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Abstract

Protein kinases are critical drug targets for treating a large variety of human diseases. Type-

III kinase inhibitors have attracted increasing attention as highly selective therapeutics.

Thus, understanding the binding mechanism of existing type-III kinase inhibitors provides

useful insights into designing new type-III kinase inhibitors. In this work, we have systemati-

cally studied the binding mode of MEK-targeted type-III inhibitors using structural systems

pharmacology and molecular dynamics simulation. Our studies provide detailed sequence,

structure, interaction-fingerprint, pharmacophore and binding-site information on the binding

characteristics of MEK type-III kinase inhibitors. We hypothesize that the helix-folding acti-

vation loop is a hallmark allosteric binding site for type-III inhibitors. Subsequently, we

screened and predicted allosteric binding sites across the human kinome, suggesting other

kinases as potential targets suitable for type-III inhibitors.

Introduction

Kinases are phosphorylation enzymes that catalyze the transfer of phosphate groups from ATP

to specific substrates and are critical in most cellular life processes [1,2]. Abnormal kinase reg-

ulation, which leads to signal disruption and cell deregulation, is implicated in many diseases,

particularly cancers [3]. Thus, a number of kinase-targeted small molecule inhibitors have

been developed that are important in anti-cancer therapy [4]. Through July 2016, 30 small

molecule kinase inhibitors [5,6] have been approved by the US Food and Drug Administration

(FDA) for the treatment of cancers and other diseases (http://www.fda.gov/) and additional

more inhibitors are undergoing clinical trials [7,8].
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However, reported off-target toxicities and acquired-mutation resistance [9] require

kinase-targeted inhibitors of lower dose and higher specificity. Typically, three types of tar-

geted kinase inhibitors, type-I, type-II and type-III, have been developed [10,11]. Type-I

inhibitors are ATP-competitive and occupy the ATP-binding binding pocket, a highly con-

served kinase catalytic scaffold with strong binding affinity for ATP. Driven in part by the

increased number of diverse protein kinase structures, type-II and type-III inhibitors have

also been developed [12]. Type-II inhibitors bind to an extended binding pocket that

includes the ATP-binding pocket and the adjacent less-conserved allosteric site across the

DFG motif. Although type-II inhibitors occupy larger binding pockets than type-I inhibitors,

it has not followed that type-II inhibitors are more selective [13]. However, type-III inhibi-

tors occupy highly specific allosteric sites which provides the opportunity to achieve higher

selectivity. To date type-III MEK inhibitors that inhibit MEK1 and/or MEK2 have attracted

substantial interest. Dozens of type-III MEK inhibitors have been developed for clinical

applications or as molecular probes [14]. Notably, two type-III MEK inhibitors (Trametinib

and Cobimetinib) have been approved by the FDA [15,16]. Besides the type-III MEK inhibi-

tors, several type-III inhibitors for other kinases have been reported [17] including the

BCR-ABL inhibitors GNF2 and ABL001 [18], the pan-AKT inhibitor MK-2206 [19] and the

mutant-selective EGFR allosteric inhibitor EAI045 [20]. In summary, the evidence suggests

that type-III inhibitors provide a valuable approach [17,20]. For example, the type-III MEK

kinase inhibitor, Cobimetinib (IC50 0.9 nM), overcomes the resistance induced by the BRAF

V600E mutation seen in melanoma by inhibiting MEK, which is downstream of BRAF in the

BRAF/MEK/ERK pathway [16]. To date, however, there is no systematic means of identify-

ing the preferred characteristics of specific type-III inhibitors [8]. Since existing type-III

kinase inhibitors mainly target MEK [17] by understanding the molecular characteristics of

type-III MEK inhibitors, the goal is to use that understanding to develop type-III inhibitors

more broadly across the human kinome.

In this work we have integrated the structural systems biology strategy and molecular

dynamics simulation methods to gain insights into type-III kinase inhibitors and their binding

modes with human protein kinases. The structural system biology strategy harnesses multiple

omics data resource to compare and discover the gene-level, protein-level and structure-level

information on protein-ligand interactions [21]. We have previously applied this strategy to

drug design and discovery for the human structural kinome (distinct from the work here) and

the Ebola virus proteome [5,22].

Further, with increased computing power and more efficient algorithms, molecular dynam-

ics (MD) simulation is now becoming a routine tool for drug design, accounting for the reality

of a flexible target structure and flexible target-drug binding [23]. In this paper we performed

detailed MEK-inhibitor interactional fingerprint analysis using the aforementioned methods.

