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Abstract

Parasitic infections are generally diagnosed by professionals trained to recognize the mor-

phological characteristics of the eggs in microscopic images of fecal smears. However, this

laboratory diagnosis requires medical specialists which are lacking in many of the areas

where these infections are most prevalent. In response to this public health issue, we devel-

oped a software based on pattern recognition analysis from microscopi digital images of

fecal smears, capable of automatically recognizing and diagnosing common human intesti-

nal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic

images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum,

and Fasciola hepatica, respectively. Representative photographs were selected by a parasi-

tologist. We then implemented our algorithm in the open source program SCILAB. The algo-

rithm processes the image by first converting to gray-scale, then applies a fourteen step

filtering process, and produces a skeletonized and tri-colored image. The features extracted

fall into two general categories: geometric characteristics and brightness descriptions. Indi-

vidual characteristics were quantified and evaluated with a logistic regression to model their

ability to correctly identify each parasite separately. Subsequently, all algorithms were eval-

uated for false positive cross reactivity with the other parasites studied, excepting Taenia

sp. which shares very few morphological characteristics with the others. The principal result

showed that our algorithm reached sensitivities between 99.10%-100% and specificities

between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-pos-

itivity in the algorithms for the three parasites evaluated. In conclusion, the results demon-

strated the capacity of our computer algorithm to automatically recognize and diagnose

Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high

sensitivity and specificity.
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Introduction

Intestinal parasites are among the most common infectious diseases in humans worldwide,

with a higher prevalence in developing countries and economically depressed communities.

As such, these infections are considered to be a product of poor living conditions the impact

of which is frequently underestimated by public health services. Nevertheless, in the last few

years the role of these infectious agents, especially on the long term physical and mental devel-

opment of children, has been increasingly recognized [1, 2]. This recognition presents the

challenge to search for a sustainable and cost-effective solution to this problem. In order for

public health authorities to monitor the epidemiologic distribution and variation of the para-

sites, and to develop appropriate control methods, an effective diagnostic tool is needed to cor-

rectly identify the parasites and determine prevalence and incidence [2, 3].

Previous studies on pattern recognition in images in the field of parasitology were devel-

oped to help diagnose medically relevant parasites [4, 5]. The methodology used can be divided

into three general categories: pre-processing, image processing with feature extraction, and

classification [6, 7].

In order to increase the capacity of a computer algorithm to account for nuanced differ-

ences between parasite eggs, increasingly complex systems have been used. Previous studies

have reported the use of artificial neural networks (ANN) [8], adaptive network based fuzzy

inference system (ANFIS) [9], Multi-Class Support Vector Machine (MCSVM) classifier

[10], Bayesian classification system [11] and in order to identify and classify parasites. More

recently, a technique to detect parasites in fecal smears used the Filtration and Steady Determi-

nations Thresholds System (F-SDTS) to segment and classify two different parasitic eggs, Pla-

tyhelminthes and Nematodes, with an overall correct classification rates of 93% and 94%,

respectively [12].

All of these works recognize the helminth egg by extracting their morphologic characteris-

tics from images; the same characteristics used by specialists to diagnose parasites in fecal

smears. The actual diagnosis from a stool sample requires expert personnel, which may over-

burden specialists in areas of high parasitemia. For this reason, emerging automated computer

algorithms could play an important role in supporting the clinical diagnosis of intestinal

parasitemia.

The present work discusses our development of a software to automatically diagnose Taenia
sp., Fasciola hepatica, Diphyllobothrium latum and Trichuris trichiura—prevalent human para-

sites—from microscopic digital images of stool samples. We developed a computer algorithm

to process the images, extract features and subsequently classify images through a simple

multivariate logistic regression based on the most representative features of the eggs of each

parasite.

Materials and methods

Sample selection

The study which provides the stool samples was performed at the Universidad Peruana Caye-

tano Heredia, Lima, Peru, under the protocol “Evaluación de infecciones gastroinstestinales

por norovirus y parasitos en comunidades urbano marginales del Peru”, with Dr. Robert Gil-

man as principal investigator. This study was approved by the IRB Human Ethics of the Uni-

versidad Peruana Cayetano Heredia -CEIH (Constancia de autorización ética No. CP52240,

February 2007) which complies with the Office for Human Research Protections—OHRP

(Federalwide Assurance: FWA00000525). The samples used in this study were stored at 4˚C in

the Parasitology Laboratory at Universidad Peruana Cayetano Heredia, were preserved in
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phosphate-buffered saline–formaldehyde at 5% and de-identified prior to the parasitological

examination.

