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Abstract

When people learn foreign languages, they find it difficult to perceive speech sounds that

are nonexistent in their native language, and extensive training is consequently necessary.

Our previous studies have shown that by using neurofeedback based on the mismatch neg-

ativity event-related brain potential, participants could unconsciously achieve learning in the

auditory discrimination of pure tones that could not be consciously discriminated without the

neurofeedback. Here, we examined whether mismatch negativity neurofeedback is effective

for helping someone to perceive new speech sounds in foreign language learning. We

developed a task for training native Japanese speakers to discriminate between ‘l’ and ‘r’

sounds in English, as they usually cannot discriminate between these two sounds. Without

participants attending to auditory stimuli or being aware of the nature of the experiment, neu-

rofeedback training helped them to achieve significant improvement in unconscious auditory

discrimination and recognition of the target words ‘light’ and ‘right’. There was also improve-

ment in the recognition of other words containing ‘l’ and ‘r’ (e.g., ‘blight’ and ‘bright’), even

though these words had not been presented during training. This method could be used to

facilitate foreign language learning and can be extended to other fields of auditory and clini-

cal research and even other senses.

Introduction

When adults learn a new foreign language, it is difficult for them to perceive differences

between speech sounds that are not part of their native language. For example, native Japanese

speakers are usually unable to perceive the difference between the “l” and “r” sounds in English

[1–5]. Similarly, Mandarin tones are difficult for English speakers to perceive [6]. The ability

to distinguish phonetic stimuli and form categories is essential for speech perception. Recogni-

tion patterns specific to a language need to be encoded in the memory. These language-specific
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memory traces and categories develop for native languages during early childhood [7], thus

enabling the perception and discrimination of native [8], but not non-native, speech sounds. If

two different categories of speech sounds in a foreign language are encompassed by a single

native category, it becomes very difficult for an adult studying that language to perceive the dif-

ference, and extensive training is required for them to learn this ability.

A recent study [9] presented a potential to develop an unconscious learning. Their study

indicated that visual perceptual learning was achieved using decoded fMRI neurofeedback

without stimulus presentation. However, this technique requires participants to discriminate

the target in advance.

Some studies have shown that auditory discrimination ability can be improved by behav-

ioral training during which mismatch negativity (MMN) becomes stronger and serves as an

index of sound-discrimination accuracy [10–12]. The MMN is an event-related potential

(ERP) that involves a negative voltage shift of baseline electroencephalographic (EEG) activity

at the frontocentral and central scalp electrodes in response to new or novel sounds [13, 14].

The component of the waveform is obtained by subtracting the ERP to the standard stimuli

from that to the deviant stimuli in an oddball event. The MMN usually peaks at about 100–250

ms from change onset [15, 16]. The MMN can be elicited by any discriminable auditory

change and provides an objective measure of discrimination accuracy for practically any sepa-

rate dimension of auditory stimulation [8, 16–25]. Interestingly, the MMN response can be

detected in the absence of any conscious awareness of a difference [8]. Furthermore, MMN

can be elicited without the listener subjectively attending to the sound stimuli [11, 23]. These

features of MMN have been combined with neurofeedback in recent studies [26, 27] showing

that participants could unconsciously achieve a significant improvement in the auditory dis-

crimination of pure tones that could not be discriminated previously. On the other hand,

MMN can be elicited by changes in complex stimuli such as speech sounds [24, 25], so we

think that discrimination of speech sounds may be improvement using MMN neurofeedback.

Furthermore, the sounds of words have each character, so there is another possibility that rec-

ognition ability for individual words also would be an improvement. However, speech sounds

are more complex than pure tones. The contrast (e.g., ‘light’ and ‘right’) has different conso-

nants, but also includes the same vowel part that could mask the non-native consonants.

Therefore, it is not known whether MMN neurofeedback is effective for speech sound as well

as pure tones, or whether this is relevant to learning a foreign language.

Here, we investigated the effectiveness of using MMN neurofeedback for discriminating

speech sounds (‘light’ and ‘right’ were the target words for learning) and recognizing individ-

ual sounds (‘light’ or ‘right’). Furthermore, we focused on verifying whether the neurofeedback

learning could be effective for other words containing “l” and “r” sounds (e.g., ‘blight’ and

‘bright’), even though those words had not been presented during training. We assumed that

our neurofeedback method is effective for speech sound as well as pure tones, and relevant to

learning a foreign language. That is, after training, participants should be better-able to cor-

rectly discriminate and recognize words containing “l” and “r” sounds than control partici-

pants who did not receive neurofeedback.