This was followed by two MD simulations up to 1.2 μs in an explicit water box to obtain

insights into the behavior of MEK as a flexible target, with and without the representative

ligand, Cobimetinib [24]. By comparing the structural trajectories between MEK with and

without ligand, we determined the structural flexibility and interaction network for type-III

inhibitor binding to MEK.

Finally, we studied the structural impact of point mutations, the MEK pharmacophore and

the mechanistic understanding of MEK-drug binding. Using these aggregate data as a template

we explored the whole human kinome to identify potential new opportunities for type-III

inhibition.
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Results

Binding modes of crystallized ligand-bound MEK complexes

We obtained the binding characteristics of ligand-bound MEK complexes as shown in Fig 1.

Fig 1a illustrates the alignment of the 29 catalytic kinase domains of MEK bound to the type

III inhibitors shown in the same allosteric binding site. We calculated the detailed interactions

between MEK and the ligand using the function-site interaction fingerprint (Fs-IFP) method

(Fig 1b). The highly conserved interactions between the respective ligands and MEK include

K97, L115, L118, V127, M143, C207DFGVS212, I215 and M219 (Fig 1b and 1c). These con-

served interactions can be divided into three spatial regions.

The first region is the hydrophobic sub-pocket consisting of L115, L118, V127 and M143 as

shown in purple in Fig 1c. All interactions are apolar (Fig 1b). Correspondingly, all ligands

have hydrophobic groups that can be accommodated in the sub-pocket. For example, Cobime-

tinib has a 2-fluoro-4-iodoanilino fragment, as shown in purple in Fig 2 (4an2), which is a

well-known hydrophobic pocket binder and accommodates the hydrophobic sub-pocket with

hydrophobic contacts as shown in Fig 1c. Other ligands also have the same or similar frag-

ments (Fig 2, the fragment in purple) so as to achieve the high binding affinity of the conserved

sub-pocket. Pharmacophore modeling, as shown in Fig 1d, also revealed similar patterns with

three common hydrophobic groups, H3, H4 and R7.

The second region is K97, an important catalytic residue, located at the roof of the binding

pocket (Fig 1c, yellow color). K97 has a conserved interaction with the oxygen atom O�

(marked in Fig 2, dark blue color) of the respective ligands. The molecular moiety O� is con-

served, shown in the same position for other compounds in dark blue, either as an oxygen or

nitrogen atom (Fig 2, 3eqb and 3eqh). Pharmacophore modeling (Fig 1d) is consistent with

one donor-type hydrogen bond, D2.

The third region, consisting of C207DFGVS212, I215 and M219, forms a loop and a helix

that acts like an arm to accommodate the inhibitor in the kinase active site. DFG is directly

involved in kinase catalytic activity and is conserved across the human kinome. I215 and

M219 are located in the activation loop. Interestingly, in MEK the activation loop folds into a

short helix which forms the allosteric site. In most MEK-ligand structures, S212 has a strong

interaction with the corresponding ligand (Fig 1b, S212 column, red color) including an apo-

lar and hydrogen-bond interaction. However, in the structures 1s9j, 3egg, 3oss, 4v04 and

4an3, S212 forms only a polar interaction with the corresponding ligand. This conserved

interaction is consistent with experiment which shows that S212 plays a key role in phos-

phorylation by RAF [16]. In this third region all active ligands have one atom (F, N or O.

such as F� in Fig 2, 4an2, in red color) that interacts with the backbone of S212. Pharmaco-

phore modeling (Fig 1d, H5 and R6) illustrates that all ligands have common features in

their interaction with S212.

Taken together, the aforementioned three regions make major contributions to ligand

binding in the allosteric pocket. Summarizing Fig 1d, the hydrophobic heads (H3, H4 and R7)

accommodate the hydrophobic sub-pocket and D2 and H5 interact with the roof amino acid

K97 and S212 of the loop, respectively. It is expected that an active MEK inhibitor would have

these chemical functional groups or similar. Furthermore, in 3D space, these atoms are spa-

tially conserved, as shown by the triangles in Fig 2 for D2, H4 and H5, suggesting that the

design of MEK allosteric inhibitors should follow this pharmacophore. Similar conserved spa-

tial requirements have been reported in the design of other allosteric inhibitors [20]. Of course,

besides the conserved pharmacophores, different inhibitors are subjected to specific interac-

tions involving other amino acids to achieve selectivity, as shown in Fig 1b. Specifically, the

solvent exposed part of the inhibitor, shown in Fig 2 in green, can be substituted by different
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chemical group or atoms. The pharmacophore has no common features for the solvent

exposed part (Fig 1d). These differences reflect different levels of inhibition as illustrated by