We used 200 stool samples which were processed using rapid sedimentation (centrifuga-

tion) to concentrate any parasitic eggs present in the samples [13]. Following this sedimenta-

tion step, samples were stained with Lugol’s iodine and examined under the microscope. A

laboratory technician prepared the samples and slides, and a parasitology specialist made the

diagnoses and took photographs of each slide [13].

Each photo selected for this study contains only one parasite egg. The dataset with the posi-

tive identifications by specialists consisted of 349 Taenia sp., 124 Trichuris trichiura, 185

Diphyllobothrium latum, and 460 Fasciola hepatica photos/egg. Additionally, we selected 462

image artifacts with negative identifications.

Image digitalization

We used an optic microscope (DIALUX1 Leitz Weitz) outfitted with a 3.34 megapixel camera

(Olympus C-3030) to digitalize the fecal smears at 40x magnification. For all photos, we used

the light source at maximum intensity with a diffusor and collimator to prevent punctate light

artifacts, and captured the images with the camera at its maximum optical zoom (3.34 mega-

pixels), with autofocus but without flash.

Image processing

We developed our algorithm in SCILAB, an open source computational platform, to process

and extract features from our images. The sequential steps, previously described in our publi-

cation on automatic recognition of Mycobacterium tuberculosis cords, were used to process all

images [14]. Two additional steps were added in order to increase the contrast (enhance con-

trast) and reduce background noise (Gaussian smoothing). These steps consisted of the succes-

sive application of different filters and masks. We applied the following fourteen steps to

process each digital image: gray scale conversion, enhance contrast, Gaussian smoothing,

enhance contrast, global binarization, border smoothing, labelling, exclusion of boundary

objects, image closing, holes filtering, area filtering, skeletonization, identification of object

borders, and image recoloring (Fig 1). Five different images were produced during the process-

ing of each original photograph: gray-scale, skeleton image, border image, cleaned image, and

a tri-color image—this final image being constructed by combining the cleaned and border

images (S1–S4 Figs). As such, the tri-color image was used in the feature extraction steps in

place of the cleaned and border images (Fig 2). The skeleton image was composed of a trunk

and branches (S1g–S4g Figs).

Feature extraction and pattern recognition

The feature extraction steps considered different morphologic characteristics: geometric

descriptions, curvature, internal patterns, and brightness-distribution using the skeleton, gray

scale, and tri-colored images [15]. The elemental shared features of all parasites were the

length, thickness, brightness distribution, circularity, and shape of the object [16].

Length of the object. Using tri-colored and skeleton images we can identify the long axis

of each object and measure the branches extended to the edge of the object border. The length

of the object was the total number of pixels that form the trunk extended to each edge.

Thickness of the object. Using the skeleton and tri-colored images, (border-skeleton cor-

respondence) we drew transverse lines perpendicular to the trunk of the object from the skele-

ton image (transversal segmentation) at regular intervals. The thickness was expressed as the

mean length of all transverse lines.
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Fig 1. The processing flow of the image processing for parasite eggs. The initial input is the original image of the eggs, captured at 40x magnification.

Fourteen steps enhance contrast and filter out noise in order to obtain the final images that serve as inputs for the feature extraction process.

https://doi.org/10.1371/journal.pone.0175646.g001

Fig 2. Flowchart of proposed methodology to automatically recognize parasitic eggs from microscopic photographs.

https://doi.org/10.1371/journal.pone.0175646.g002
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Brightness distribution of the object. Brightness measures were obtained using the gray

scale image. The spatial variation of the brightness in the object was measured within each seg-

ment created by the perpendicular transverse lines. The increase in percent brightness, as com-

pared to the mean brightness of the photograph, was analyzed using a series of cutoff values:

8%, 10%, 12%, 15%, 18%, 20% and 22%.

Circularity of the object. We measured circularity using the skeleton and the tri-colored

images (border-skeleton correspondence). The circularity parameter was calculated for each

object as 4π times its area divided by the square of its perimeter. The perimeter was calculated

as the length of the border of the object.

Shape of the object. Using the skeleton and tri-colored images, we identified discrete

points of the extended trunk that fit into a continuous non-linear function using a Gaussian

fit. Then the curvature value of each point was estimated by the Fourier’s Fast Transformation

(FFT). Next we identified waves, which we defined as any segment of the extended trunk that

fell between a point with a curvature equal to or less than 0.2 and a second point with a change

of curvature more than 0.4. Finally we estimated three variables: number of waves, size, and

curvature of each wave (the maximum value of curvature in the wave).