Methods

The experimental design employed a pretest–posttest procedure closely modeled after the pro-

cedure used by previous study [15]. This procedure consists of a pre-test phase, a training

phase, and post-test phase. The pre-test was the same as post-test, consisting of a behavioral

auditory discrimination (BAD) test and a behavioral auditory recognition (BAR) test. In the

training phase, each participant underwent 5 days of training, which were completed over 10
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days with at least 24 hours between sessions. BAD and BAR tests for learning sounds (detail in

section of stimuli) were always performed once after the end of training on each day. Besides,

after the end of the experiment, an oral report of participants was required about the question

"how do you made the disc size change?"

Participants

Fifteen subjects participated in the present study (8 males). All participants were right-handed,

monolingual speakers of Japanese (age range, 22–37 years), and all had never lived outside

Japan. They began studying English in school at about 12 years of age. Most of their exposure

to English had taken place in the classroom. No participants reported a history of hearing or

speech disorders.

The participants were randomly distributed into the two groups: the neurofeedback group

(5 men, 3 women) and the control group (3 men, 4 women). All participants gave written

informed consent, and the study protocol was approved by the local ethics research committee

at Osaka University, Japan. Additionally, all research was performed in accordance with the

ethical standards described in the Declaration of Helsinki.

Stimuli

Twenty-two sets of stimulus materials were used in the experiment: (1) Learning sounds: the

synthesized sounds “light” and “right” with a duration of 440 ms, including 10 ms rise and fall

times, were used for MMN recording in training procedure, pre- and post-test, BAD and BAR

test after training in each training day. (2) No-learning sounds: other 21 sets of synthesized

sounds of words containing the consonants “l” or “r” were used for only BAR test in pre-

and post-test. The intensity of all stimuli was 85 dB. Stimuli were presented binaurally via

earphones.

Behavioral auditory discrimination (BAD) test

Behavioral auditory discrimination ability was assessed with a two-alternative forced choice

task. In the BAD test, two words were presented as a stimulus set in one of four combinations

(“light” and “right”; “light” and “light”; “right” and “right”; and “right” and “light”). The SOA

in BAD test was the same as those in MMN recording. The order of presentation of the combi-

nations was randomly determined and counterbalanced across trials (the number of trials for

each combination was controlled to be equal). Throughout the task, the participants were

asked to fixate on a solid green disc with a 0.8 degree of visual angle (hereafter written as

degree) radius at the center of the monitor. After each trial, a 2.06 s interval was inserted, con-

sisting of 1 s of white noise as sound interference between 0.53 s silence periods (Fig 1A). Dur-

ing these intervals, the participants reported whether the two words presented in a trial were

different by pressing one of two buttons on a keyboard. All participants always pressed the but-

ton using their right-hand. Participants were given a brief break after each run of 40 trials. The

participants performed 80 trials on each experiment day. No feedback was given to the partici-

pants about the results of the test.

Behavioral auditory recognition (BAR) test

Like the BAD test, behavioral auditory recognition ability was also assessed with a two-alterna-

tive forced choice task. In the BAR test, one word was presented as a stimulus. The order of the

presentation of words was randomly determined and counterbalanced across trials (the num-

ber of trials for each word was controlled to be equal). Throughout the task, the participants
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were asked to fix their eyes on a solid green disc with a 0.8-degree radius at the center of the

monitor. After each trial, a 2.16 s interval was inserted, consisting of 1 s of white noise as

sound interference between 0.58 s silence periods (Fig 1B). During these intervals, the partici-

pants reported which consonant (“l” or “r”) was in the presented word by pressing one of two

buttons on a keyboard. All participants always pressed the button using their right-hand. Par-

ticipants were given a brief break after each run of 40 trials. The participants performed 80 tri-

als for the target words “light” and “right” on each day and performed 176 trials for all words

(target and non-target) on their first and last days. No feedback was given to the participants

about the results of the test.

