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Abstract

The quality of samples preserved long term at ultralow temperatures has not been ade-

quately studied. To improve our understanding, we need a strategy to analyze protein deg-

radation and metabolism at subfreezing temperatures. To do this, we obtained liquid

chromatography-mass spectrometry (LC/MS) data of calculated protein signal intensities in

HEK-293 cells. Our first attempt at directly clustering the values failed, most likely due to the

so-called “curse of dimensionality”. The clusters were not reproducible, and the outputs dif-

fered with different methods. By utilizing rigid geometry with a prime ideal I-adic (p-adic)

metric, however, we rearranged the sample clusters into a meaningful and reproducible

order, and the results were the same with each of the different clustering methods tested.

Furthermore, we have also succeeded in application of this method to expression array data

in similar situations. Thus, we eliminated the “curse of dimensionality” from the data set, at

least in clustering methods. It is possible that our approach determines a characteristic

value of systems that follow a Boltzmann distribution.

Introduction

Even when frozen, biological samples degrade during aging, and most frozen cell cultures are

stored for only two years. However, the cause of degradation is not well understood. A few

reports have described enzymatic activities in frozen cultures, including lipase and peroxidase

activities (see, e.g., [1, 2]). However, the proteomic details of cells stored at subfreezing temper-

atures are not known. One study used liquid chromatography-mass spectrometry (LC/MS) to

study frogs in a simulated winter environment [3]; it lacks solid statistical analysis and did not

consider subfreezing temperatures. In order to evaluate the potential degradation/metabolism,

it is important to obtain solid proteomic data from actual frozen cultures under long-term

storage in a subfreezing environment.

To do this, we devised a procedure that can distinguish samples from long-term storage

from those that have been freshly prepared. Clustering analysis is a popular approach to such

an evaluation; this approach uses criteria for similarity/dissimilarity to divide the data into
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meaningful groups. It is based on a bottom-up calculation of the data, and thus the criteria are

part of the system. However, it is still necessary to define the groups and to select the actual

clustering methods. If different clustering methods yield the same topological structure of the

hierarchical tree or the same indices of the clusters, it can be assumed that the output of the

analysis is sound; however, this is not always achieved, and discrepancies cast doubt on the

results.

There are two types of clustering analysis: hierarchical clustering [4] and nonhierarchical

clustering [5]. Hierarchical clustering is appropriate when there is distance/dissimilarity

between the data points; it joins data based on similarities to a given point, and then combines

those points based on their similarities. In this way, a multidimensional data set is reduced to a

two-dimensional set, with the axes indicating labeling and clustering distance. Representatives

of these methods include simple linkage, complete linkage, group averaging, weighted averag-

ing, methods using the centroid or median, and Ward’s method. If we define the dissimilarity

of i, j, and k to be Ci, Cj, and Ck, respectively, then

dðCi [ Cj;CkÞ ¼ aidðCi;CkÞ þ ajdðCj;CkÞ þ bdðCi;CjÞ þ gjdðCi;CkÞ � dðCj;CkÞj;

where the values of αi, αj, β, and γ are given in Table 1.

Nonhierarchical clustering, for example, the k-means method, is an optimization approach

based on classification. The number of groups, k, is initialized. Dissimilarity is measured using

the squared Euclidean distance. The k groups are then determined and scored as each data

point is added. The grouping that gives the lowest score is chosen, and the process is repeated.

The selection of the number of groups is a top-down approach, but from other aspects, this is a

bottom-up approach. Each of the eight methods, including seven hierarchical methods and the

k-means method, can be relatively easily implemented on a computer, and these are more fre-

quently used than are other, more complex methodologies.

A problem arises, however, when there is a high-dimensional data set (more than 1000 vari-

ables); this effect is referred to as the “curse of dimensionality”. In such a situation, the vari-

ances among samples become large and sparse, and a clustering analysis produces meaningless

results (see, e.g., [6]). One solution is to use machine learning [7]. However, the high

dimensionality produces a very large or incalculable value for the Akaike information crite-

rion, and this means the solution may be invalid.

Alternatively, principal component analysis (PCA) with maximized variances of variance-

covariance matrix [8] or non-metric multi-dimensional scaling calculating similarity in

reduced dimensions without the constraint of linearity (nMDS) [9] is utilized to classify the

Table 1. Parameters of various hierarchical clustering methods. β, γ: corrections based on the triangle ijk; Dissimilarity [E2: Euclidean distance; E20: half

of the squared Euclidean distance]; Monotony [monotonically increasing lengths (We note that this is not true in the centroid and median methods. The value

of a monotonic increase depends on the particular situation.); T: true; F: false;]; Metric [expansion & reduction: renewal of ongoing clustering by increasing or

reducing the distance between data points].

method αi αj β γ Dissimilarity Monotony Metric

single 1/2 1/2 0 −1/2 no restriction T reduction

complete 1/2 1/2 0 1/2 no restriction T expansion

group average ni
niþnj

nj
niþnj

0 0 no restriction T conserved

weighted average 1/2 1/2 0 0 no restriction T conserved

centroid ni
niþnj

nj
niþnj

� ninj
ðniþnj Þ

2
0 E2 F conserved & reduction

median 1/2 1/2 −1/4 0 E2 F conserved & reduction

Ward niþnk
niþnjþnk

njþnk
niþnjþnk

� nk
niþnjþnk

0 E20 T conserved & expansion

https://doi.org/10.1371/journal.pone.0179180.t001
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observed data sets. These methods also exhibited “curse of dimensionality” in very high

dimension, however.

