consists of those 67 proteins (Fig

3); additionally, there are two other protein clusters, one which exists above and one below the

10% deviation from the regression line cluster (Fig 4). This result leads us to the protein half-

life clustering for strongly correlated (e.g. first cluster) and weakly correlated (e.g. later two

clusters) half-lives. If we group the data set ((Xc, Yc), c 2 {C1,C2,C3}) into three clusters (e.g.

{C1,C2,C3}), then one cluster is above 10% deviation (C1 in Fig 4), one is between 10% devia-

tion (C2 in Fig 4), and the last one is below 10% deviation from the regression line (C3 in Fig
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4). This clustering scheme has been also applied to the other two data sets (common brain and

heart protein data sets) (S2 and S3 Figs respectively).

There are 130 proteins in C1, 67 proteins in C2, and 169 proteins in C3 (Nc used below).

Each data set has the protein half-lives at tissue and cellular levels along with several other pro-

tein properties. We built a multivariate linear model[6] between the protein half-life in the tis-

sue and cells for each of the clusters using cellular protein properties. We have assumed that

the protein half-life in the tissue can be predicted through the linear combination of the pro-

tein half-life in the cell and other protein properties:

Ys
c ¼ wCell half � lifeX

s
c þ wP lengthPL

s
c þ wP abundancePA

s
c þ wI sequenceID

s
c þ wmRNAMRs

c

þ wTranscriptionTR
s
c þ wTranslationTL

s
c þ wc ð2Þ

where the weight vectors (e.g. wCell_half-life, wP_length, wP_abundance, wI_sequence, wmRNA, wTranscription,

wTranslation) � (0,1), wc is the intercept from the linear regression (Eq 1 and Table 1) and s contains

randomly selected one-third of total data sets (e.g. (Xs
c, Ys

c)) of each cluster. Protein properties

such as abundance (PA), mRNA level (MR), transcriptional (TR) and translational rates (TL)

from the cell line study[2], and intrinsically disordered sequences (ID) for each protein have been

calculated using the IUPRED software[15]. Protein lengths were calculated from the UniProt

database. All protein properties were transformed to loge for consistency in the calculations (e.g. a

precision of 4 digits after the decimal). Each cluster (e.g. c2 {C1,C2,C3}) has its own protein half-

life predictor (Eq 2).

Fig 2. Linear regression between the half-lives of proteins present in the murine liver tissue and cell culture (e.g. NIH3T3[2]) data sets.

https://doi.org/10.1371/journal.pone.0180428.g002
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Through predictive iterations, the model ascertains protein half-life from cell culture data

using randomly selected proteins, and then predicts the protein half-life in the tissue using a

learning scheme for the rest of the proteins in each cluster. In the Results section, we have pro-

vided a comparative analysis of the protein half-life prediction for each of the clusters. To com-

pute the distribution of the weight vectors through a learning scheme and to understand their

effect on the protein half-life prediction, we used a learning algorithm. The following objective

function was used:

EminðwCell half � life; wP length; wP abundance;wI sequence;wmRNA; wTranscscription;wtranslationÞ

¼
1=3Nc
s¼1

P
ðabsðYs

c � YcÞ=YcÞ ð3Þ

We have applied the genetic algorithm (GA)[10] to minimize Eq 3. The GA has been

implemented with a freely available genetic algorithm package[16] in the R environment,

using the default settings (e.g. mutation rate, crossover rate etc.). The GA provides the distri-

bution of the weight vectors (e.g. wG
Cell_half-life wG

P_length, wG
P_abundance, wG

I_sequence, wG
mRNA,

wG
Transcription, wG

Translation in S2 and S3 Tables). Next, the distribution of the weight vectors is

used to predict the protein half-life in the tissue level for the rest (two-third of total data sets)

of the proteins (e.g. (X=

c ;Y
=

c)) in each of the clusters.