Fig 1. Schematic drawing of behavioral auditory ability tests; (a) Schematic showing two trials in the behavioral auditory discrimination (BAD)

test; (b) Schematic showing two trials in the behavioral auditory recognition (BAR) test.

https://doi.org/10.1371/journal.pone.0178694.g001
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EEG processing and analysis

In MMN recording of the learning stage, an auditory stimulus sequence with the words “light”

and “right” as the standard and deviant stimuli, respectively, was presented in an oddball para-

digm. The stimulus onset asynchrony (SOA)—time between the onsets of stimuli, was the 700

ms. The total number of trials was 300 (“light,” 240 trials; “right,” 60 trials) in each session.

The stimuli were presented in a random order. EEG responses were measured with an MP150

Data Acquisition System (BIOPAC Systems Inc., Goleta, CA, USA) and Ag/AgCl pad elec-

trodes. Signals from the electrodes were recorded at a sampling rate of 500 Hz and band-pass

filtered online at 0.1–35 Hz. A ground electrode for EEG recordings was placed on the fore-

head. The reference electrodes were placed on each ear, and the reference was average between

electrodes on the two ears. EEG were recorded at the Fz electrode (using the International 10–

20-system for EEG electrode placement; Fig 2B and 2C) over 600 ms starting at stimulus onset

and including a 100 ms pre-stimulus interval, which served as the baseline. Voltage variations

caused by vertical eye movements were monitored with an electrode attached to the upper-

outer edge of the left eye. Recordings that contained voltage variations of ±40 μV due to verti-

cal eye movements were omitted. The ERP were averaged across trials separately for each con-

dition, and the MMN was obtained by subtracting the average standard ERP from the average

deviant ERP. MMN peak latencies were measured from the most negative peak at Fz at 100–

250 ms post-stimulus. MMN amplitudes were calculated as the peak absolute value in the

grand-average waveform. However, the calculation was only done for negative values, and the

values became zero if the peak was positive.

Training procedure

For the training sessions in the learning stage, participants were seated in an antistatic chair

in front of a 23-inch computer screen (Fig 2A). A program written in visual C++ was used for

presenting the visual feedback and auditory stimuli.

In the neurofeedback training experiment, participants were instructed to ignore sounds

played through their earphones and concentrate on making the solid green disc as large as pos-

sible. The radius of the green disc was fixed for the first 20 stimuli in a session. The average

amplitude of the MMN for these trials was calculated (16 standard and 4 deviant stimuli), and

beginning with trial 21, the radius of the disc corresponded to the amplitude of this MMN.

Fig 2. Experiment details; (a) The experimental setup; (b) The locations of EEG and EOG electrodes; (c) The International 10–20-system for EEG

electrode placement.

https://doi.org/10.1371/journal.pone.0178694.g002
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The MMN was updated every 0.7 s along with the auditory stimuli. The size (here means

radius) of the disc (0.4–4.97 degrees radius) was determined every 0.7 s by mapping the MMN

amplitude linearly (Fig 3). A single session consisted of a sequence of 210 s (total 300 trials:

“light,” 240 trials; “right,” 60 trials), and 12 sessions were conducted on each training day. The

participants in the control group were given the same stimuli and instructions, but the sizes of

the green discs they were shown did not correspond to their MMN responses. Instead, the

sizes corresponded to the sequences of visual stimulus presented to participants in the neuro-

feedback group. Rather, the participants did not know whether they were in the neurofeedback

or control group.

Preliminary experiment

In order to determine maximum of the feedback disc in training procedure, we have to know

the goal (maximum value of the negative amplitude) that we want participants to fulfil, we con-

ducted a preliminary experiment in which the MMN was calculated using an auditory stimu-

lus sequence of 1000 Hz and 2000 Hz tones as the standard and deviant stimuli in an oddball

paradigm. These two tones are easily discriminable from each other; therefore, the absolute

value of the negative amplitude of the MMN for the two tones was used as the maximum value

(preMAX), and the disc’s maximum possible radius was set to 4.97 degrees [14,15]. The mini-

mum size of the feedback disc is the size of the white fixation point (0.4 degrees) presented in

the center of the display. The calculation formula was SIZE ¼ 4:57 � MMN
preMAXþ 0:4. The size

could not become larger than the maximum possible size even if the MMN was greater than

the preMAX, and if the negative peak did not occur, the disc was set to the minimum size.