In this manuscript, we present a mathematical solution that uses rigid geometry to pretreat

the data prior to a cluster analysis. The most important aspect of clustering is determining the

metric, and we considered the p-adic metric (of a prime ideal), which is based on rigid geome-

try (Please refer S1 Appendix). Utilizing the idea of blowing up singularity in rigid geometry,

one can resolve singularity that affects most parts of fluctuations and purify the internal char-

acteristic residing in the dataset [10]. This allowed us to discriminate between control samples

and those that had been held in long-term storage. An appropriate metric must satisfy (i) a sep-

aration axiom (not necessarily nonnegative), (ii) the identity of indiscernibles, (iii) symmetry,

and (iv) the triangle inequality. Examples of metrics include the absolute distance, the Cheby-

shev distance, the Euclidean distance, the average Euclidean distance, squared Euclidean dis-

tance, the Minkowski distance, the correlation efficiency, cosine efficiency nearest neighbor

distance and the radial basis kernels. The selection of the metric significantly affects the calcu-

lation (see, e.g., [6]). We picked up nearest neighbor distances ANN ¼ �DO
�DE
; �DO ¼

Pn

i¼1
di

n ; �DE ¼

0:5ffiffiffiffiffi
n=A
p and radial basis kernels K(x,z) = exp(−γKkx−zk2) together with Euclidean distances and

correlation distances dcor(x,z) = 1 −rcor(x,z) [11] to compare the results with a p-adic metric we

invented, when di is an element i of distance vector, A is a total study area, x, z are a vectors

of interests and rcor is the correlation of them. You can easily see that all the nearest neighbor

distances, radial basis kernels and Euclidean distances preserve the high dimensionalities in

the distance vector d. Correlation distances seems to cancel out high dimensionality with quo-

tient, but still does not erase the trace of singularities. This might be the cause of “curse of

dimensionality”. A principle of modern geometry is that there exists a nilpotent state in which

observed values converge and oscillate about −1; this results in a system that is easier to handle.

Rigid geometry is a well-known mathematical field and is based on the complete non-Archi-

medean field; it was introduced in 1962 by John Tate [12–14]. It allows us to use p-adic elliptic

curves to solve the singularity problem [10]. In this system, the non-Archimedean valuation

system enables values to converge globally, but locally the values are free, due to the high

dimensionality. There is a mathematically well-known topology that meets this type of require-

ment, Grothendieck topology (G-topology) [15]. Below, we will present the application of

rigid geometry to a biological data set, and we will show that this removes the effects of the

“curse of dimensionality”; the resulting topology of the clusters can then be easily interpreted.

Results

Direct analysis of unused LC/MS data resulted in nonproper clustering of

samples with clustering methods or non-metric multidimensional scaling

We extracted proteins from HEK-293 cells that had been stored in different freezing condi-

tions. As a control, we collected fresh samples from a cell culture, samples from cells frozen for

1 h at −80˚C (1h), and samples from cells frozen overnight at −80˚C and subsequently trans-

ferred to liquid nitrogen and held overnight (o/n-o/n). For the treated samples, we used sam-

ples that had been preserved in liquid nitrogen for 2 or 3 years. See the Methods section for

more details. After performing LC/MS, we extracted unused values (the amount of total,

unique peptide evidence related to a given protein) and performed clustering analyses using

various hierarchical methods and the k-means method. We found that although different

treatments of the sample gave significantly different results, clustering did not yield meaning-

ful information; the clusters were not reproducible, and the outputs differed with different

Rigid geometry solves "curse of dimensionality"
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methods; see Fig 1A. The control and treatment data were combined and neural-network-

based machine learning produced clustering of cl values (the expected number of columns in

the model of the training data set) on both the control samples and the storage samples. The

samples that had been stored for 2 years were distinct from the control values, and only those

stored for 3 years were interspersed (Fig 1A). This suggests the presence of “curse of

dimensionality” effects (see, e.g., [6]). Additionally, PCA exhibited 89% of the data can be

explained by a single component (PC1) with absolute correlation values > 0.74 in each, indi-

cating failure in clustering (Table 2). PC2 and PC3 occupies 6% and 1% contributions, respec-

tively. nMDS did not show proper clustering among control samples and samples frozen for

years, indicating failure (Fig 1A). The number of unknown parameters in the neural network

was 1636. This idea is illustrated in Fig 2A, and actual structures in geometric space are impor-

tant for conducting these calculations [6]. In this first analysis, we used the simple unused val-

ues with Euclidean distances when calculating the dissimilarity.