As a measure of performance of the model, we used the following percentage of error (PE)

equation to measure the relative deviation of protein half-life prediction in tissue from the

Fig 3. Common liver protein subset with the highest correlation coefficient between the protein half-life in the tissue and cells.

https://doi.org/10.1371/journal.pone.0180428.g003
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corresponding experimental value:

PE ¼ jYv
c � Y=

c j=Y
=

c ; Yv
c

¼ wG
Cell half � lifeX

=

c þ wG
P lengthPL

=

c þ wG
P abundancePA

=

c þ wG
I sequenceID

=

c þ wG
mRNAMR=

c þ wG
TranscriptionTR

=

c

þ wG
TranslationTL

=

c þ wc ð4Þ

Fig 4. The clustering scheme of common liver protein data sets. The protein clusters form from the linear

regression line (Fig 2). C1 has very long-living half-life proteins while others (C2, C3) have short-living proteins.

https://doi.org/10.1371/journal.pone.0180428.g004
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The use of PE (e.g. PE% in Table 2) is to better understand the performance of the model that includes

the deviation (e.g. 5%, 10%, 20% and 30%) of the predicted half-life in the tissue from the experimental

observation.

The values of the correlation coefficients show that some of the protein properties are corre-

lated either positively or negatively (S1 Table) with the protein half-life in the tissue. This has

an impact on the prediction outcome which is discussed in the Results section. Hence, we ana-

lyzed the performance of the model with (a) ACH: all protein properties and (b) PCH: posi-

tively-correlated protein properties along with their optimized weight vectors obtained from

the GA optimization (S2 and S3 Tables).

Results

We are presenting the analysis of the performance of the model, the effect of clustering on the

protein half-life prediction, and half-life prediction of uncommon proteins. The analysis

focuses on the correlation coefficients between protein half-lives in the tissue and cell cultures,

as the half-life clusters are formed based on the correlation coefficients. This also leads to the

identification of common protein half-life characteristics of each cluster (S4 Table). We have

observed that these characteristics are common to the murine proteins from liver, brain, and

heart. Additionally, we have analyzed biological/biochemical properties of proteins from the

protein database[17].

Model performance for each cluster

In the liver data set, each cluster varies in the number of proteins and types of either positively

or negatively-correlated protein half-life properties (S1 Table). C1 has the largest intercept

(Table 1) of the linear regression and highest number of positively-correlated protein proper-

ties (S1 Table). This observation is true for the brain and heart data sets (S5 and S10 Tables,

respectively). On the other hand, C3 has the smallest intercept (Table 1) and least number of

positively-correlated protein properties (S1, S5, S6, S10 and S11 Tables).

Based on the PE, the best result of the protein half-life prediction is observed for C2 (44% of

prediction is within 10% deviation from the experimental value in Table 2). This has been con-

sistent for the other two tissue types’ (brain and liver) data sets (S9 and S14 Tables) as well. C2

has the largest proportion of protein half-lives close to the regression line (Fig 4) and these

Table 1. Coefficients of the linear regression between the common liver protein half-life in the tissue and cell of each cluster (Fig 4).

Cluster wc = Intercept (h) Regression coefficient P-value

C1 208.3428 0.5808 2.39e-07

C2 141.28857 0.60863 2.2e-16

C3 73.38162 0.81970 2.2e-16

https://doi.org/10.1371/journal.pone.0180428.t001

Table 2. Performance analysis of the protein half-life prediction of the model with two types of protein properties (e.g. PCH, ACH) using two-thirds

(e.g. (X=

c ;Y
=

c )) of total data sets (common liver proteins) of each cluster. All protein properties are designated by ACH, and positively-correlated proteins

are designated by PCH. The best result provided is the C2 cluster. It has predicted 44% of protein half-lives between 10% deviation from the experimental

value.

Cluster PCH ACH

Deviation 5% 10% 20% 30% Deviation 5% 10% 20% 30%

C1 PE% 19% 36% 66% 83% PE% 21% 32% 65% 83%

C2 PE% 24% 44% 62% 77% PE% 22% 44% 62% 77%

C3 PE% 8% 15% 33% 45% PE% 8% 15% 35% 48%

https://doi.org/10.1371/journal.pone.0180428.t002
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protein half-lives have the strongest correlation coefficients (0.97) between the tissue and cell

culture data. The model parameters (weight vectors etc.) associated with C2 can be used to pre-

dict proteins with strongly correlated half-lives in the tissue from cell culture experimental data.