Results

Improvement in the BAD test

To evaluate improvement in participants’ auditory perception, a BAD test was performed

before the first day of training (pre-test) and at the end of each training day. In the BAD test,

Fig 3. The procedure for neurofeedback training.

https://doi.org/10.1371/journal.pone.0178694.g003
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participants were asked whether two words (the same auditory stimuli that were used for train-

ing) were different (Fig 1A). Probability of correct responses in the BAD test was compared

between the pre- and post-test stages. Because the outcomes of BAD data are dichotomous, we

analyzed differences in outcomes after NF training with logistic regression. Fig 4A shows proba-

bility of correct responses and learn model that fitting a logistic function for the neurofeedback

and control groups. Scores on the pre-test were not significantly different from chance (50%

correct), as determined by a binomial test (the critical score for a significant difference was

57.1%). However, outputs indicated that days training is significantly associated with the proba-

bility of discriminating the two sounds in the neurofeedback group (p< 0.001, OR = 1.48, 95%

CI = 1.41–1.56) but not in the control group (p = 0.161, OR = 1.03, 95%CI = 0.99–1.07).

Improvement in the BAR test for learned words

In addition to the BAD test, a BAR test was performed before the first day of training (pre-test)

and at the end of each training day. In the BAR test, a single-sound stimulus was presented to

participants, who were then asked whether the word “light” or “right” was presented. The pre-

sented word was randomly selected from the sound stimuli (“light” or “right”; Fig 1B). The

participants’ probability of correct responses in the BAR test was compared in the pre- and

post-test stages. we also analyzed differences in outcomes after neurofeedback training with

logistic regression. Fig 4B shows probability of correct responses and learn model that fitting a

logistic function for the neurofeedback and control groups. And the outputs indicated that

days training is significantly associated with the probability of recognizing sound (“light” or

“right”) in the neurofeedback group (p< 0.001, OR = 1.52, 95%CI = 1.43–1.61) but not in the

control group (p = 0.056, OR = 1.04, 95%CI = 1–1.08).

Improvement in the BAR test for non-learned words

In addition to the improvement in behavioral performance for the learned words “light” and

“right,” we also assessed whether the there was an improvement in behavioral recognition of

other non-learned words containing the consonants “l” or “r.” The BAR test for non-learned

words was performed before the first day of training (pre-test) and after the last training day

(post-test). The presented word was randomly selected from the sound stimuli in the word list

(Table 1), and participants were asked whether the consonant in the presented word was “l” or

Fig 4. Results of the behavioral auditory ability tests and changes in neural activity; (a) Average probability of correct responses (neurofeedback

group: solid circles; control group: empty circles) and logit models (neurofeedback group: green line; control group: red line) in discrimination and

(b) Average probability of correct responses (neurofeedback group: solid circles; control group: empty circles) and logit models (neurofeedback

group: green line; control group: red line) in recognition for the words “light” and “right”; (d) Average probability of correct responses in recognition

for 22 words with the consonants “l” or “r” on pre-test (gray bars) and post-test (black bars) assessments of the neurofeedback group(n = 8); The

error bars indicate the SEM; * p < 0.05, ** p < 0.01.

https://doi.org/10.1371/journal.pone.0178694.g004
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“r.” Non-learned words were distributed into four classes according to the commonality of a pho-

neme: /lait/-/rait/ (“light” and “right,” “blight” and “bright”), /lai/-/rai/ (“fly” and “fry”), /la/-/ra/

(“glass” and “grass”), /l/-/r/ (the rest of the words). The probability of correct responses in recog-

nition for non-learned words was also tested. Two-way [class × test stage] repeated measures

ANOVA indicated significant main effects of test stage (F(1, 92) = 51.74, p< 0.01) and class (F(3,

92) = 6.54, p< 0.01), and a significant interaction between class and test stage (F(3, 78) = 7.71,

p< 0.01). There was no significant difference in recognition performance between pre-and post-

tests for the /l/-/r/ class. However, we found a significant improvement in recognition perfor-

mance between pre-and post-test results for the /la/-/ra/ class (F(1, 92) = 11.42, p< 0.01), /lai/-/

rai/ class (F(1, 92) = 15.92, p< 0.01), and /lait/-/rait/ class (F(1, 92) = 47.50, p< 0.01). In addition,

Fig 4C shows a significant difference in probability of correct responses in recognition on post-

test between classes using Bonferroni’s correction for multiple comparisons (MSe = 134.9191,

p< 0.05).