A p-adic metric based on rigid geometry eliminated “curse of

dimensionality” effects with LC/MS data

To avoid the pitfalls described above, we designed a better metric for the calculation of groups

(Please refer S1 Appendix). If we choose an appropriate geometric metric that is nilpotent for

convergence/divergence of values and converges to an oscillation around −1, then more over-

converged output can be extracted and used to discriminate between the observed characteris-

tics. A common approach for this is to use rigid geometry. When using a p-adic metric that

includes a subring of norm < |1|, a non-Archimedean field is more likely to converge than is

an Archimedean real field or a complex field. The geometry converges globally, but locally the

values are free, enabling freedom from the restriction due to “curse of dimensionality”.

One example of this type of analysis is illustrated in Fig 2B (see, e.g., [16]). Consider charac-

teristic points of an icosahedron projected onto a sphere: 12 vertices (indicated in blue in Fig

2B), 20 barycenters (the 20 centers of the triangular faces; in green), and 30 edge midpoints (in

red). Projecting the icosahedron from its center to a sphere maps a tessellation of the sphere

into 120 triangles, as shown in Fig 2B left. The angles are π/2 for red, π/3 for green, and π/5 for

blue. The generator I on Riemann sphere is:

I ¼ h
z 0

0 1

 !

;
zþ z

� 1
1

1 � ðzþ z
� 1
Þ

 !

i; z ¼ e2p
ffiffiffiffi
� 1
p

=5

An icosahedron has 6 cyclic subgroups of order 5, 10 cyclic subgroups of order 3, and 15 cyclic

subgroups of order 2. The quotient of this Riemann sphere by the group I is shown in Fig 2B

right. In the Fig 2 (red points), 3 (green points), and 5 (blue points) correspond to the mid-

points of the edges, the barycenters of the faces, and the vertices, respectively. As a result of

this mapping, the system is simplified.

We define a p-adic metric based on rigid geometry, as described in the Methods section,

and use this to pretreat the data before clustering or machine learning; the results are shown in

Fig 1B. The control samples and those stored for long term formed distinct clusters with each

of the proposed methods; this suggests this method eliminates the “curse of dimensionality”.

Additionally, PCA showed 98% of contributions was attributed to PC1, PC2, PC3 and PC4.

Considering absolute values of correlations, PC1 is attributed to 3y; PC2 is 2y2, 2y3; PC3 is

2y1; PC4 is f-2 with milder correlation to other control samples (Table 3). Proper clustering of

p-adic values is thus well achieved also in PCA. For nMDS, the effect of clustering was promi-

nent. All the control samples localized at almost an identical point, while samples with years of

freezing environment sparse along the plotting (Fig 1B). The means of the variances in the

Rigid geometry solves "curse of dimensionality"
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Fig 1. Clustering of value sets for each protein in the LC/MS data of HEK-293 (N = 803). f-1, f-2, and f-3: freshly prepared samples in replicates 1, 2,

and 3, respectively; 1h1 and 1h2: samples frozen at −80˚C for 1 h in replicates 1 and 2, respectively; o/1 and o/2: samples that remained at −80˚C overnight

and then in liquid nitrogen overnight (“o/n-o/n”) in replicates 1 and 2, respectively; 2y1, 2y2, and 2y3: samples preserved in liquid nitrogen storage according

Rigid geometry solves "curse of dimensionality"
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original method and the rigid geometry method (95% confidence intervals: 60 ± 10 and

6000 ± 8000, respectively) do not reflect the advantage of using the p-adic metric. However,

the data from the rigid method had 10 outliers in high ranks (see Fig 3A for the skewness);

these were defined as being larger than the corresponding Euclidean value of the same rank.

When the ten samples with the largest variances were excluded, the means of the variances

obtained with the original method and the rigid geometry method became 44 ± 5 and 14 ± 3,

respectively, with p = 5 × 10−20 for the t-test; again, this suggests the “curse of dimensionality”

has been removed. We note that neural-network-based machine learning showed the same

tendency as in the previous section; the number of unknown parameters was 1630. All the data

indicate successful clustering with v metric.

Some other metrics failed to eliminate “curse of dimensionality” effects

with LC/MS data

To further clarifying the outperformance of v metric, we tested nearest neighbor distances for

the calculation of clustering in LC/MS. None of the seven hierarchical clustering methods or

k = 5 means has successful results in clustering (Fig 4). From the original values of nearest

neighbor distances, control samples and samples undergone long-term preservations were not

properly clustered, either (Fig 4). Since there is only single dimension for comparison, neural

network and PCA were not performed. There are also zero distances for nMDS, and this

method was not performed, either.

We also performed kernel principal component analysis with radial basis kernels in LC/

MS. Even utilizing this method, control samples and samples undergone long-term preserva-

tions were not properly clustered (Fig 4). For other methods such as cluster analysis via non-

parametric density estimation with radial basis kernels and kernel k-means, neither of them

had successful clustering results (Fig 4, cluster analysis via nonparametric density estimation

was converged to a single group). Neural network used in this study was already with radial

basis kernels, and nMDS was not suitable for the analysis because kernel is metric based.

