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Abstract

Cancer stem cells (CSCs) play an important role in the clonogenic growth and metastasis of

pancreatic ductal adenocarcinoma (PDAC). A hallmark of PDAC is the desmoplastic reac-

tion, but the impact of the tumor microenvironment (TME) on CSCs is unknown. In order to

better understand the mechanisms, we examined the impact of extracellular matrix (ECM)

proteins on PDAC CSCs. We quantified the effect of ECM proteins, β1-integrin, and focal

adhesion kinase (FAK) on clonogenic PDAC growth and migration in vitro and tumor initia-

tion, growth, and metastasis in vivo in nude mice using shRNA and overexpression con-

structs as well as small molecule FAK inhibitors. Type I collagen increased PDAC tumor

initiating potential, self-renewal, and the frequency of CSCs through the activation of FAK.

FAK overexpression increased tumor initiation, whereas a dominant negative FAK mutant

or FAK kinase inhibitors reduced clonogenic PDAC growth in vitro and in vivo. Moreover,

the FAK inhibitor VS-4718 extended the anti-tumor response to gemcitabine and nab-pacli-

taxel in patient-derived PDAC xenografts, and the loss of FAK expression limited metastatic

dissemination of orthotopic xenografts. Type I collagen enhances PDAC CSCs, and both

kinase-dependent and independent activities of FAK impact PDAC tumor initiation, self-

renewal, and metastasis. The anti-tumor impact of FAK inhibitors in combination with stan-

dard chemotherapy support the clinical testing of this combination.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) leads to an estimated 40,000 deaths annually

and is the fourth leading cause of cancer related deaths in the United States [1]. Despite the

approval of new agents, survival rates remain low, and fewer than 5% of patients are alive 5

years after diagnosis [2]. Disease recurrence following surgical resection and metastatic dis-

semination drives poor outcomes, and tumor initiating cells (TICs) or cancer stem cells

(CSCs) have been implicated in both processes [2–7]. The factors regulating CSCs are not fully

understood, but the stem cell niche composed of non-stem cells, extracellular matrix (ECM)

proteins, and specific signaling molecules maintains the functional properties of normal self-

renewing stem cells [8–10]. In PDAC, the tumor microenvironment (TME) is dramatically

altered by the densely fibrotic desmoplastic reaction [11–14], and several ECM proteins,

including collagen, fibronectin, and laminin, are highly overexpressed [14]. Each of these

ECM molecules has been found to promote the growth and invasion of PDAC cells [15–19],

and we examined their impact on CSCs.

Type I collagen is the most abundant ECM protein in the TME and is associated with poor

survival in PDAC [13]. In PDAC, type I collagen promotes cancer cell invasion, migration and

drug resistance [20–26]. Furthermore, type I collagen can promote an immature cellular phe-

notype similar to CSCs in colorectal cancer [27]. The major cellular receptors for ECM pro-

teins are integrins composed of α and β subunits. Type I collagen binding through β1 integrin,

in combination with multiple α subunits, leads to the activation of several intracellular signal-

ing pathways, including focal adhesion kinase (FAK) [28, 29]. FAK (FAK1) is a multifunctional

non-receptor protein tyrosine kinase, encoded by the PTK2 (protein tyrosine kinase 2) gene

located at chromosome 8q24.3. FAK is required for normal embryonic development [30, 31],

overexpressed in thyroid, colorectal, prostate, and ovarian carcinomas, and associated with

disease progression and poor outcomes [32]. Recent studies have also demonstrated that FAK

regulates CSC properties in breast, gastrointestinal, and squamous cell carcinoma [33–35]. In

PDAC, FAK expression has been associated with survival, metastasis, and drug resistance [36–

41], but its impact on pancreatic CSCs is not well understood.

We examined the effect of specific ECM proteins on the clonogenic growth of PDAC cells

and found that type I collagen enhanced tumor initiating potential and self-renewal. We also

found that these effects are dependent on β1 integrin expression and FAK activation. We pre-

viously demonstrated that pancreatic CSCs express increased levels of aldehyde dehydrogenase

(ALDH) and are associated with metastatic disease [6]. Type I collagen also increased the fre-

quency of ALDH+ PDAC cells, and β1 integrin-FAK expression was enriched in ALDH+

CSCs. Furthermore, β1 integrin and FAK activation were required for pancreatic CSC self-

renewal and migration, and FAK inhibition abrogates clonogenic PDAC growth in vitro and

in vivo. Therefore, type I collagen within the PDAC desmoplastic reaction enhances CSCs and

promotes tumor initiation, self-renewal, and metastasis through β1 integrin-FAK signaling.