Rice and coworkers found in the structure-activity relationships while optimizing a series of

compounds leading to Cobimetinib [15]. Based on the co-crystal complex structure with Cobi-

metinib and ACP, an ATP analogue, shown in S1 Fig, the solvent exposed parts of the inhibitor

are right next to the γ-phosphate of ATP and an interaction between them is formed. This

interaction disturbs the functional conformation of the γ-phosphate of ATP and the substrate

being phosphorylated, reducing MEK’s enzymatic activity.

Fig 1. Binding characters of MEK-ligand complexes. a) All MEK-ligand complex structures aligned using SMAP. b) Encoding all MEK-ligand

interactions. Every row represents the MEK-ligand interaction fingerprint of one complex structure, and every column represents the interactions

between the same amino acid in space and the bound ligand in different complex structures. Different colors represent the different types of fingerprint

interactions: yellow, no interaction; blue, apolar interaction; red, apolar interaction + hydrogen bond interaction (protein as donor); deep red, hydrogen

bond interaction (protein as donor); pink, polar interaction+ aromatic interaction; and grey, apolar interaction + hydrogen bond interaction (protein as

acceptor). c) Spatial representation of MEK-ligand interactions. d) Pharmacophore modeling: H, hydrophobic group; R, aromatic ring; D, hydrogen-

bond donor.

https://doi.org/10.1371/journal.pone.0179936.g001
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MEK structural flexibility and insights into the binding mechanism

Beyond studying the binding modes from released PDB structures for MEK, we considered

how type-III inhibitors influence MEK structural flexibility. We performed two 0.6 μs MD

simulations for MEK kinase with and without the inhibitor bound. The overall Cα-RMSDs of

the apo and holo structures are similar (S2 Fig). However, individual Cα-atom fluctuations

show significant differences, especially in the ligand-bound regions (Fig 3a), where we com-

pared MEK structural flexibility before and after binding using the two last 0.5 μs equilibrated

MD trajectories. For apo MEK the flexibility change mainly comes from the P-loop, the activa-

tion loop and the C-terminal lobe as shown in Fig 3a. The corresponding collective motion as

inferred from the first principal component of PCA is shown in Fig 3b. As a comparison, in

the MEK-Cobimetinib complex, the main fluctuations come from the parts of the C-helix, the

C-terminal part of the activation loop and the C-terminal lobe (Fig 3a). The obvious difference

before and after binding inhibitor is that the collective motions of the P-loop and activation

loop have undergone a substantial reduction and the flexibility of the C-helix has significantly

increased in the MEK-Cobimetinib complex compared to apo MEK. Similar to other kinases,

Fig 2. Ligands from the 29 MEK-ligand complex structures. The triangles highlight the conserved structure-activity relationships (SARs) that

characterize the MEK Type-III inhibitors in 3D space.

https://doi.org/10.1371/journal.pone.0179936.g002
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the P-loop contributes to conformational flexibility and plays an important role in binding

and recognizing phosphoryl moieties [25]. Moreover, this flexible P-loop motif, along with

other beta-sheets and helixes, generally form a pocket into which the phosphate groups can

insert [26,27]. Like the P-loop, the activation loop shows a similar change in flexibility before

and after Cobimetinib binding. Like other kinases, MEK Glu114 within the C-Helix, Lys97

and the DFG peptide form the ATP catalytic center, where the salt-bridge between Glu114 and

Fig 3. RMSF profiles and PCA projection. a) The RMSF profiles from the last 0.5 μm equilibrated MD trajectories of MEK and the MEK-Cobimetinib

complex, respectively. Some secondary structure elements are shown on the abscissa. b) and c) The Cα-atom projection along the first principal

component. The displacements are shown as color-coded tubes from blue (small displacement) to orange (large displacement) for (b) MEK and (c) the

MEK-Cobimetinib complex.

https://doi.org/10.1371/journal.pone.0179936.g003
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Lys97 is needed for catalysis. Upon Cobimetinib binding to MEK, the salt-bridge interaction is

broken. It may have significant effect on the function of the C-helix [8,28]. In addition, the

activation loop forms a short helix in MEK, whereas in most kinases the activation loop is a

flexible loop. One hypothesis that follows is that the short helix is important in forming the

allosteric binding pocket that accommodates a type-III inhibitor and a necessary consideration

in the design of new type-III inhibitors [29].