Next, we calculated correlation distances and performed all the seven hierarchical clustering

methods, k = 5 means, neural network, PCA and nMDS. We found that none of the method

was able to achieve proper separation between long-term storage samples and frozen samples

(Fig 5, Table 4). Table 4 for PCA shows PC1 and PC2 (89 and 7% contribution to the data,

respectively) were the major components and PC1 lacks f-2 and 2y2 contribution, while PC2 is

attributed to these two, which does not make sense for the proper clustering.

to the RIKEN protocol for approximately 2 years in replicates 1, 2, and 3, respectively; 3y: sample preserved in liquid nitrogen storage according to the

RIKEN protocol for approximately three years. The numbers in the k-means table are the indices of the classified groups. The numbers in the neural

network table are the cl factors, which represents the one-dimensional characteristics of the systems. The differences in cl values show dissimilarity of the

samples. Please also see the Methods section. (A) Unused values. (B) v values.

https://doi.org/10.1371/journal.pone.0179180.g001

Table 2. Correlation matrix of LC/MS data and principal components.

raw f-1 f-2 f-3 1h1 1h2 o/1 o/2 2y1 2y2 2y3 3y

PC1 0.97 0.92 0.97 0.97 0.98 0.95 0.96 0.74 0.88 0.98 0.96

PC2 -0.11 0.28 -0.10 -0.12 -0.12 -0.08 -0.20 0.64 0.40 -0.00 -0.12

PC3 -0.02 0.19 -0.12 -0.00 -0.01 0.23 -0.07 0.17 0.13 -0.00 -0.12

https://doi.org/10.1371/journal.pone.0179180.t002
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A p-adic metric based on rigid geometry also eliminated “curse of

dimensionality” effects on some microarray data

To further characterizing the metric in other omics data such as gene expression data of micro-

array, we utilized existing data set of heme regulatory network in yeast Saccharomyces cerevi-
siae from [17]. In the original signal intensity data set of the expression array, heme deficient

samples and heme sufficient samples were differentially clusterized in single linkage analysis

Fig 2. “Curse of dimensionality” and a possible solution. (A) “Curse of dimensionality” effects when there is a sparse geometric distribution of data

points; see also Ronan et al. (2016). (B) Example of geometric conversion to a simpler system: quotient of icosahedral tessellation by I on a Riemann

sphere. 2 (red points), 3 (green points), and 5 (blue points) correspond to the midpoints of the edges, the barycenters of the faces, and the vertices,

respectively; see also Cornelissen and Kato (2005).

https://doi.org/10.1371/journal.pone.0179180.g002

Table 3. Correlation matrix among v metric of LC/MS data and principal components.

v f-1 f-2 f-3 1h1 1h2 o/1 o/2 2y1 2y2 2y3 3y

PC1 0.14 -0.00 0.06 0.08 0.19 -0.42 0.23 0.01 0.01 0.01 -1.00

PC2 -0.05 0.01 -0.04 0.20 0.01 -0.09 -0.82 0.05 -1.00 0.98 -0.00

PC3 0.01 0.03 0.10 0.05 0.21 0.08 0.02 -1.00 0.01 0.06 -0.00

PC4 -0.27 -1.00 -0.08 -0.14 -0.19 -0.11 -0.12 -0.03 -0.01 -0.02 0.00

https://doi.org/10.1371/journal.pone.0179180.t003
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Fig 3. Ranked variance distributions of original values and v values of omics data. Euclidean; raw values. v; p(I)-adic v values. Horizontal axis: the

rank of values. Vertical axis: the variances. (A) Ranked variance distributions of unused values and v values of proteins used for calculations (N = 803).

Rigid geometry solves "curse of dimensionality"
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and k = 4 means method, but failed in other six hierarchical clustering methods or neural net-

work tested (Fig 6A). However, utilizing v metric, all the seven hierarchical clustering methods

and k = 4 means method exhibited differentially clusterized heme deficient samples and heme

sufficient samples (Fig 6B). In this data set, neural network with rigid geometry still did not

improve the result of clustering, however. Additionally, PCA of raw signal values exhibited

97% of the data can be explained by a single component with absolute correlation

values> 0.96 in each, indicating failure in clustering (Table 5). Even in v metric, 54% contri-

bution was from PC1 (0.99 correlated with s2), 23% was from PC2 (-0.93 correlated with s3),

19% was from PC3 (0.96 correlated with s1), 2% was from PC4 (1.00 correlated with d3), 2%

was from PC5 (1.00 correlated with d2), 0.1% was from PC6 (0.99 correlated with d1). This

independency of the components shows that PCA has failed in clustering even in v metric

(Table 6). For nMDS, original raw signal intensities showed weak clustering (Fig 6A). How-

ever, as in LC/MS data, v metric exhibited that all the heme-deficient samples localized at

almost an identical point, while heme-sufficient samples sparse along the plotting (Fig 6B),

suggesting nMDS worked very fine. The average of variances in original signals and v metric

were 80000 ± 30000 and 400000 ± 500000, respectively (95% confidential). When we removed

39 outlier samples of v metric (Fig 3B), they became 70000 ± 30000 and 1400 ± 600 with

p = 7 × 10−6 for the t-test, as in the LC/MS data of HEK-293. The number of unknown parame-

ters in neural-network-based machine learning were 18685 and 18683 for original signals and

v metric, respectively, indicating too many number of dimensions caused failure of clustering

in neural network.