Improvement in neural activity

In addition to improvements in behavioral performance, we assessed whether neural activity

changed in the neurofeedback group. Using electroencephalography (EEG) data collected dur-

ing the pre-test and on each training day, we calculated and compared the average MMN

amplitudes of the neurofeedback and control groups. Two-way [group × training stage]

repeated measures ANOVA indicated a significant main effect of group (F(1, 78) = 33.13,

p< 0.01), a marginal main effect of training stage (F(5, 78) = 2.12, p< 0.1), and a significant

interaction between group and training stage (F(5, 78) = 4.92, p< 0.01). Fig 5A shows that

there was no significant difference in MMN amplitude in the pre-training between the neuro-

feedback and control groups. However, we found a marginal difference in average MMN

amplitude on the second training day (F(1, 78) = 1.97, p< 0.1) and significant differences in

average MMN amplitudes on the third, fourth, and fifth days (3rd: F(1, 78) = 22.89, p< 0.01;

4th: F(1, 78) = 12.94, p< 0.01; 5th: F(1, 78) = 19.59, p< 0.01). Fig 5A also shows significant

improvements on the third, fourth, and fifth training days compared with the pre-test using

Bonferroni’s correction for multiple comparisons (MSe = 0.3141, p< 0.05). Fig 5B shows the

group grand average MMN responses on the 1st and 5th training days in the both groups,

respectively. However, due to the difference in peak latency between participants, the result

shown in Fig 5B differs somewhat from Fig 5A.

After the experiment was completed on the last training day, participants were asked how

they made the disc size change, and none of their responses was related to the speech sounds

in the experiment. For example, they gave explanations such as “I tried to imagine the solid

green disc coming closer to my eyes” and “I tried to imagine putting air into the green

balloon.”

Table 1. The list of words used in the BAR test (learned words are in boldface).

Classes Words

/lait/-/

rait/

light-right, blight-bright

/lai/-/rai/ fly-fry

/la/-/ra/ glass-grass

/l/-/r/ lamp-ramp, lane-rain, land-rand, late-rate, leach-reach, lead-read, leap-reap, led-red, lest-rest,

let-ret, link-rink, load-road, lock-rock, long-wrong, lope-rope, flesh-fresh, blues-bruise, pleasant-

present

https://doi.org/10.1371/journal.pone.0178694.t001
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Discussion

In this study, we examined whether MMN neurofeedback is effective for speech sound as

well as pure tones, or whether this is relevant to learning a foreign language. We did a train-

ing task for helping native Japanese speakers learn to distinguish between ‘light’ and ‘right’

in English. First of all, our results indicate that participants can learn to discriminate the

speech sounds ‘light’ and ‘right’ without any explicit training. Secondly, it is possible for

adults to learn to recognize new sounds that do not exist in their native language. Thirdly,

another result of this study is that neurofeedback learning is effective for words containing

the consonants “l” and “r” besides the learned words of ‘light’ and ‘right’, although some of

them had no significant learning effect. The result proposed a possibility that discrimination

ability can be extended to novel words. Above all, MMN neurofeedback is useful for adults

to learn foreign languages.

A previous study in perceptual learning reported that repetitive pairing of reward and visual

stimuli leads to performance improvements for those stimuli [28]. In our training experiment,

participants were instructed to concentrate on making the solid green disc as large as possible,

and the size of solid green disc changed every 0.7 s after the first 20 trials. Therefore, there is a

possibility that the simple visual stimuli (size of the disc) had worked as a reinforcement signal

leading to behavioral improvements. Furthermore, although the participants were asked to

ignore the auditory stimuli during training, we hypothesized that they might become accus-

tomed to hearing the stimuli repeatedly, and, thus, learning might unconsciously occur and

auditory discrimination performance might improve. However, the results of behavioral audi-

tory test and neural activity in the control group contradict this idea. The visual and auditory

stimuli during training were the same between groups, but the sizes of the green discs they

were shown correspond to participants’ MMN responses in the neurofeedback group but not

in the control group. And no improvements in behavioral performance or neural activity were

found in the control group. This result shows that improvements in behavioral performance

Fig 5. Results of the changes in neural activity; (a) Average MMN amplitudes on the pre-test and on each training day in the neurofeedback group (red

circles) and control group (green rhombi); The error bars indicate the SEM; * p < 0.05, ** p < 0.01. (b) The group grand average MMN responses on the

pre-training and 5th training days in the neurofeedback and control groups respectively.

https://doi.org/10.1371/journal.pone.0178694.g005
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and neural activity in the neurofeedback group were caused by the neurofeedback rather than

simply by the repeated stimuli those did not correspond to neural activity (MMN responses).