Conserved interactions with inhibitors from S212 and K97

As aforementioned, the inhibitors derived from PDB MEK structures have a similar core and

common functional groups forming a conserved spatial triangular arrangement (Fig 2). Corre-

spondingly, in the MEK-Cobimetinib MD trajectories the conserved interactions between

MEK and respective inhibitors were evaluated (Fig 3c). Two key interactions between S212,

K97 and Cobimetinib are highlighted here (Fig 4). The interaction between the backbone

nitrogen atom of S212 and the F� atom of the inhibitor is shown in red. From the probability

distribution (Fig 4b) the center of the peak is at 3.1 Å, which suggests that a hydrogen bond

interaction is conserved at all times to maintain the binding affinity and restrain the flexible

movement of S212, thereby hindering MEK phosphorylation by RAF. This observed hydrogen

bond interaction is in agreement with reported experimental results [16].

The O� atom (Fig 2, 4an2) is another conserved polar atom contributing to the effective

binding. As shown in Fig 4 in green, the position of the peak in the probability distribution is

at approximately 3.0 Å, which agrees with the distance found in released crystal structures, for

example, 4lmn [15,16]. This distance suggests that there is a strong hydrogen-bond interaction

between O� of the ligand and the ε-amino group of the lysine (K97), which contributes to the

catalytic center [30]. This hydrogen-bond interaction replaces the salt-bridge interaction

between the ε-amino group of Lys97 and the Glu114 of the C-Helix. Importantly, blocking the

salt-bridge interaction results in an inactive state [31] and increased flexibility of the C-Helix.

The O� atom of Cobimetinib, the ε-amino group of Lys97 and the carboxyl group of Asp208,

Fig 4. Two conserved interatomic interactions between MEK and the ligand. (a) Interatomic distances for every conformation from the MD

trajectory; (b) The probability distribution of interatomic distances.

https://doi.org/10.1371/journal.pone.0179936.g004
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part of DFG, form the pseudo catalytic center and deactivate kinase activity in the MEK/ERK

pathway [32]. For other ligands (Fig 2), there is the same oxygen atom or similar nitrogen as

O�, which should optionally be retained in future drug design studies.

Ranking similar binding sites to MEK using SMAP across the structural

kinome

To determine all other potential human protein kinases potentially suitable for type-III inhibi-

tion, MEK-similar binding pockets screening was performed across the human structural

kinome using SMAP [33–35]. Using the SMAP threshold of more than 55% similarity, three

crystal structures with binding pockets similar to MEK were found (pdb ids 2yix, 4pp7 and

4wo5). One structure is a P38α kinase [36] and two are BRAF kinases [2]. All three structures

contain a small helix within the activation loop. We aligned the sequences of MEK, P38α and

BRAF with particular attention to the activation loop. The sequence similarity is not high (S3

Fig; the activation loops are marked with a rectangle). These results lead us to hypothesize that

kinases with similar secondary structures in their activation loops have the potential to be

inhibited by type-III inhibitors, even though their global sequences do not have high similarity

with MEK. Ohren et. al. [29] have also suggested that the helix in the activation loop provides

structural insight into designing type-III inhibitors. This then begs the question, what other

human protein kinases can potentially form a helix in the activation loop?

Predicting helix containing activation loops across the human kinome

We predicted the secondary structure of the activation loop of all human protein kinases to

rank the similarity to the MEK activation loop helix that we suggest is critical for the binding

pose of the type-III inhibitor [37]. Based on amino acid sequences of all human protein

kinases, we determined the top 15 kinases that have a potential helix within the activation loop

[8] (Fig 5 and Table 1). The top 15 kinases are mostly located within the STE group which

forms the MAPK cascade. In terms of sequence, their activation loops don’t have high similar-

ity to MEK, yet in terms of secondary structure prediction the activation loops of the 15

kinases may contain a helix. Among them MAP2K4 has been validated by a newly released X-

ray structure (pdb id 3alo) [38], in which the crystallized activation loop is shown to contain a

helix. If this helix is found in subsequent structures it will be important to consider it in future

type-III inhibitor design, partculalrly for the 15 protein kinase targets identified here.