We also analyzed gene expression data characterized by induction factor of expression

array in the culture of Escherichia coli in low glucose environments from [18]. Utilizing the val-

ues calculated by 2induction factor, all the seven hierarchical clustering methods, k = 4 means and

neural network failed in proper clustering between the samples of short starvation and long

starvation (Fig 7A). However, the clustering of v metric by all the 7 hierarchical methods and

k = 4 means has succeeded in proper arrangements of clustering (Fig 7B). For neural network,

only replicate 2 of long starvation (GSM106341) was misclustered, suggesting the improve-

ment of clustering. The number of unknown parameters in neural-network-based machine

learning were 2233 and 2223 for 2induction factor and v metric, respectively. Additionally, PCA

exhibited 63% of the data can be explained by a single component with absolute correlation

values> 0.71 in each. 12% of the data can be explained by s1 with a correlation value 0.54,

11% of the data can be explained by l2 with a correlation value 0.54, 7% of the data can be

explained by s3 with a correlation value -0.49, and 6% of the data can be explained by s2 with a

correlation value 0.46. This mild independency indicates failure in clustering (Table 7). For v
metric, 50% of the data can be explained by a single component with absolute correlation

values> 0.62 in each. 18% of the data can be explained by s3 with a correlation value 0.71,

14% of the data can be explained by s1 with a correlation value -0.74, 10% of the data can be

explained by l2 with a correlation value 0.70, 7% of the data can be explained by l1 & l3 with a

correlation values -0.54 and -0.53. This mild independency indicates failure in clustering

(Table 8). For nMDS, original values showed weak clustering (Fig 7A). However, as in LC/MS

data, v metric exhibited that all the samples with long exposure to a low glucose environment

localized at almost an identical point, while samples with short exposure sparse along the plot-

ting (Fig 7B), suggesting nMDS worked very fine. The average of variances in original signals

(B) Ranked variance distributions of raw signal intensity values and v values of expression arrays for Saccharomyces cerevisiae used for calculations

(N = 9335). (C) Ranked variance distributions of 2induction factor values and v values of expression arrays for Escherichia coli used for calculations

(N = 1109).

https://doi.org/10.1371/journal.pone.0179180.g003
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and v metric were 0.30 ± 0.08 and 0.088 ± 0.006 (95% confidential), respectively, with

p = 4 × 10−7 for the t-test (Fig 3C).

Fig 4. Clustering of nearest neighbor distance value sets and radial basis kernel value sets for each protein in the LC/MS data of HEK-293

(N = 803). f-1, f-2, and f-3: freshly prepared samples in replicates 1, 2, and 3, respectively; 1h1 and 1h2: samples frozen at −80˚C for 1 h in replicates 1 and 2,

respectively; o/1 and o/2: samples that remained at −80˚C overnight and then in liquid nitrogen overnight (“o/n-o/n”) in replicates 1 and 2, respectively; 2y1,

2y2, and 2y3: samples preserved in liquid nitrogen storage according to the RIKEN protocol for approximately 2 years in replicates 1, 2, and 3, respectively;

3y: sample preserved in liquid nitrogen storage according to the RIKEN protocol for approximately three years. The numbers in the k-means table are the

indices of the classified groups. The numbers in the neural network table are the cl factors, which represents the one-dimensional characteristics of the

systems. The differences in cl values show dissimilarity of the samples. Please also see the Methods section.

https://doi.org/10.1371/journal.pone.0179180.g004
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Fig 5. Clustering of correlation distance value sets for each protein in the LC/MS data of HEK-293

(N = 803). Euclidean; raw values. v; p(I)-adic v values. Horizontal axis: the rank of values. Vertical axis: the

Rigid geometry solves "curse of dimensionality"
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These two data sets indicate that the calculation of v metric is effective not only in proteo-

mics data, but also in expression data such as raw expression profiles or induction factors, at

least in clustering methods and nMDS.

Discussion

Utilizing p-adic rigid geometry, we succeeded in eliminating the “curse of dimensionality”

effects from significantly diverged sample data, at least for the LC/MS data for HEK-293. If the

total number of dimensions (n = ∑nd) exceeds the original number of model dimensions (in

this case, n = 1630), the values converged. We assumed the number of traces (∑nd−n) became

nilpotent [19]. Here, 800 (the first rank protein data were removed from N = 803) ×
11 = 8800 > 1630, and the observed convergence of v was expected beyond the underdeter-

mined system. To support this idea, clusters f-1, f-2, and 2y2, which were misclustered in Fig

1A, were appropriately clustered when using the v metric (Fig 8); this was true for all the clus-

tering methods and neural network considered, with 800 × 3 = 2400> 1606. This allowed us

to determine whether a given sample was from a nearly fresh culture or had been stored for a

long time at low temperature. It is also notable that for PCA, 90, 10 and 0.4% contributions

were from PC1, PC2 and PC3, and 2y2, f-2 and f-1 were correlated independently to PCs with

1.00, 1.00 and 0.97, respectively. PCA seems not to work well in high-dimensional data. For

nMDS, only three points are not proper to observe clustering.