On the other hand, C1 and C3 (of the liver data set) have protein half-lives that deviate from

the regression line (e.g. Fig 4). For these clusters, the model does not perform as well as it does

for C2. This has been also consistent for other two data sets (S9 and S14 Tables). The predic-

tions can be improved if one does additional clustering above and below 10% deviation from

the regression line for each of the two clusters (clustering inside the cluster[18]). This cluster-

ing inside the clusters generates clusters that have less deviations between the regression lines

and the protein half-lives (e.g. C2 of liver, brain and heart). Additionally, clustering improves

the overall prediction (e.g. prediction improves more than three times, two times and ten

times for common liver, brain, and heart protein respectively). It also provides an opportunity

for protein half-life prediction for strongly correlated (C2) and weakly correlated proteins (C1

and C3) in the tissue and from the cell.

The cell culture protein half-life has the highest positive correlation with the tissue half-life

than the rest of the protein properties of each cluster (S1 Table). Some protein properties have

a negative correlation coefficient with the protein half-life in the tissue. However, these are

very weak (Cor(Tissue half-life, mRNA level) in C2, C3 of S1 Table). We have omitted these

variables (reduced model) while predicting half-lives (PCH column in Table 2) to compare

with the result using all protein properties in the full model (ACH column in Table 2).

The reduced model predicts consistently with the full model (Table 2 and S9 and S14

Tables), possibly showing that the prediction may require fewer protein properties. We found

that C3 has shorter protein half-lives and the smallest number of positively-correlated protein

properties (C3 row in S1 Table). Alternatively, C1 has longer protein half-lives and the highest

number of positively-correlated protein properties. For both C1 and C3 the reduced model is

consistent with the full model for protein half-life prediction. However, for the shorter half-life

C3 cluster, the percentage predicted between 10% deviation from the experimental value is

around half that of C1 (15% and 32% respectively).This seems to indicate that the multivariate

linear model needs larger number of protein properties for predicting weakly correlated pro-

tein half-lives. This observation is also true for the brain and heart data sets (C1 rows in S9 and

S14 Tables, respectively).

Comparison with other studies

Our results are consistent with previous research findings regarding half-lives of short-lived pro-

teins. Corroborating the previous work, an important feature of C3 is the negative correlation

between the number of disordered sequences and the protein half-life in the tissue (S1 and S11

Tables) and these proteins are short-living (Fig 4 and S3 Fig). On the other hand, the brain pro-

teins that belong to C3 have a larger intercept and longer half-lives (S5 and S6 Tables). Hence,

these proteins provide positive correlation between the number of disordered sequences and the

protein half-life in the tissue as it is observed in C1 of common liver proteins (S1 Table). We

have observed similar characteristics of the correlation coefficients between the number of

ubiquitination sites[19] and the protein half-life (S15 Table). The short-living proteins (C3 of

common liver and heart proteins) have more ubiquitination sites (S15 Table) and long-living

proteins have fewer ubiquitination sites. More ubiquitination sites are expected to lead to faster

degradation of proteins via the ubiquitin-proteasome proteolytic pathway. Our model can iden-

tify these proteins in the cell line data sets and predict their half-life in the tissue.

We have applied our model to both in vivo and in vitro murine proteins. However, a previ-

ous study[20] found common properties between the number of intrinsically disordered

Protein half-life prediction
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segments and the protein half-life in yeast, in vitro human proteins, and in vitro mouse pro-

teins which we have used. Hence, we believe that this multivariate linear model can be poten-

tially applicable to yeast and human proteins as well.

The genetic algorithm retrieves the correlation coefficients

We have used the GA to minimize the objective function (Eq 3). The value of the weight vector

(wG
Cell_half-life) that is associated with the protein half-life in the cell in Eq 2, combined with the

weight vector received from the GA (second column in S2 and S3 Tables) are close to the

regression coefficient (third column in Table 1) of each cluster. This has been a common fea-

ture of the GA when there is less deviation (e.g. 10%) between the protein half-life and the

regression line (e.g. clusters: C2 and C3 in S2 Table, and C2 in S12 and S13 Tables).