Conclusions

Recently approved FDA type-III allosteric protein kinase inhibitors prompted us to consider

more efficient and lower-dose kinase inhibitors. Study of the type-III inhibitor-bound binding

site provides structural insights into the design of new allosteric inhibitors. Here we study the

characteristics of the MEK binding site, the chemical nature of the inhibitors that bind MEK,

and the dynamic characteristics and nature of the interaction between protein and inhibitor

from MD simulation. Further, based on all 3D kinase structures, we screened for potential allo-

steric inhibitor-bound binding sites. This revealed that the binding sites of BRAF and P38α
were similar to MEK. Finally, based on the distinctive helix character of the MEK activation

loop [37] we identified 15 kinases which potentially contain the allosteric site needed to

accommodate type-III inhibitors. In summary, our in silico analysis furthers our understand-

ing of allosteric protein kinase inhibitors and forms a framework for allosteric-site prediction

that can be potentially tested by experiment.
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Methods

Functional site interaction fingerprint

Functional site interaction fingerprint (Fs-IFP) is a method to determine the functional site

binding characteristics and to compare binding sites on a proteome scale [5]. Here we use Fs-

Fig 5. The phylogenetic distribution of the top 15 human protein kinases where a helix was predicted in the activation loop. The figure was

generated using TREEspot (www.discoverx.com).

https://doi.org/10.1371/journal.pone.0179936.g005
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IFP to reveal the binding characteristics of the MEK-inhibitor complex for all released MEK

structures from the Protein Data Bank (PDB) [39]. In brief, firstly we downloaded all available

MEK structures from the PDB; 35 MEK1 structures and 1 MEK2 structure (PDB id 1s9i). The

29 ligand-bound MEK structures formed the MEK structure dataset. We aligned all the bind-

ing sites of these ligand-bound structures using SMAP [33–35] and encoded the Fs-IFP as pub-

lished in an earlier paper [5] using the Pyplif software [40]. Because MEK1 and MEK2 have

high sequence identity in their respective kinase domains and their sequence identity is 100%

in the allosteric binding site [29,41], in this paper, all residue numbering is relative to the

MEK1 sequence. The end result of Fs-IFP calculations for each structure is a one-dimensional

bit representation of a variety of interactions between every involved amino acid and the

ligand.

Pharmacophore modeling

Pharmacophore modeling was performed using Maestro from Schrodinger release 2016.02

[42]. Using the MEK structure dataset we found IC50 data for 19 entries (S1 Table). The phar-

macophore model was trained using the ligands with an IC50 of less than 10 nM.

MD simulation

Two MD simulations were performed with starting conformations taken from the PDB: pdb

id 4an2 for the MEK-Cobimetinib complex; and pdb id 3zls for the MEK apo structure. Both

initial conformations were prepared for MD simulation using the ACEMD protocol [43]. The

protonation states of both systems were assigned a pH of 7.0, similar to the cellular environ-

ment. Then every His state and every disulfide bond were checked to make sure they con-

formed to a pH of 7.0. The systems were solvated in a rectangular water box with at least a 12Å
shell buffer from any-solute atoms. Charged ions were added to ensure an ionic strength of

0.20 M and electroneutrality. The CHARMM27 force field [44,45], CHARMM general force

field [46] and TIP3P force field were used for the kinase, ligand, and water molecules, respec-

tively. Both simulations were relaxed with the standard MD protocol; 2ps minimization, 100ps

for NVT, 1ns for NPT with heavy-atom constraints and 1ns for NPT without any constraints.

Table 1. Top 15 kinases predicted with high confidence to have a helix at part of the activation loop.

Kinases Sequences at Activation loop Predicted secondary structure Confidence of prediction