Results

Type I collagen- β1 integrin signaling enhances the clonogenic growth of

pancreatic cancer cells

Specific ECM proteins are abundantly and aberrantly expressed in the desmoplastic TME of

both primary and metastatic PDAC tumors [13, 14]. Several of these, including type I collagen,

fibronectin and laminin, promote PDAC cell survival, proliferation, and migration [15–19],

but their impact on clonogenic tumor growth is not fully understood. We cultured BxPC-3,

Capan-1, and MIA PaCa-2 cells on each of these ECM proteins for 96 hours, and then
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quantified tumor cell colony formation in methylcellulose. Compared to control cells cultured

on plastic alone, cells grown on type I collagen, but not fibronectin or laminin, formed signifi-

cantly more colonies in all 3 cell lines (Fig 1a; 1.4–1.7 fold). Similarly, type I collagen also

enhanced the clonogenic potential of PDAC cells isolated from low passage xenografts derived

from primary surgical specimens by 1.8–2.3 fold (Fig 1b). To examine the impact of type I

Fig 1. Type I collagen- β1 integrin signaling enhances the clonogenic growth of PDAC cells. (a) Colony formation by

BxPC-3, Capan-1 and MIA PaCa-2 cells following growth on type I collagen, fibronectin, or laminin for 96 hours. Data

represent the mean ± SD (n = 4) compared to control cell growth on plastic; **P < 0.001; ***P < 0.0001 by ANOVA. (b)

Colony formation assay by cells from 2 distinct patient derived xenografts cells cultured on plastic or type I collagen for 96

hours. (c) Secondary colony formation by MIA PaCa-2, and Capan-1 cells. Data represent the mean ± SD (n = 4) compared

to control; *P < 0.05, **P < 0.001. (d) Primary and secondary colony formation by MIA PaCa2 cells expressing a scrambled

control (shCtrl) or β1 integrin (shBeta1) shRNA after culture on type I collagen for 96 hours. Data represent mean ± SD

(n = 4). **P < 0.001.

https://doi.org/10.1371/journal.pone.0180181.g001
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collagen on the self renewal and maintenance of clonogenic PDAC growth, we harvested

tumor colonies and replated single cells in methylcellulose. Although cells were not further

exposed to type I collagen, secondary colony formation by MIA PaCa-2 and Capan-1 cells was

significantly increased by 1.6–2.2 fold (Fig 1c). Therefore, type I collagen increases the clono-

genic growth and self-renewal of PDAC cells.

Integrins are major cellular receptors for ECM proteins and heterodimers composed of α
and β subunits [42, 43]. Type I collagen binding involves several α integrin subunits but only

a=single β subunit, β1-integrin. β1-integrin is highly expressed by normal stem cells in the

hematopoietic and central nervous systems [44, 45] and promotes PDAC cell proliferation and

migration [46]. To determine whether β1-integrin mediates the effects of type I collagen on

clonogenic PDAC growth, we knocked down its expression in PDAC cells by shRNA (S1a

Fig). Compared to a control scrambled shRNA construct, the loss of β1-integrin significantly

inhibited primary and secondary colony formation by MIA PaCa-2 (Fig 1d) and Capan-1cells

cultured on type I collagen by>2 fold (S1b Fig). The impact of β1-integrin loss was not a con-

sequence of cell death as apoptosis was not increased (S1c Fig). Thus, β1-integrin mediates the

effects of type I collagen on PDAC tumor initiation and self-renewal.

FAK overexpression increases PDAC clonogenic growth and tumor

initiating capacity

Integrin signaling involves the activation of several intracellular pathways, including Integrin

Linked Kinase, SRC family kinases, and Focal Adhesion Kinase (FAK). FAK in particular has

been implicated in regulating CSCs in squamous cell skin and breast carcinoma [34, 36]. FAK

activation involves the phosphorylation of tyrosine-397 (pFAK-Y397), and we found that

pFAK-Y397 expression increased when PDAC cells were cultured on type I collagen (Fig 2a).

Furthermore, β1-integrin expression was required for FAK activation as β1-integrin knock

down led to the loss of pFAK-Y397 (Fig 2a).

To investigate the role of FAK signaling in PDAC self-renewal and tumor-initiation poten-

tial, we overexpressed full length wild-type FAK (FAK-FL) in MIA PaCa-2 and Capan-1 cells.

FAK-FL overexpression increased the level of activated pFAK-Y397 (S2a Fig) and significantly

enhanced tumor colony formation by 1.6–5 fold (Fig 2b) compared to cells transduced with an

empty vector construct. Furthermore, clonogenic growth was similarly increased for cells cul-

tured on either plastic or type I collagen suggesting that FAK mediates the response to type I

collagen. We also studied the impact of FAK on in vivo tumor formation and found that the

tumor-initiating cell (TIC) frequency of FAK-FL overexpressing MIA PaCa-2 cells was signifi-

cantly higher than control cells (1/28 vs. 1/314; Table 1). Furthermore, FAK-FL overexpression

significantly increased the growth rate of established tumors (Fig 2c). Therefore, FAK activa-

tion enhances the tumor initiating potential and growth of PDAC cells.