Additionally, the GA uncovers the importance of other protein properties. For example, the

GA provides larger weight on transcription rate (wG
Transcription of C3 in S2 Table) for common

liver proteins, and protein abundance and mRNA level (wG
mRNA and wG

P_abundance of C2 in

S13 Table) for common heart proteins. However, the protein half-life is scattered around the

regression line of C2 for common brain proteins (S2 Fig). Hence, GA does not provide any sig-

nificant weight vector for the protein properties of these common brain proteins except for the

protein half-life in the cell (S5 Table). Because all of the aforementioned protein properties

belong to PCH (e.g. they have positive correlation with the tissue half-life), we conclude that

the model indicates the importance of PCH for predicting strongly and weakly (though total

number of PCH increases) correlated protein half-lives.

Neural network (NN) to classify proteins into the clusters

Our modeling uses clustering of protein half-lives into three clusters: the first cluster has the

proteins which have much longer half-lives in the tissue than in the cell; the second cluster

has the proteins which have correlated half-lives at these two levels; finally, the third cluster

has the half-lives of those proteins which have been influenced by the intrinsically disordered

sequences directly[20]. Hence, each cluster has its own features, importance, and biological/

biochemical perspective.

We have designed a neural network[21] (Fig 5) between the cell-line data set[2] and three

clusters of common liver proteins to train a neural network for classifying proteins into clus-

ters based on their cellular properties. We have tested this network with a number of neurons

and found an optimal set with 24 neurons between the input (protein properties) and output

(clusters/classes) layers. This network was able to classify the highest number (78%) of com-

mon liver proteins successfully. Using this network, we can classify an unknown protein into

one of the clusters, then predict its half-life with the model by using the optimized parameters

for that cluster.

We calculated the probabilistic distribution of the clusters and used this while clustering

the proteins with the neural network (NN). The black lines show the connections between

each layer and the weights on each connection, while the blue lines show the bias term added

in each step[21]. The bias can be thought as the intercept of a linear model. The NN provides

the probabilistic distribution of the clusters which we have used to cluster the uncommon

proteins.

Predicting uncommon protein half-lives

We used the multivariate linear model and optimized weight vectors for each of the clusters

for predicting the protein half-life of uncommon proteins (S4 Fig). A cluster for a protein is

determined from the NN. The predicted half-lives produce three lines since the prediction
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follows the multivariate linear model of the clusters. We added normally distributed noise to

the predicted half-lives to account for the variability of protein half-lives in the tissue, Fig 6.

This noise has been generated from the mean and standard deviation of common protein half-

life in the tissue of the corresponding cluster.

Predicting shorter tissue half-lives than cell half-lives. We have proposed a model for

the proteins which have longer half-lives in the tissue than in the cell-line. We found that 84%

proteins from the liver and heart protein data sets and 97% proteins from the brain protein

data sets have longer half-lives in the tissue than in cell culture. Since most of the available pro-

tein data sets have longer half-lives in the tissue than in the cell-lines, we selected those pro-

teins in the linear model. The rest of the proteins which have shorter half-lives in the tissue

than in the cell-line, can be explained with this model as well, if we disregard those proteins

which have half-lives greater than 200 hours in the cell. And we can do this since the authors

[2] of the cell-line study mention that very long (>200h) and very short (< 30 min) protein

half-lives in the cell-line cannot be accurately quantified from the three time points (i.e. 1.5h,

4.5h, 13.5 h) which they used for metabolic labeling.

Fig 5. Artificial neural network between the protein properties and clusters.

https://doi.org/10.1371/journal.pone.0180428.g005
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Once we remove proteins with half-lives greater than 200 h, only 6% of common liver pro-

teins have longer half-lives in the cell-line. We classify 83% of these proteins by using the

above described NN. These proteins also exhibit a linear relationship of half-lives (S5 Fig)

from the cells and the tissue which we can fit with our model.

Protein classification through database search

We looked at the proteins from each of our clusters in the PANTHER database[17] to identify

biological and biochemical properties of the corresponding proteins (S6–S11 Figs). Most of

the long-living proteins (C1) group as nucleic acid binding (tallest bar in S6 Fig). However,

most of the short-living proteins (C3) belong in the oxidoreductase category (tallest bar in S10

Fig). These short-living proteins also belong to the ubiquitin-proteasome pathway (Longest

bar in S11 Fig) which exhibit faster degradation[19].