This success is entirely based on an algebraic, analytic, and topological geometric analysis

based on rigid geometry. So far as we know, this is the first application of “rigid geometry” to a

biological system. We note that this methodology can be applied to any type of data, providing

the data approximately follows a neutral logarithmic Boltzmann-type distribution. The agree-

ment of results from a supervised machine learning and from several unsupervised clustering

analyses demonstrates the power of this methodology. In biology, a similar approach can be

used to evaluate the proteins inside cells of microbes [20]. The possibility of applications to

other research fields, such as chemistry, physics, astronomy, and earth science, is promising

but depends on successfully introducing the concept of “fitness” to the particular application.

We expect physiological differences affect the patterning of protein/mRNA expression in

the type of analysis presented here. However, if fluctuations within a set of replicates are prom-

inent, the clustering may be improperly achieved. We measure the fluctuations by observing

obvious differences among control and experimental samples. From Fig 1A/Fig 6A/Fig 7A,

obviously all the hierarchical clustering analyses show contradictory results, while from Fig

1B/Fig 6B/Fig 7B, all the hierarchical clustering analyses show matched results, indicating sig-

nificant improvement at least for hierarchical clustering. Control samples of fresh samples vs.

very short time of freezing have statistically non-significant difference in average quantifica-

tion (p = 0.40 for t-test), while that vs. years of freezing do have statistically significant

variances. (A) Ranked variance distributions of unused values and v values of proteins used for calculations

(N = 803). (B) Ranked variance distributions of raw signal intensity values and v values of expression arrays

for Saccharomyces cerevisiae used for calculations (N = 9335). (C) Ranked variance distributions of 2induction

factor values and v values of expression arrays for Escherichia coli used for calculations (N = 1109).

https://doi.org/10.1371/journal.pone.0179180.g005

Table 4. Correlation matrix among correlation distances of LC/MS data and principal components.

f-1 f-2 f-3 1h1 1h2 o/1 o/2 2y1 2y2 2y3 3y

PC1 0.98 -0.12 0.98 0.98 0.99 0.91 1.00 -0.97 -0.62 0.94 0.97

PC2 0.11 0.96 -0.02 0.11 0.10 0.23 -0.03 0.17 0.76 0.26 -0.03

https://doi.org/10.1371/journal.pone.0179180.t004
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Fig 6. Clustering in the expression array data of Saccharomyces cerevisiae (N = 9335). d1, d2, and d3: heme-deficient samples in replicates 1

(GSM206793), 2 (GSM206794), and 3 (GSM206795), respectively; s1, s2, and s3: heme-sufficient samples in replicates 1 (GSM206796), 2 (GSM206797),

and 3 (GSM206798), respectively. The numbers in the k-means table are the indices of the classified groups. The numbers in the neural network table are
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difference (p = 6.0 × 10−8 for t-test). We thus concluded that long-term storage in low tempera-

ture does have affect sample preservation, while short-term does not.

We tried to utilize neural network for an example of supervised approach, which is more

powerful tool for classification. However, the approach was not as trustable as we had

expected, according to incalculable Akaike information criterion. Furthermore, the data of Fig

6A and 6B have suggested neural network is not trustable if the data have very high dimen-

sions. We thus moved to more general approach of clustering that is trustable in any methods

we have tested, and this is the aim of this work. Our approach seems to erase the traces of huge

degree of freedom by erasing the singularities. Additionally, regression analysis still depends

heavily on the number of independent variables. If the number of variables is still large, it is

difficult to classify the data due to “curse of dimensionality”. The data of PCA and p-adic met-

ric performed well in LC/MS compared with failure of clustering in original unused vales.

However, neither original values nor v metrics perform well in expression arrays. This might

be that high dimensionality prevents reducing dimensions to certain small values in PCA. It is

also notable that in nMDS, control samples clustered to almost a single point, while experi-

mental samples were sparse along the plots, indicating clear distinction of the characteristics of

the samples by nMDS.

In conclusion, we have succeeded in removing the “curse of dimensionality” from the

observed differences among control and treatment (fresh and stored) samples of HEK-293

cells when evaluating LC/MS data, and other expression data of Saccharomyces cerevisiae and

Escherichia coli treated by clustering methods and nMDS. The success was entirely based on

the topological characteristics of the p-adic metric on rigid geometry. This approach has the

potential to calculate the characteristic values of any system for which the data approximate a

neutral logarithmic Boltzmann distribution.

Materials and methods

Cell culture

A human HEK-293 cell line from an embryonic kidney was purchased from RIKEN (Japan).