Type I collagen-β1 integrin-FAK signaling impacts ALDH+ PDAC CSCs

We previously demonstrated that ALDH+ PDAC CSCs are highly clonogenic and associated

with inferior overall survival in patients with resected PDAC [6]. We also found that ALDH+

cells are enriched at the interface between tumor cells and the desmosplastic reaction, suggest-

ing that CSCs specifically interact with the TME [6]. To determine the impact of type I colla-

gen on PDAC CSCs, we cultured BxPC-3, Capan-1, and MIA PaCa-2 cells on type I collagen

and quantified ALDH+ CSCs by flow cytometry. Compared to cells cultured on plastic, the fre-

quency of ALDH+ cells significantly increased in all three cell lines by 1.3–2.2 fold following

growth on type I collagen (Fig 3a). Although several α subunits can bind to type I collagen in

association with β1 integrin, α2β1 has been found to enhance the proliferation and migration
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Fig 2. FAK overexpression increases PDAC clonogenic growth and tumor initiating capacity. (a) Ratio of phospho-

FAK to total FAK expression by MIA PaCa2 cells expressing a scrambled control (shCtrl) or β1 integrin (shBeta1) shRNA

and cultured on plastic or type I collagen for 96 hours. (b) Colony formation by MIA PaCa-2 and Capan-1 cells

overexpressing FAK-FL following growth on plastic or type I collagen for 96 hours. Data represent mean ± SD (n = 4) of

control versus FAK-FL; *P < 0.05; **P < 0.001; ***P < 0.0001. (c) Tumor growth of MIA PaCa2 cells overexpressing

FAK-FL following subcutaneously injection in to NSG mice. *P = 0.04 compared to control (vector).

https://doi.org/10.1371/journal.pone.0180181.g002
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of PDAC cells [19]. Furthermore, α2β1-integrin modulates cell fate decisions in mesenchymal

stem cells and is expressed by CSCs in prostate cancer [47]. Similarly, in MIA PaCa-2 cells,

surface α2β1-integrin was expressed by almost half (47.9%) of ALDH+ CSCs but only a minor-

ity (2.2%) of bulk tumor cells (S3a Fig). In patient-derived low-passage xenografts, α2β1-integ-

rin was expressed by 0.2–0.4% of bulk tumor cells and 2.8–4.3% of ALDH+ cells, a 12–37 fold

increase by CSCs (Fig 3b). We also examined the expression of activated FAK and found that

30–100% of ALDH+ cells within PDAC cell lines expressed pY397-FAK compared to 7–44%

of bulk tumor cells (S3b Fig). Similarly, in low-passage xenografts pY397-FAK was expressed

by 4–5% of ALDH+ CSCs compared to 1.2–2% of bulk tumor cells (Fig 3c). The frequency of

ALDH+ cells was impacted by β1-integrin-FAK signaling as FAK-FL overexpression increased

CSCs by >1.3 fold whereas β1-integrin knock-down led to a significant decrease in ALDH+

MIA PaCa-2 cells by 5-fold (S3c and S3d Fig). Therefore, type I collagen-β1-integrin-FAK sig-

naling impacts ALDH+ PDAC CSCs.

FAK kinase-inhibition decrease clonogenic PDAC growth in vitro and

inhibits tumor growth in vivo

FAK-FL overexpression enhanced the frequency of ALDH+ CSCs as well as clonogenic tumor

growth and self-renewal. Therefore, FAK inhibition may serve as a strategy to target PDAC

CSCs. FAK inhibitors are capable of inhibiting PDAC cell growth and survival in vitro [37],

and several have begun clinical testing. We examined two of these agents VS-4718 and

PF573228 that inhibit FAK by blocking the autophosphorylation of Y397 [48, 49] and found

that both significantly reduced the clonogenic growth of PDAC cells from cell lines (Fig 4a and

S4a Fig) and patient derived low-passage xenografts (Fig 4b and S4b Fig) by� 3-fold. Further-

more, FAK inhibition reduced the frequency of ALDH+ cells in PDAC xenograft cells (S4c

Fig). The inhibition of clonogenic growth was not a consequence of decreased PDAC survival

as both FAK inhibitors had little effect on apoptosis (S4d Fig). We also evaluated the impact of

FAK inhibition in vivo by treating mice bearing patient-derived PDAC xenografts with VS-

4718 and/or gemcitabine plus nab-paclitaxel (Gem-Pac). Compared to vehicle-treated control

animals, tumors from VS-4718 treated animals grew significantly slower (Fig 4c) and had

decreased levels of pY397-FAK (S4E Fig). Similar to previous studies with gemcitabine alone

[50], Gem-Pac treatment led to tumor regression, and this response was further enhanced by

the addition of VS-4718 (Gem-Pac-VS-4718). After 3 weeks of treatment, tumor regrowth was

Table 1. FAK regulates tumor initiating cell (TIC) frequency in PDAC.