For each parasite, we quantified additional features in order to encompass all of its most

distinguishing characteristics.

Mathematical variables for Taenia sp.

The eggs of Taenia sp. are spherical and measure 35–43 μm in diameter. Under light micros-

copy, the ova appear light brown, with a thick shell and characteristic radial striations, and

contain a central hexagonal oncosphere with three pairs of hooklets [17]. Our algorithm ana-

lyzing the Taenia sp. egg centers on these morphological characteristics and the presence of

radial layers. To obtain this additional variable for the layers, our algorithm first calculates geo-

metric moments, the centroid of the object, and the average radius (mean length of uniformly

spaced radial lines drawn from the calculated center of the object). The program also draws a

best-fit circle around the Taenia sp. egg, and then calculates the difference between the original

edge of the object and the computer-drawn best-fit circle in order to quantify the circularity of

the egg with the ‘variation edge-circle’ variable. Additionally, for the Taenia sp. parasite egg we

introduced a layers analysis by binarizing radial segments using Otsu thresholding. With uni-

formly distributed radial lines, we compared the most external portion of the resulting slices

(outer 60% of each slice) and used the Otsu threshold to compare the pattern of light and dark

layers of the outer shell, thus mathematically representing the radial striations characteristic of

this shell. This entire analysis of Taenia sp. ova resulted in a data set consisting of 80 features

(Fig 3).

Mathematical variables for Fasciola hepatica

The eggs of Fasciola hepatica are spheroids with diameters that usually measure between 130–

150 μm by 63–90 μm and an operculum at one pole. The analysis of the morphological charac-

teristics of the parasite Fasciola hepatica centers on the shape and internal texture of the egg

[17]. On the digital images, our algorithm first drew a best-fit ellipse around the border of the

egg. To numerically represent the shape, we measured the eccentricity of the best-fit ellipse,

eccentricity in terms of moments, circumference of the best-fit ellipse, the difference between

this drawn ellipse and the original border of the object, and the standard deviation between

the two edge measurements (Fig 4). The internal structure of the parasite was analyzed by first

identifying the major axis of the best-fit ellipse and then dividing the ellipse into radial sections

with a uniform distribution from the major axis of the best-fit ellipse to the edge of the original
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image. With this grid, we analyzed the intensity of illumination and variations in light along

the long axis of the parasite. Finally, as Fasciola hepatica is one of the largest parasites, we cal-

culated the overall area of the object.

Mathematical variables for Diphyllobothrium latum

The operculated, spheroid egg of this cestode usually measures between 58–75 μm by 45–

50 μm. The ova are not embryonated in the feces, and the operculum forms a layer on one end

which opens to expel an oncosphere [17]. The analysis of the morphological characteristics of

the Diphyllobothrium latum is also based on the form and internal texture of the egg, and as

such uses the same variables as described above for Fasciola hepatica. Again, we considered the

overall area, as the size is the major differentiating variable between this parasite and Fasciola
hepatica (Fig 4).

Mathematical variables for Trichuris trichiura

The typical egg of Trichuris trichiura measures between 50–55 μm by 22–24 μm, is barrel-

shaped with a characteristic plug at both ends, and contains a single monocellular ovum [17].

The analysis of the morphological features of the parasite Trichuris trichiura considers the

shape, internal texture, and the area of the egg, which are the same variables as those used for

Fasciola hepatica (Fig 4). Trichuris trichiura does possess an additional differentiating charac-

teristic—transverse layers near the center of the parasite—thus we used an additional variable

Fig 3. Flowchart of the feature extraction for Taenia sp. Flowchart showing feature extraction for Taenia sp. eggs, resulting in 80 variables for

statistical analysis.

https://doi.org/10.1371/journal.pone.0175646.g003
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to analyze these layers. Using a sample space of transverse lines drawn along the major axis of

the best-fit ellipse, we calculated this new variable. To take the protruding bipolar end plugs

into account, we used the deviation of the border along the major axis of the best-fit ellipse

from the actual border of the object.

Statistical analysis

We elected to use a multiple logistic regression to analyze the potentially predicting variables

for the four parasites, and selected the individual variables using a forward stepwise proce-

dure, based on the initial univariate analysis. We evaluated the models using the R-squared

value for degree of fit, odds ratio, capacity of the regression to make a correct classification

(sensitivity, specificity, and area under the curve), and with maximum parsimony. Multicol-

linearity between the predictive variables was assessed with a Pearson correlation coefficient;

if the absolute value of the Pearson correlation coefficient is greater than 0.75, then collinear-

ity is very likely to exist and indicate that variables may be redundant. Such variables were

excluded from the full multivariate logistic model. We evaluated the exclusivity of the regres-

sions for each parasite by measuring the capacity of the model to detect the egg of the spe-

cific parasite while excluding the other parasites. For cross-reaction, each parasite model

(Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica) was tested in the object

databases from the other parasites. All the statistical analyses were performed with a 5% sig-

nificance level.