The original cultures were frozen on either March 18, 2013 (3-year storage) or March 5, 2014

(2-year storage), and they were used in experiments between February and June 2016. The

strain was cultured in Modified Eagle’s Medium (MEM) + 10% fatal bovine serum (FBS) + 0.1

mM nonessential amino acid (NEAA) at 37˚C with 5% CO2. Subculturing was performed in

0.25% trypsin, and prior to the experiment, the original cells from RIKEN were frozen follow-

ing the standard protocol provided by RIKEN: in culture medium with 10% dimethyl sulfoxide

(DMSO), they were cooled until reaching 4˚C at −2˚C/min, held at that temperature for 10

min, cooled until reaching −30˚C at −1˚C/min in order to freeze, held at that temperature for

10 min, cooled again until reaching −80˚C at −5˚C/min, and then held at that temperature

the cl factors, which represents the one-dimensional characteristics of the systems. The differences in cl values show dissimilarity of the samples. Please

also see [17] and the Methods section for more detail. (A) Raw signal intensities. (B) v values.

https://doi.org/10.1371/journal.pone.0179180.g006

Table 5. Correlation matrix of microarray data in Saccharomyces cerevisiae and principal components. d; replicas of heme-deficient samples. s; rep-

licas of heme-sufficient samples.

raw d1 d2 d3 s1 s2 s3

PC1 0.96 0.99 0.98 0.99 0.99 0.99

PC2 0.26 0.01 0.15 -0.10 -0.15 -0.14

https://doi.org/10.1371/journal.pone.0179180.t005
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overnight. The next day, they were transferred to storage in liquid nitrogen. Freezing condi-

tions for the control samples are described in the Results section.

Protein extraction, alkylation, and digestion

The HEK-293 proteins were extracted using the standard protocol for the RIPA buffer

(NACALAI TESQUE, INC., Kyoto, Japan). Approximately 106 harvested cells were washed

once in Krebs-Ringer-Buffer (KRB; 154 mM NaCl, 5.6 mM KCl, 5.5 mM glucose, 20.1 mM

HEPES pH 7.4, 25 mM NaHCO3). They were resuspended in 30 μl of RIPA buffer, passed in

and out through 21G needles for destruction, and incubated on ice for 1 h. They were then

centrifuged at 10,000 g for 10 min at 4˚C, followed by collection of the supernatants; the pro-

teins were quantified by using a Micro BCA Protein Assay Kit (Thermo Fisher Scientific, Wal-

tham, U.S.A.), and further processing was performed using XL-Tryp Kit Direct Digestion

(APRO SCIENCE, Naruto, Japan). The samples were solidified in acrylamide gel, washed

twice in ultrapure water, washed three times in dehydration solution, and dried. The samples

were then processed using an In-Gel R-CAM Kit (APRO SCIENCE, Naruto, Japan). The sam-

ples were reduced for 2 h at 37˚C, alkylated for 30 min at room temperature, washed five times

with ultrapure water, washed twice with destaining solution, and then dried. The resultant

samples were trypsinized overnight at 35˚C. The next day, the dissolved digested peptides

were collected by ZipTipC18 (Merck Millipore, Corp., Billerica, U.S.A.). The tips were damp-

ened with acetonitrile twice and equilibrated twice with 0.1% trifluoroacetic acid. The peptides

were collected by ~20 cycles of aspiration and dispensing, washed twice with 0.1% trifluoroace-

tic acid, and eluted by 0.1% trifluoroacetic acid /50% acetonitrile with aspiration and dispens-

ing five times × three tips followed by vacuum drying. The finalized samples were stored at

−20˚C. Before performing LC/MS, they were resuspended in 0.1% formic acid, and the

amounts were quantified by Pierce Quantitative Colorimetric Peptide Assay (Thermo Fisher

Scientific, Waltham, U.S.A.). This protocol is published at http://dx.doi.org/10.17504/

protocols.io.h4qb8vw.

LC/MS

LC/MS was performed by the Medical Research Support Center, Graduate School of Medicine,

Kyoto University with a quadrupole−time-of-flight [Q-Tof] mass spectrometer TripleTOF

5600 (AB Sciex Pte., Ltd., Concord, Canada). We followed their standard protocols. The load-

ing amount for each sample was 1 μg. We extracted the quantitative data for the unused infor-

mation for identified proteins by using ProteinPilot 4.5.0.0 software (AB Sciex Pte., Ltd.,

Concord, Canada).

Table 6. Correlation matrix among v metric of microarray data in Saccharomyces cerevisiae and principal components. d; replicas of heme-deficient

samples. s; replicas of heme-sufficient samples.

v d1 d2 d3 s1 s2 s3

PC1 -0.06 -0.02 -0.00 0.01 0.99 0.30

PC2 0.02 -0.01 0.01 -0.27 0.13 -0.93

PC3 0.05 -0.07 -0.04 0.96 0.03 -0.22

PC4 0.06 0.03 1.00 0.01 0.00 0.00

PC5 0.14 1.00 -0.02 0.01 0.00 -0.00

PC6 0.99 -0.01 -0.00 -0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0179180.t006
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Fig 7. Clustering in the expression array data of Escherichia coli (N = 1109). s1, s2, and s3: samples with short-term starvation for glucose in

replicates 1 (GSM106337), 2 (GSM106338), and 3 (GSM106339), respectively; l1, l2, and l3: samples with long-term starvation for glucose in replicates 1
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Clustering analyses and machine learning of the pattern