Previous studies have shown that in some behavioral auditory-discrimination training

tasks, the MMN has increased following behavioral training [11,29–32]. Our recent findings

[26, 27] have indicated that auditory-discrimination performance for pure tones can be

improved by enhancing brain activity without behavioral discrimination training. The results

of the present study further indicate that an improvement in the discrimination of complex

sounds at the word level was elicited by the same training framework [26,27]. Furthermore,

besides discrimination ability, recognition ability was improved through the neurofeedback

training. Before training, the participants could not discriminate between the words “light”

and “right.” Because the two categories are encompassed by a single native category (“light”),

they perceive the two words as the same. It is thought that language learners can perceive a

new category after learning to perceive the differences between two categories. Despite the fact

that the participants were not given any feedback after the BAD and BAR tests, none of them

performed at probability of correct responses under 50% in the BAR test. This means that

nobody mistook the two words for each other. It is possible that this is because the participants

had experience studying English in school starting at 12 years of age, and they might have

known the characteristics of the sound differences as prior knowledge.

In this study, we also assessed improvements in the recognition of other words with the

consonants “l” or “r,” even though they had not been presented during training. Our results

show that probability of correct responses in recognition for words was improved along with

an increase in recognition of the shared phoneme. The transfer for the training was better for

words in which the same vowel “ai” followed r/l. The result suggests that training improved

pairing consonant-vowel discrimination, rather than just consonants. A previous study [12]

examined backward masking effects on non-native consonants by a following vowel using

magnetoencephalography to measure mismatch negativity in response to synthesized speech

sounds. The sound pressure lever of vowels is higher than that of consonants so that vowels

including the transitional part from a consonant to a vowel possibly mask the consonant.

Their results indicated that the backward masking effect on non-native consonants by follow-

ing vowels may be one reason for the difficulties in learning foreign consonants, such as /r/ for

Japanese. Therefore, it is conceivable that discrimination between the words in the /lait/-/rait/,

/lai/-/rai/, and /la/-/ra/ classes was improved because the backward masking effect for these

words was suppressed in our training. Conversely, the backward masking effect on the words

in the /l/-/r/ class, which do not necessarily have a vowel in common, could not be completely

suppressed using neurofeedback training. As a solution, we propose that simply more training

is required for recognizing these words.

A previous study has shown that behavioral training improves the probability of correct

responses in recognition for /l/ and /r/ [33]. Participants responded by pressing “1” or “2” to

identify the spoken word as containing “r” or “l,” and feedback was provided in the form of

different signals. Nevertheless, it is important to note that probability of correct recognition

responses only improved by 16 percentage points on average, which is still substantially poorer

than the near-perfect probability of correct identification responses achieved by native English

speakers. Furthermore, the training phase took place over a period of 3–4 weeks. Similar train-

ing procedure and result were observed in another study of Japanese adults learning English

[34]. In the study [34], participants responded by pressing response buttons marked "S" and

"D." Immediate feedback was given by lights that were illuminated over the correct response

button. In the both aforementioned study, a feedback paradigm was used in which a binary

(correct/incorrect) assessment of behavioral responses was provided to participants in a stan-

dard form of behavioral training. Our results in the present study, however, indicate that
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auditory-discrimination performance for words can be improved by enhancing brain activity

without behavioral discrimination training. The probability of correct identification responses

for the target words “light” and “right” improved by an average of 35% following a 5-day train-

ing period. In particular, probability of correct recognition responses also improved by an

average of 34%. When we view the learning curves in more detail, we find that the probability

of correct discrimination responses improved by over 30 percentage points on average within

the first three days of training. The probability of correct responses in discrimination and rec-

ognition, MMN amplitudes were all significantly improved on the third training day com-

pared with the pre-test, and did not change significantly thereafter. There are quite a few

possible reasons why behavioral discrimination training often becomes difficult. For example,

the feedback in a standard behavioral training paradigm is limited to a binary (correct/incor-