# of cells injected Tumor incidence

Ctrl (vec) FAK-FL FAK-Y397F

10,000 2/2 2/2 4/4

1,000 4/4 4/4 1/4

500 1/4 4/4 1/4

100 6/10 6/6 1/10

10 - - 2/8 - -

TIC frequency 1 in 314 1 in 28 1 in 986

TIC 95% CI 1/656–1/151 1/69–1/11 1/2393–1/406

p- Value p < 0.001 p = 0.038

Frequency of tumor initiation by MIA PaCa2 cells overexpressing FAK-FL or FAK-Y397F as assessed by

limiting dilution assay. Control versus FAK-FL, P < 0.001; control versus FAK-Y397F, P = 0.038.

https://doi.org/10.1371/journal.pone.0180181.t001
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Fig 3. Type I collagen-β1 integrin-FAK signaling impacts ALDH+ PDAC CSCs. (a) Frequency of ALDH+ MIA

PaCa-2, Capan-1, and BxPC-3 cells following culture on plastic or type I collagen for 96 hours. Data represent

mean ± SD (n = 3) compared to cell growth on plastic; *P < 0.05, **P < 0.001, ***P < 0.0001. (b) Frequency of α2β1+

cells within ALDH+ or all tumor cells from 3 distinct patient derived xenografts. (c) Frequency of phospho-FAK+ cells

within ALDH+ or all tumor cells from 2 distinct patient derived xenografts as determined by flow cytometry.

https://doi.org/10.1371/journal.pone.0180181.g003
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significantly delayed in animals treated with Gem-Pac-VS-4718 compared to Gem-Pac alone

(Fig 4c).

In addition to FAK, VS-4718 inhibits the FAK related kinase PYK2 [51]. To confirm the

specificity of our pharmacologic studies, we generated cell lines overexpressing FAK in which

the Y397 residue was mutated to phenylalanine (Y397F-FAK) to block its autophophorylation

and activation (S4f Fig). Consistent with our drug studies, Y397F-FAK expression significantly

reduced tumor colony formation by Capan-1 and MIA PaCa-2 cells cultured on type I collagen

(Fig 4c). We also examined the engraftment of MIA PaCa-2 cells and found that the tumor-

Fig 4. FAK kinase-inhibition decrease clonogenic PDAC growth in vitro and inhibits tumor growth in vivo. (a) In vitro

colony formation by MIA PaCa-2 and Capan-1 cells following treatment with vehicle control (DMSO) or VS-4718 on type I

collagen for 96 hours. Data represent mean ± SD (n = 3) of DMSO versus VS-4718; *P < 0.05. (b) Colony formation by 2

distinct patient derived xenograft cells following treatment with vehicle control (DMSO) or VS-4718 on type I collagen for 5

days. (c) Subcutaneous tumor growth of a patient derived xenograft (JH102) following treatment with vehicle control, VS-

4718, gemcitabine plus nab-paclitaxel (Gem-Pac), or all three drugs together (Gem-Pac-VS). Five mice were included in

each group. **P = 0.0076, *P = 0.03 by ANOVA. (d) Colony formation by MIA PaCa-2 and Capan-1 cells overexpressing

FAK-Y397F following growth on type I collagen for 96 hours. Data represent mean ± SD (n = 4) of control versus FAK-Y397F;

*P < 0.05, **P < 0.001.

https://doi.org/10.1371/journal.pone.0180181.g004
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initiating cell (TIC) frequency of Y397F-FAK expressing cells was significantly less then con-

trol vector transfected cells (1/986 vs. 1/314; Table 1). Therefore, FAK kinase inhibition impact

the tumor initiating and growth potential of PDAC cells.

The loss of FAK inhibits PDAC self-renewal

In addition to its kinase activity, FAK acts as an intracellular scaffold for several signaling path-

ways associated with tumor growth and progression [34, 52, 53], and disruption of this func-

tion can inhibit PDAC growth both in vitro and in vivo [53]. To determine whether the kinase-

independent functions of FAK impact PDAC CSCs, we knocked down its expression using

doxycycline-inducible shRNAs (S5a Fig). In MIA PaCa-2 and Capan-1 cells the loss of FAK

expression significantly decreased the frequency of ALDH+ CSCs compared to cells with a

control shRNA vector (Fig 5a). The loss of FAK also significantly inhibited colony formation

by 72–87% compared to shRNA controls (Fig 5b) and to a greater extent than cells expressing

Y397F-FAK or treated with VS-4718 (Fig 3). Similar to studies with FAK inhibitors and

Y397F-FAK, the inhibition of clonogenic growth following the loss of FAK expression was not

due to changes in cell proliferation or survival (S5b and S5c Fig).

We examined the impact of loss of FAK expression by examining gene expression profiles

and carrying out gene set enrichment analysis (GSEA) focusing on biological pathways associ-

ated with oncogenesis. Compared to control vector MIA PaCa-2 and Capan-1 cells, FAK

knock down impacted gene sets associated with CSCs (S6 Fig) [54].

To study the effects of FAK loss on in vivo PDAC growth, we injected shFAK-expressing

cells into mice and initiated treatment with doxycycline following the development of tumors.