TK_JakB__Domain2_JAK3 DPGVSPAVLSLEMLTDRIPWVA - - - - -HHHHHHHHH-- - - - - - 9998535655555404886148

STE_STE20_KHS_HPK1 DFGISAQIGATLARRLSFIGTP - - - - - -HHHHHHHHH-- - - - - 9998651226787750368999

AGC_MAST__MAST3 DFGLSKIGLMSMATNLYEGHIE - - - - - -HHHHHHHHHHH-- - - 9998601144567776216899

STE_STE20_MSN_ZC1_HGK DFGVSAQLDRTVGRRNTFIGTP - - - -HHHHHHHHHH-- - - - - - 9963576888764136316899

STE_STE20_MSN_ZC2_TNIK DFGVSAQLDRTVGRRNTFIGTP - - - -HHHHHHHHHH-- - - - - - 9963576888764136316899

STE_STE20_MSN_ZC3_MINK DFGVSAQLDRTVGRRNTFIGTP - - - -HHHHHHHHHH-- - - - - - 9963576888764136316899

STE_STE20_KHS_KHS1 DFGVAAKITATIAKRKSFIGTP - - - -HHHHHHHHHHH-- - - - - 9965313789999811125899

AGC_MAST__MAST1 DFGLSKMGLMSLTTNLYEGHIE - - - - -HHHHHHHHHHHH-- - - 9984235488888776425589

STE_STE7__MAP2K3 DFGISGYLVDSVAKTMDAGCKP - - - -HHHHHHHHHHH-- - - - - 9998146789999832058999

STE_STE7__MAP2K6 DFGISGYLVDSVAKTIDAGCKP - - - -HHHHHHHHHHH-- - - - - 9998146789999832058999

AGC_MAST__MAST2 DFGLSKIGLMSLTTNLYEGHIE - - - - -HHHHHHHHHHHH-- - - 9984235488888887515589

STE_STE20_KHS_KHS2 DFGVSAQITATIAKRKSFIGTP - - - -HHHHHHHHHHH-- - - - - 9983799999999803213999

STE_STE7__MAP2K4 DFGISGQLVDSIAKTRDAGCRP - - - - -HHHHHHHHHH-- - - - - 9987278899999823378999

STE_STE7__MAP2K5 DFGVSTQLVNSIAKTYVGTNAY - - - -HHHHHHHHHHHH-- - - - 9941799999999851688999

Other_NRBP__NRBP1 VAPDTINNHVKTCREEQKNLHF - - - - -HHHHHHHHHHH-- - - - 9966457699999987058999

https://doi.org/10.1371/journal.pone.0179936.t001
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Subsequently, 0.6 μs MD simulations were performed. In both MD simulations all bonds were

constrained using SHAKE and the integration time step was 4 fs. The temperature bath used

the Langevin method, and 1atm pressure was maintained using the Berendsen method. Both

simulations were carried out using the ACEMD software [43] on the NIH high-performance

Biowulf cluster (https://hpc.nih.gov/). The MD results were analyzed using the conformations

during the last 0.5 μs MD trajectory. The analysis of MD trajectories, including Root Mean

Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and Principal Component

Analysis (PCA), were performed with the Wordom tool [47].

Screening for similar binding pockets across the human structural

kinome

Approximately three thousands protein kinase structures have been solved by X-ray and NMR

methods. 2797 of these kinase structures included the catalytic domain and formed the human

structural kinome [5]. We then used the MEK-Cobimetinib complex (PDB id 4lmn) as a tem-

plate to rank similar binding sites from the human structural kinome by performing a one-to-

all comparison using SMAP [33–35]. The top-ranked binding sites with p-values< 0.05 were

retained for further analysis.

Secondary structure prediction

Determining type-III inhibitors needs to be validated, not only by biological activity assay, but

also through analysis of an appropriate crystal structure [8]. Unfortunately, the type-III bind-

ing pocket is often not present in the crystal structure when there is no specific type-III inhibi-

tor co-crystalized [8]. To obtain the MEK-similar allosteric site in such kinases, we predicted

the MEK-like secondary structure of the activation loop to establish the binding pose of the

type-III inhibitor [37]. We used a protein secondary structure prediction server Jpred4 [48] for

the task. First, the 516 kinase domain sequences for the eukaryotic protein kinase superfamily

were downloaded at kinase.com and were aligned using the cluster omega software [49]. Then,

from the alignment, the amino acid sequence of the activation loop for every kinase was

extracted with an additional 11 N-terminal and 11 C-terminal residues adjoining the DFG seg-

ments. Finally, the activation loop structure was predicted using the JPred RESTful API (v1.5)

[48] with default parameters.

Supporting information

S1 Fig. ACP-Cobimetinib-MEK co-crystal structure (pdb id 4an2). a) Cartoon model. b) 2D

diagrams of Cobimetinib/MEK interactions including ACP (marked as Acp1383) generated

with LigPlot+.

(TIFF)

S2 Fig. Cα atom RMSD.

(TIFF)

S3 Fig. Sequence level similarity for the three kinases BRAF, MEK, and P38α.

(TIFF)

S1 Table. List of MEK active inhibitors.
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