For LC/MS, hierarchical clustering analyses were performed by the standard hclust function in

R 3.2.3 (https://cran.r-project.org) with the package stats. The actual hierarchical methods

used were: single linkage, complete linkage, group average, weighted average, centroid,

median, and Ward’s method. The k-means method was performed by the standard kmeans

function in R 3.2.3 with the package stats. It was calculated based on all eleven/six samples. For

machine learning, an 11-1-1 hierarchical neural-network analysis was performed in R 3.2.3

with the package nnet, and the cl (number of raw data points) factors were calculated as a char-

acterization index for the pattern. For expression arrays, all the analyses were done the same as

LC/MS except using R 3.3.2 and 6-1-1 hierarchical neural-network. Principal component anal-

yses (PCA) and non-metric multi-dimensional scaling (nMDS) were also performed by

prcomp and isoMDS functions of R 3.3.2 with the packages stats and MASS, respectively. The

metric used for nMDS was:
ffiffiffiffiffiffiffiffiffiffi
variance
p

ffiffiffiffiffiffiffiffiffi
nðn� 1Þ
p . Nearest neighbor distances were calculated by nndist func-

tion of R 3.3.2 with the package spatstat. Kernel principal component analysis was performed

by kpca function of R 3.3.2 with the package kernlab, selecting rbfdot option. Cluster analysis

via nonparametric density estimation was performed by pdfCluster function of R 3.3.2 with

the package pdfClsuter. Kernel k-means method was performed by kkmeans function of R

3.3.2 with the package kernlab. Correlation distances were calculated by corDist function of R

3.3.2 with the package MKmisc. With correlation distances, 10-1-1 neural network was used

because one of the 11 values was zero. We only used the unused values or expression data that

are observable in each of the eleven/six samples; this was done to avoid distortion of the calcu-

lation from identification failures within the LC/MS process or microarray experiments, since

(GSM106340), 2 (GSM106341), and 3 (GSM106342), respectively. The numbers in the k-means table are the indices of the classified groups. The

numbers in the neural network table are the cl factors, which represents the one-dimensional characteristics of the systems. The differences in cl values

show dissimilarity of the samples. Please also see [18] and the Methods section for more detail. (A) 2induction factor values. (B) v values.

https://doi.org/10.1371/journal.pone.0179180.g007

Table 7. Correlation matrix of microarray data in Escherichia coli and principal components. s; replicas with short-term starvation. l: replicas with

long-term starvation.

raw s1 s2 s3 l1 l2 l3

PC1 0.71 0.86 0.76 0.83 0.76 0.84

PC2 0.54 -0.10 0.26 -0.44 0.09 -0.43

PC3 -0.40 -0.12 0.27 -0.16 0.54 -0.14

PC4 0.18 -0.15 -0.49 0.04 0.35 0.06

PC5 -0.07 0.46 -0.19 -0.19 0.05 -0.20

https://doi.org/10.1371/journal.pone.0179180.t007

Table 8. Correlation matrix among v metric of microarray data in Escherichia coli and principal components. s; replicas with short-term starvation. l:

replicas with long-term starvation.

v s1 s2 s3 l1 l2 l3

PC1 0.62 0.81 0.69 0.72 0.68 0.73

PC2 -0.26 -0.35 0.71 -0.27 0.05 -0.26

PC3 -0.74 0.28 -0.04 0.24 0.15 0.26

PC4 0.01 -0.27 -0.15 0.01 0.70 0.02

PC5 -0.01 0.28 -0.02 -0.54 0.16 -0.53

https://doi.org/10.1371/journal.pone.0179180.t008
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Fig 8. Clustering of newly invented v value sets of each protein in LC/MS of HEK-293 (N = 803). f-1 and f-2: freshly prepared samples in

replicates 1 and 2, respectively; 2y2: a sample preserved in liquid nitrogen storage according to the RIKEN protocol for approximately two years
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there were relatively few signal values (N = 803, 9335, 1109 in each sample). The actual unused

values or expression data used in the calculation are shown in S1 Table.

Supporting information

S1 Appendix. Utilizing a p-adic metric embedded in rigid geometry. Appendix indicating

calculation of the new metric v.

(DOCX)

S1 Table. The table of raw values for the identified proteins and expression arrays. Sheet 1,

unused values for LC/MS in HEK-293; Sheet 2, raw signal intensities for expression array in

Saccharomyces cerevisiae [17]; Sheet 3, raw induction factor values of Escherichia coli in [18].

Please also see the legend of Figs 1A, 6A and 7A.

(XLSX)
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defenses in the European common lizard (Lacerta vivipara) in supercooled and frozen states. Cryobiol-

ogy. 2006; 52:74–82. https://doi.org/10.1016/j.cryobiol.2005.09.006 PMID: 16321371

3. Kiss AJ, Muir TJ, Lee RE Jr, Costanzo JP. Seasonal variation in the hepatoproteome of the dehydration

and freeze-tolerant wood frog, Rana sylvatica. Int. J. Mol. Sci. 2011; 12:8406–8414. https://doi.org/10.

3390/ijms12128406 PMID: 22272080
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