Compared to control shRNA cells, FAK knock down led to a regression of tumors by the end

of 3 weeks of treatment (Fig 5c). In contrast, the inhibition of FAK kinase activity with VS-

4718 or expression of Y397F-FAK primarily slowed tumor growth compared to controls (Fig

3). Furthermore, tumor regrowth was significantly impaired following the discontinuation of

doxycycline treatment and in 5 of 8 (63%) of animals, no tumors reappeared over 3 additional

weeks of observation. Therefore, both the kinase and kinase-independent functions of FAK

impact PDAC CSCs.

The loss of FAK inhibits PDAC cell migration in vitro and metastasis in

vivo

Type I collagen and β1-integrin signaling can enhance PDAC cell migration and tissue inva-

sion [15, 19]. Moreover, pancreatic CSCs have been implicated in PDAC dissemination and

metastasis [6]. Similar to previous studies we found that type I collagen significantly enhanced

in vitro PDAC cell migration that was dependent on β1-integrin expression (S7a and S7b Fig).

FAK also regulated cell migration as treatment with VS-4718 and FAK knock down signifi-

cantly decreased the migration of PDAC cells from cell lines (Fig 6a and S7c Fig).

To investigate the impact of FAK on metastasis in vivo, doxycycline-induced shFAK PDAC

cells were orthotopically injected into the pancreata of mice and allowed to form primary

tumors. Following 21 days, we treated mice with doxycycline for 14 days to knock down FAK

expression, and then quantified the formation of primary tumors and metastatic lesions. There

was no difference in the histological appearance of the primary pancreatic tumors derived

from cells with either FAK or control shRNA vectors (S7d Fig). However, the loss of FAK

expression significantly reduced the proportion of animals with metastatic lesions within the

liver and spleen and prevented tumor dissemination to other visceral organs (Fig 6b). There-

fore, FAK enhances the migration and metastatic potential of PDAC cells.
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Fig 5. The loss of FAK inhibits self-renewal. (a) Frequency of ALDH+ MIA PaCa-2 and Capan-1 cells expressing

scrambled control (shCtrl) or FAK shRNA (shFAK) following treatment with doxycycline for 96 hours. Data represent

mean ± SD (n = 3) of shCtrl versus shFAK; *P < 0.05. (b) In vitro colony formation by MIA PaCa-2 and Capan-1 cells

expressing scrambled control (shCtrl) or FAK shRNA (shFAK) following treatment with doxycycline for 96 hours on type I

collagen. Data represents ± SD (n = 4) of control versus hairpin; **P < 0.001. (c) In vivo subcutaneous tumor growth by

MIA PaCa-2 cells expressing scrambled control (shCtrl, n = 4) or FAK shRNA (shFAK, n = 7) following treatment with

doxycycline. Error bar represents SD; *P = 0.02.

https://doi.org/10.1371/journal.pone.0180181.g005
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Fig 6. The loss of FAK inhibits PDAC cell migration in vitro and metastasis in vivo. (a) In vitro migration

by MIA PaCa-2 and Capan-1 cells expressing scrambled control (shCtrl) or FAK shRNA following treatment

with doxycycline on type I collagen for 96 hours. Data represent mean ± SD (n = 4) of control versus hairpin;

**P < 0.001. (b) In vivo metastases by orthotopic MIAPaCa-2 tumors expressing scrambled control (shCtrl)

or FAK shRNA (shFAK) following treatment with doxycycline. Seven mice were used in each group. Control

versus hairpin; *P = 0.008.

https://doi.org/10.1371/journal.pone.0180181.g006
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Discussion

Cancer stem cells maintain long-term tumor initiating potential and promote metastatic pro-

gression in many diseases [55]. These properties suggest that the inhibition of CSCs can

improve clinical outcomes, and in normal tissues and organs, stem cells are dependent on cell-

extrinsic niche factors. Striking changes occur within the TME suggesting that specific extrin-

sic factors similarly impact CSCs. In pancreatic carcinoma, the TME is dominated by the des-

moplastic reaction, and we found that type I collagen enhances tumor-initiating potential, self-

renewal, and cellular migration and invasion through β1integrin and FAK signaling.

In other diseases, alterations within the TME including changes in oxygen tension, the

secretion of soluble growth factors and morphogens, and the activation of non-stem cells such

as cancer associated fibroblasts can regulate CSCs [56–58]. Moreover, morphologically and

functionally distinct CSC niches can exist within a single tumor type and contribute to intratu-

moral heterogeneity. In glioblastoma, areas of hypoxia promote CSC self-renewal and drug

resistance through Hypoxia Inducible Factor associated genes. Additionally, perivascular

niches in which CSCs interact with non-neoplastic stellate, endothelial, and immune cells can

increase self-renewal [59]. Soluble factors aberrantly secreted by non-neoplastic cells can also

enhance the self-renewal of CSCs in a paracrine manner. In multiple myeloma, Growth Differ-

entiation Factor 15 (GDF15) is secreted by bone marrow stromal cells in response to differenti-

ated tumor cells and enhances tumor-initiating potential and self-renewal [60].