rect) assessment of behavioral responses. However, supraliminal behavioral responses are not

necessarily identical with the subliminal brain responses occurring when participants are not

conscious of differences. For example, regardless of how the brain processes the sounds, the

feedback received is “incorrect” when the behavior is wrong. Such information cannot be used

to accurately evaluate the learning process, as it obscures how learning occurs. By contrast, our

neurofeedback method provides continuous feedback demonstrating the accuracy of the cur-

rent state and guiding learners to improve their brain processes and ultimately their discrimi-

nation ability. Interestingly, as in our previous research [26,27], the participants in our study

were not aware of the purpose of the experiment. Because this new neurofeedback method

does not require learners to pay attention to the auditory stimuli [35,36] or to be aware of the

learning process, it can unconsciously improve discrimination ability in foreign-language

learning.

Conclusion

Our results indicate that adults can learn to discriminate the speech sounds of foreign lan-

guages unconsciously without any behavioral training. In addition, it is possible for adults to

learn to recognize individual sounds that do not exist in their native language. The neurofeed-

back method was also effecting for some words containing the consonants “l” and “r” besides

the learned words. Therefore, we think that our neurofeedback method has a promising nature

that may supersede previous behavioral training for foreign language learning. Furthermore,

our method also has the potential to be developed into an unconscious-learning device in the

form of a brain-computer interface (BCI) game that people can simply enjoy using for learning

target sounds in a foreign language with a specific goal that can be achieved by a large MMN

while unconsciously improving their listening ability. However, this method can only be useful

for limited auditory training at present. Our future work will focus on the learning effect of

our method to other auditory fields (such as learning by a musician or sound engineer), or

clinical therapies (such as for hearing impairments or schizophrenia). Moreover, the basic con-

cepts underlying our findings could potentially be extended to other senses if the biomedical

signal used for detecting the secondary clue can be acquired for neurofeedback.
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information in sensory memory as reflected by the mismatch negativity. Biol Psychol. 1994; 38: 157–

167. PMID: 7873700

20. Tervaniemi M, Winkler I. Pre-attentive categorization of sounds by timbre as revealed by event-related

potentials. NeuroReport. 1997; 8: 2571–2574. PMID: 9261829

21. Sonnadara R. R, Alain C, Trainor L. J. Occasional changes in sound location enhance middle latency

evoked responses. Brain Res. 2006; 1076: 187–192. https://doi.org/10.1016/j.brainres.2005.12.093

PMID: 16487494

22. Bertoli S, Smurzynski J, Probst R. Temporal resolution in young and elderly subjects as measured by

mismatch negativity and a psychoacoustic gap detection task. Clin Neurophysiol. 2002; 113: 396–406.

PMID: 11897540

23. Alho K, Woods DL, Algazi A. Processing of auditory stimuli during auditory and visual attention as

revealed by event-related potentials. Psychophysiology. 1994; 31: 469–479. PMID: 7972601

24. Pettigrew C.M, Murdoch B.E, Ponton C.W, Finnigan S, Alku P, Kei J. et al. Automatic auditory process-

ing of English words as indexed by the mismatch negativity, using a multiple deviant paradigm. Ear

Hear. 2004; 25: 284–301. PMID: 15179119
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30. Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P. Development of a memory trace for

a complex sound in the human brain. NeuroReport. 1993; 4: 503–506. PMID: 8513127

31. Winkler I, Kujala T, Tiitinen H, Sivonen P, Alku P, Lehtokoski A, et al. Brain responses reveal the learn-

ing of foreign language phonemes. Psychophysiology. 1999; 36: 638–642. PMID: 10442032

32. Pantev C, Roberts LE, Schulz M, Engelien A, Ross B. Timbre-specific enhancement of auditory cortical

representations in musicians. Neuroreport. 2001. 12; 169–174. PMID: 11201080

33. Bradlow AR, Pisoni DB, Akahane-Yamada R, Tohkura YI. Training Japanese listeners to identify

English/r/and/l: IV. Some effects of perceptual learning on speech production. J Acoust Soc Am. 1997;

101: 2299–2310. PMID: 9104031

34. Strange W, Dittmann S. Effects of discrimination training on the perception of/r-l/by Japanese adults

learning English. Percept Psychophys. 1984; 36: 131–145. PMID: 6514522
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