Conclusion

We have provided the first study of predicting the protein half-life at the tissue level from the

cellular level. The model is simple, easy to implement and will be applicable to other tissues

and cell line experimental data sets. We have analyzed the linear relationships between the pro-

tein half-life in the tissue and cell by using the multivariate linear model along with clustering.

The clustering reveals linear and correlation coefficient based relationships between the pro-

tein half-lives and protein properties along with improvement of the prediction.

Fig 6. Uncommon protein half-life prediction with noise.

https://doi.org/10.1371/journal.pone.0180428.g006
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The ability to predict the protein half-life at the tissue level from the cellular perspective can

help to understand the overall effect and interplay of protein properties and identify novel var-

iables that play significant roles in proteostasis[22]. Proteostasis has been shown to be impor-

tant in different diseases[23], for biomarker analysis, and drug design[24].

Other future aspects of this research include predicting the degradation pathway of the pro-

tein by ubiquitination[25] and determining the effects of transcriptional and translational syn-

thesis rates for predicting protein half-life in tissues. As the amount of experimental data

increases, more data will be available to validate the model’s prediction and uncover new rela-

tionships for predicting tissue biology from the cellular perspective.

Supporting information

S1 Fig. Linear regression between the half-lives of proteins present in the murine brain tis-

sue and cell culture (NIH3T3) data sets. Shown are the data for half-lives of 346 common

proteins. The red line is the line of linear regression between the protein half-lives in the tissue

and cell lines.

(TIF)

S2 Fig. The clustering scheme of common brain protein data sets. The protein clusters are

obtained from the linear regression line (the red line in the left plot). The cluster C1 contains

very long-living proteins while the other clusters (C2, C3) contain short-living proteins.

(TIF)

S3 Fig. The clustering scheme of common heart protein data sets (779 proteins). The pro-

tein clusters are generated using the linear regression line (the red line in the left plot). C1 con-

tains very long-living proteins while the others (C2, C3) contain short-living proteins. The

clustering improves the correlations between half-lives of proteins in the tissue and cell lines.

(TIF)

S4 Fig. Protein half-life prediction of 4532 uncommon proteins in the liver (hour). The

half-lives of the uncommon proteins were predicted using a multivariate linear model and

optimized weight vectors for each of the three clusters. For each protein its cluster was deter-

mined using the NN.

(EMF)

S5 Fig. 26 Common liver protein half-lives (hour). Scatter plot of common liver proteins

that have longer half-lives in the cell-line data (shown are proteins with half-lives less than 200

hours). These proteins exhibited a linear relationship of half-lives which we could fit with our

model.

(EMF)

S6 Fig. Protein class analysis of the C1 cluster proteins using PANTHER database. Most of

the long-living proteins belong to the class of nucleic acid binding proteins.

(TIF)

S7 Fig. Pathway analysis of the C1 cluster proteins using PANTHER database. The most

enriched pathway among the C1 cluster proteins was the integrin signaling pathway.

(TIF)

S8 Fig. Protein class analysis of the C2 cluster proteins using PANTHER database. Most of

the proteins from this cluster belong to the class of nucleic acid binding proteins.

(TIF)
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S9 Fig. Pathway analysis of the C2 cluster proteins using PANTHER database. For the pro-

teins of the cluster C2 two pathways were enriched: 1) inflammation mediated by the chemo-

kines and cytokines signaling pathway, and 2) the integrin signaling pathway.

(TIF)

S10 Fig. Protein class analysis of the C3 cluster proteins (short half-life proteins) using

PANTHER database. The most enriched for the proteins of this cluster was the oxidoreduc-

tase category. Also enriched were the nucleic acid binding and the enzyme modulator pro-

teins.

(TIF)

S11 Fig. Pathway analysis of the C3 cluster proteins (short half-life proteins) using PAN-

THER database. The short-living proteins belonged to the ubiquitin-proteasome pathway.

(TIF)
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