Specific soluble factors within the pancreatic TME have been found to regulate CSCs

including Nodal/Activin secretion from pancreatic stellate cells, cationic antimicrobial peptide

18/LL-37 from immune cells, and IFN-stimulated factor 15 (ISG15) from tumor associated

macrophages [59, 61, 62]. The desmoplastic reaction of PDAC has been thought to play a

major role in therapeutic resistance by limiting drug delivery [63], and our findings demon-

strate that intratumoral fibrosis also enhances tumor-initiating and self-renewal potential.

Therefore, a feed forward loop may exist in PDAC in which bulk tumor cells induce cancer

associated fibroblasts to secrete type I collagen that in turn expands CSCs and increase the pro-

duction of differentiated cells.

FAK is pleiotropic and in addition to its kinase activity, the FERM and FAT domains pro-

vide multiple docking sites for several cellular factors including growth factor receptors,

ARP2/3, Endorphilin-A2, and the E3 ubiquitin-protein ligase MDM2 (Mouse double minute 2

homolog) [64]. This scaffold function can modulate cell proliferation, survival, and the epithe-

lial mesenchymal transition [32], and we found that loss of FAK expression by shRNA inhib-

ited tumor growth to a greater extent than inhibiting its kinase activity and prevented tumor

regrowth and metastatic dissemination. Therefore, PDAC CSCs are dependent on both kinase

dependent and kinase independent functions of FAK. Although we did not identify the spe-

cific docking sites of FAK necessary for PDAC CSCs, agents capable of disrupting the scaffold

function have been developed and active against breast cancer [34, 53, 65].

The effects of type I collagen on PDAC CSCs is mediated through the activation of FAK.

FAK is an intracellular, multifunctional protein tyrosine kinase that interacts with integrins at

the plasma membrane in response to extracellular stimuli. Structurally, it has three distinct

domains: an amino-terminal FERM (band 4.1–Ezrin–Radixin–Moesin) domain; a central

kinase domain; and a C-terminal focal adhesion-targeting domain [32]. Upon activation, the

FAK kinase domain auto-phosphorylates the Y397 residue to recruit SRC family kinase and

further phosphorylate the Y576 and Y577 residues within the catalytic domain. This canonical,

kinase-dependent FAK activation is required for focal adhesion (FA) complex formation and

turnover and plays an important role in cell adhesion and motility. In cancer, FAK activation

promotes cancer cell survival and metastasis in a kinase dependent manner [32]. We found
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that the inhibition of FAK kinase activity through overexpression of FAK Y397F decreases

PDAC tumor initiating potential in vitro and in vivo. Pharmacologic FAK inhibitors have been

developed and demonstrated to be active against PDAC in preclinical studies [37, 40]. Further-

more, a phase I study of the FAK inhibitor VS-6062 (previously known as PF-00562271) dem-

onstrated metabolic responses as measured by 18F-fluorodeoxyglucose positron emission

tomography in three out of six patients with PDAC [66]. Similar to findings in ovarian cancer

[67], we found that these agents decreased PDAC growth when used alone and delayed tumor

regrowth in combination with cytotoxic chemotherapy. Therefore, FAK inhibitors may target

PDAC CSCs especially in combination with cytotoxic chemotherapy. Based on these and

other data, the FAK inhibitor VS-4718 is currently being tested in combination with gemcita-

bine plus nab-paclitaxel in patients in the first line pancreatic cancer setting (ClinicalTrials.gov

NCT02651727).

Materials and methods

Cells lines and xenografts

BxPC-3, Capan-1 and MIA PaCa-2 cell lines were purchased from American Type Culture

Collection and cultured on 60 mm dishes coated with or without type I collagen, fibronectin,

or laminin (BD Biosciences). Prior to analysis of clonogenic growth or migration, cells were

washed with 1X PBS, trypsinized, and re-suspended in medium containing 10% fetal bovine

serum. Treatment with FAK-inhibitors PF573228 and VS-4718 was carried out for 72–120

hours on plastic or type I collagen.

Low passage xenografts generated from surgical specimens derived from patients undergo-

ing surgery at the Johns Hopkins Hospital have been previously described [68, 69]. A total of 7

distinct patient-derived xenografts were studied. Single cell suspensions from patient-derived

xenografts were isolated as previously described [68, 69].

Plasmids

Full-length FAK (FAK-FL) was cloned into the NotI and BamHI sites of the pLVX-IRES-

mCherry lentiviral vector (Clontech). Y397F-FAK was created using the QuikChange site-

directed mutagenesis kit (Stratagene). Cell lines transduced with lentiviral constructs were

selected by fluorescence activated cell sorting (FACS) based on mCherry expression. Short

hairpin RNA (shRNA) constructs against FAK (shFAK-1 and shFAK-2) were cloned into the

Tet-pLKO-puro lentiviral vector (Addgene). Cell lines were transduced and stable lines were

selected using puromycin (Thermo Fisher Scientific).