Fig 4. Flowchart of the feature extraction process for Fasciola hepatica, Diphyllobothrium latum, and Trichuris trichiura eggs. This process

results in 92 features for statistical analysis.

https://doi.org/10.1371/journal.pone.0175646.g004
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Results

Taenia sp.

The most relevant variables were the circularity (geometric measure), and three quantifiers of the

internal structure Optimal_threshold_ds, and tam_work (Table 1). We modeled the probability

Table 1. Summary of the principle variables and the features they represent.

Dimension Variable Description

Geometric descriptions

*Circularity Circularity of the digital object, values range from 0–1 and with values closer to 1 being a perfect

circle.

Minor axis Length of the minor axis (shortest diameter) on the best fit ellipse.

Major axis Length of the major axis (longest diameter) on the best fit ellipse.

Major/Minor axis Ratio between the major and minor axes in the best fit ellipse.

Diff perimeter Difference between the perimeters of the best fit ellipse and the original object.

Mean edgediffercircle The average of the edge difference between the original object perimeter and the best-fit circle.

This calculation is based on two images: the original object and best-fit circle. Using these

images we traced uniformly distributed lines with the same orientation from the center of each

object to different points on the edge. Next, we found the absolute value of the differences

between each line and calculated the average difference.

SD edgediffercircle The standard deviation of the edge difference between the original object border and the best-fit

circle. Using the same methodology for the variable Mean edgediffercircle, we calculated the

standard deviation of the absolute value of all the differences between the original object and the

best-fit circle.

SD edgedifferellipse The standard deviation of the absolute value of the difference between the edge of the original

object and the best fit ellipse. We use the same methodology for the variable ds_difercirbor,

except using an ellipse instead of circle.

Quantification of the internal

structure

tam_work The average of the length of the segments of the radial lines drawn to analyze the layers. This

calculation was based on the lines drawn from the center of the original object to the edge of that

object, and we used only the outer 60% of each line to identify the shell and area of radial

striations. We also calculated the average length of each segment.

tam_inici_ds The standard deviation of the length of the radial lines drawn to analyze the layers. Using the

same lines drawn for the calculation of the tam_work variable, we calculated the standard

deviation of the lengths.

Optimal_threshold_ds The standard deviation of the Otsu threshold found in each segment of the radial lines drawn to

analyze layers. We use the same segments as in the methodology for the calculation of the

tam_work variable.

Thickness The average of the lengths of the perpendicular lines drawn from the skeleton image backbone to

the border of the object.

Thickness/length The ratio between the thickness and the length of the object.

Longest/total length The ratio of the longest perpendicular line drawn transverse to the skeleton image backbone and

the length of the object.

Characterization of the

curvature

Curvature The average of the curvature of the total waves in the object.

Shape The number of waves multiplied by the square of the curvature.

Shape2 Square of shape.

Brightness-distribution

*Mean-Nrefr15 Average of the number of pixels along the transverse segment to the skeleton that has

brightness 15% higher than the average brightness of the photograph (when normalized by the

total number of pixels of that particular transverse segment).

* Variables have been previously reported in our publication on automatic recognition of M. tuberculosis in MODS [14].

https://doi.org/10.1371/journal.pone.0175646.t001
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of correct identification of a Taenia sp. eggs in a multivariate logistic regression, obtaining a sen-

sitivity and specificity of 99.10% and 98.29%, respectively. The proportion of total variance

explained by this model was 91.3%. To further evaluate the overall precision of the model

(Table 2), we calculated Youden’s index (0.974) and the area under the curve (0.9975) (Fig 5).

Fasciola hepatica

The most relevant variables were the SD edgediffercircle, Diff perimeter, Major/Minor axis,

Curvature, and Longest/total length (Table 1). The pseudo R-squared value for our best logistic

model was 0.898 (Table 2), with a sensitivity of 99.15% and specificity of 98.18%. The precision

(Youden’s index) was 0.9734 and area under the curve was 0.9948 (Fig 5).