Animal studies

All experiments using mice were approved by the Johns Hopkins University Animal Care and

Use Committee and the mice were maintained in accordance with the American Association

of Laboratory Animal Care guidelines. In all studies, the appropriate measures were taken to

minimize discomfort to animals. All injections and surgical procedures were performed using

sterile technique with efforts made to minimize trauma to the animals. When necessary, ani-

mals were anesthetized with a mixture of 1.75% isofluorane/air. Following injections, animals

were closely monitored and any that appeared moribund were immediately euthanized by

administration of anesthesia, followed by inhalation of carbon dioxide until breathing ceased.

Death was then ensured through cervical dislocation. Tumor growth was followed weekly by

caliper measurements. For drug studies nude mice with subcutaneous low passage xenograft

(JH102) were treated with VS-4718 (50mg/kg; orally; twice daily) and / or gemcitabine (25mg/
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kg; intraperitoneally; twice weekly) and nab-paclitaxel (50mg/kg; once weekly). Tumors were

measured as previously described [68, 69]. Tumor growth comparing scrambled control or

FAK shRNA expressing MIA PaCa-2 cells was carried out by administering nude mice with

doxycycline (2 mg/ml) containing water, four weeks after subcutaneous injection (200,000

cells). Nude mice with orthotopic tumors were treated with doxycycline for 14 days, starting

21 days after the injection of control or FAK shRNA expressing MIA PaCa-2 cells (200,000

cells). Mice were euthanized and metastases were identified by necropsy, or in the case of the

liver and spleen, hematoxylin and eosin stained histological analysis.

Clonogenic assay

Tumor colony formation assay was carried out as previously described [68, 69]

Quantitative real-time PCR analysis

Total RNA was extracted using the RNeasy PlusMini Kit (Qiagen) and reverse-transcribed

with SuperScript III reverse transcriptase (Invitrogen). qRT-PCR was carried out using Taq-

Man probe against ACTB (Hs99999903_m1, Applied Biosystems) or ITGB1
(Hs00559595_m1).

Immunoprecipitation and Western bolt

Whole cell lysates (WCL) from cells were prepared using pre-chilled Mammalian Protein

Extraction Reagent (Life technologies) and incubated 30 minutes on ice. The lysates were

cleared by centrifugation at 13,400 rpm and 4˚C for 15 min. Immunoprecipitation was carried

out by incubating 500 μg of WCL with 1–2 μg of anti-FAK antibody at 4˚C for 16 hours. Sub-

sequently, 25 μg of recombinant protein A agarose beads (Thermo Scientific) were added and

incubated for one hour at 4˚C with slight agitation. For Western blot, proteins were separated

by electrophoresis using NuPAGE1 Novex1 4–12% Bis-Tris Protein Gels (Life technologies)

and transferred to PVDF membrane. Membranes were blocked by 5% w/v BSA, 1X TBS and

0.1% Tween-20 at room temperature for one hour. Membranes were then incubated with rab-

bit monoclonal anti-pY397-FAK, rabbit polyclonal anti-FAK (Cell Signaling Technology),

beta-tubulin, or GAPDH (Abcam) antibodies. Densitometic analyses of protein expressions

were done by ImageJ software.

Flow cytometry

Flow cytometry was carried out as previously described [68, 69]. For ALDH staining, cells from

were stained with the Aldefluor reagent (Stem Cell Technologies) for 30 minutes in a 37˚C

water bath according to the manufacturer’s protocol. ALDH+ cells were identified by based on

cells stained with Aldefluor in the presence of diethylaminobenzaldehyde (DEAB), a specific

inhibitor of ALDH, used to control for background fluorescence. For intracellular staining, cells

were fixed with 2% formalin for 10 minutes, followed by permeabilization with 1% NP40 for 10

minutes at room temperature. Cells were stained with rabbit monoclonal anti-pY397-FAK

(Invitrogen), rabbit polyclonal anti-FAK (Cell Signaling), or mouse monoclonal anti-ALDH

(BD Biosciences) antibodies followed by anti-rabbit-APC and anti-mouse-FITC antibodies

(Invitrogen). Annexin V staining was done according to manufacturer’s protocol (eBioscience).

In vivo tumor-initiating cell assay

Tumor-initiating cell (TIC) frequency was calculated by injecting 10, 100, 500, 1000 or 10,000

MIA PaCa-2 cells expressing control (vector) or FAK-FL or FAK-Y397F subcutaneously into
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NSG mice. TIC frequency was calculated using extreme limiting dilution analysis (ELDA)

[70].

Migration assay

Cell migration assay was carried out as previously described [68, 69]. Briefly, cells were placed

in 24-well cell culture inserts containing 8-μm pores (BD Biosciences). After 72 hours, cells

migrating through the filers were counted using an inverted light microscope.

Microarray

Cells expressing inducible shRNA were treated with 50 ng/ml doxycycline for 96 hours and

then RNA was isolated using RNeasy Mini Kit (Qiagen). Gene expression analysis was per-

formed on an Illumina Human HT12_4 array at the Johns Hopkins University Sidney Kimmel

Comprehensive Cancer Center Microarray Core Lab. Microarray data are available at Gene

Expression Omnibus (GEO) under the accession no. GSE97488. Gene set enrichment analysis

was performed with JAVA-based GSEA software [71].

Statistics

Statistical differences between two groups were analyzed using the two-tailed, unpaired Stu-

dent t test or, if described, by ANOVA (GraphPad Prism Software, Inc.).

Supporting information

S1 Fig. Type I collagen- β1 integrin signaling enhances the clonogenic growth of PDAC

cells. (a) Relative mRNA and protein expression following knockdown of β1 integrin by

shRNA in MIA PaCa-2 cells. (b) Primary and secondary colony formation by Capan-1 cells

with scrambled control (shCtrl) or β1 integrin (shBeta1) shRNA after growth on type I colla-

gen for 96 hours. Data represents mean ± SD (n = 4). ��P< 0.001. (c) Cell viability of MIA

PaCa-2 cells following knockdown of β1 integrin as assessed by annexin V staining.

(TIF)

S2 Fig. Increase phopho-Y397 FAK expression by PDAC cells following overexpression of

FAK-FL. Phospho-FAK (pFAK) and total FAK expression in MIA PaCa-2 and Capan-1 cells

following overexpression of FAK-FL. Beta Tubulin was used as a loading control.

(TIF)

S3 Fig. Type I collagen-β1-integrin-FAK signaling impacts ALDH+ PDAC CSCs. (a) α2β1

integrin expression by ALDH+ or all MIA PaCa-2 cells. (b) Phospho-FAK expression by

ALDH+ or all MIA PaCa-2, and Capan-1 cells. (c) Frequency of ALDH+ MIA PaCa-2 cells fol-

lowing overexpression of FAK-FL. Data represents mean ± SD (n = 3). (d) Frequency of

ALDH+ MIA PaCa-2 cells expressing scrambled control (shCtrl) β1 integrin (shBeta1) shRNA.

Data represents mean ± SD (n = 3). �P< 0.05.

(TIF)

S4 Fig. FAK kinase-inhibition decrease clonogenic PDAC growth in vitro. (a) In vitro col-

ony formation by MIA PaCa-2 and Capan-1 cells following treatment with vehicle control

(DMSO) or PF573228 on collagen I for 96 hours. Data represent mean ± SD (n = 4) of DMSO

versus PF573228; ��P< 0.001. (b) Colony formation by patient derived xenograft cells follow-

ing treatment with vehicle control (DMSO) or PF573228 for 5 days. (c) Frequency of phopho-

FAK+ (pFAK) and ALDH+ cells in Capan-1 and MIA PaCa-2 cell lines following treatment

with DMSO or PF573228 (top panel) on type I collagen for 96 hours. Relative frequency of
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ALDH+ cells in patient derived xenografts following treatment with vehicle control (DMSO)

or PF573228 (bottom panel). (d) Cell viability of MIA PaCa-2 cells following treatment with

DMSO or VS-4718 as assessed by annexin V staining. (e) Ratio of pFAK to total FAK expres-

sion by JH102 xenograft cells following treatment with VS-4718, Gemcitabine plus nab-

paclitaxel (Abraxane) and Gemcitabine plus nab-paclitaxel plus VS-4718. (f) Phospho-FAK

expression in MIA PaCa-2 and Capan-1 cells overexpressing FAK-Y397F. Data represent ratio

of phospho-FAK vs total FAK in percent (%).

(TIF)

S5 Fig. Loss of FAK has minimal impact on PDAC cells proliferation and cell death. (a)

FAK expression following knockdown by shRNA in MIA PaCa-2 cells. (b) In vitro cell prolif-

eration by MIA PaCa-2 cells expressing shFAK following treatment with doxycycline for 3

days. (c) Cell viability of MIA PaCa-2 cells following knockdown of FAK as assessed by

Annexin V staining.

(TIF)

S6 Fig. FAK activation is associated with CSC gene expression signature. GSEA analysis

revealed that embryonic stem cell genes signature is significantly overlapped with gene expres-

sion data set of PDAC cells expressing FAK. Control / FAK hairpin data set versus Wong can-

cer stem cell core data set, (NES: 2.35, P< 0.01 and FDR q = 0.01).

(TIF)

S7 Fig. Type I collagen- β1 integrin-FAK signaling regulates the migration of PDAC cells.

(a) In vitro migration by BxPC-3, Capan-1 and MIA PaCa-2 cells following growth on collagen

I, fibronectin, or laminin for 96 hours. Data represent mean ± SD (n = 4) compared to control;
�P< 0.05; ��P< 0.001. (b) Migration by MIA PaCa-2 and Capan-1 cells expressing shBeta1

following growth on collagen I for 96 hours. Data represent mean ± SD (n = 4) of control ver-

sus shBeta1; �P< 0.05. (c) In vitro migration by MIA PaCa-2 cells following treatment with

DMSO or VS-4718 on collagen I for 96 hours. Data represent mean ± SD (n = 4) of DMSO

versus VS-4718; �P< 0.05. (d) Hematoxylin and eosin (H&E) staining of orthotopically grown

MIA PaCa-2 tumors and metastases.

(TIF)
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