Diphyllobothrium latum

The most relevant variables were the Thickness/length, Minor axis, tam_inici_ds, Mean-

Nrefr15, and Shape (Table 1). The best logistic regression model had 100% and 98.13% sensi-

tivity and specificity, respectively. The proportion of the total variance explained by the model

was 92% (Table 2), precision (Youden’s index) was 0.9813, and the area under the curve was

0.9984 (Fig 5).

Trichuris trichura

Shape2, major axis, SD edgedifferellipse, and thickness (Table 1). The best logistic regression

model obtained a sensitivity of 100%, and specificity of 98.38%. The proportion of variance in

Table 2. Summary of classification variables, regression model fit, and odds ratio of each regression’s ability to make an accurate classification.

Parasite Model Features Univariate logistic regression Multivariate logistic regression

R2 Odds Ratio p-Value Overall R2 Odds Ratio p-Value

Taenia sp.

Circularity 0.77 169227.3 <0.001 0.913 1244.9 0.003

umbral_optimo_ds 0.15 3.50E-12 <0.001 5.01E-34 0.015

Mean edgediffercircle 0.66 0.73 <0.001 0.82 0.011

tam_work 0.55 1.21 <0.001 1.1 0.038

Fasciola hepatica

SD edgediffercircle 0.73 1.18 <0.001 0.898 1.08 0.006

Diff perimeter 0.15 0.95 <0.001 0.91 0.054

Major/Minor axis 0.08 2.22 <0.001 9.36 0.017

Curvature 0.4 0 <0.001 0 0.005

Longest/total length 0.32 22641.76 <0.001 46831.97 0.01

Diphyllobothrium latum

Thickness/length 0.6 1.14 <0.001 0.92 1.13 0.008

Minor axis 0.73 1.1 <0.001 1.52 0.002

tam_inici_ds <0.001 1 <0.874 0.61 0.003

Mean-Nrefr15 0.22 1.13 <0.001 1.11 0.04

Shape 0.004 1 0.293 1.04 0.027

Trichuris trichura

Shape2 0.57 0.94 <0.001 0.937 0.88 0.024

Major axis 0.24 1.02 <0.001 1.15 0.006

SD edgedifferellipse 0.14 0.91 <0.001 0.35 0.006

Thickness 0.45 1.05 <0.001 0.84 0.008

https://doi.org/10.1371/journal.pone.0175646.t002
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the outcome explained by this model was 93.7% (Table 2), Youden’s index was 0.9838, and the

area under the curve was 0.9987 (Fig 5).

The models showed no cross-reactions among the other parasites studied.

Discussion

The diagnosis of intestinal parasites in actuality is a qualitative process, based on the micro-

scopic identification of the form of the parasite in fecal samples, and depends on the experi-

ence of the observer. Generally, parasites are identified by specialized health professional;

nevertheless, not all health clinics in the country have access to those specialists. Given the

need to facilitate diagnosis, we propose an algorithm to automatically recognize intestinal par-

asites without physician input.

Automatic segmentation during image processing of the eggs is crucial for the feature

extraction and classification stage. Many studies have reported the automated segmentation

from the image background step as being very inconvenient, and had to rely on manual seg-

mentation [5], on automatic segmentation using threshold operations [8, 9, 11, 18] or with

Fig 5. Sensitivity and specificity of each regression model’s ability to recognize parasites in digital images of fecal smears given

differing probability cutoff values.

https://doi.org/10.1371/journal.pone.0175646.g005
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successive steps combining different filters [15, 19]. In this study, the images of the parasites

were captured with a high background, directly from fecal samples without any preprocessing.

To resolve the significant noise interference and improve the segment performance we pro-

pose a new image processing methodology. This methodology has been previously used and

published for the automatic detection of tuberculosis in sputum samples [14]. The principle

differences are basically two filters that enhance the contrast and remove background noise

using Gaussian smoothing, which are summarized in the 12 successive filters described

in our methods. They are able to successfully reduce background noise and achieve an

improved segmentation of each object, thus better defining the parasitic ova in the images.

This automatic segmentation of the objects of interest corresponds with an improvement in

the quality of the morphological characteristics extracted, leading to a better statistical analysis

and classification.

Automatic recognition of the egg of intestinal parasites has been investigated in different

studies based on the geometric shape, curvature, and texture of the egg. Many of these other

studies have employed different classification methodologies using multivariate statistics [4,

5], Bayesian classification [11], artificial neural networks (ANN) [8], multi-class support vector

machines (MCSVM) [10], a fuzzy inference system based on adaptive network (ANFIS) [9],

filtration with steady determinations thresholds System (F-SDTS) [12], and multi-texton histo-

gram (MTH) [20]. The 4 algorithms presented in this study also consider many of the same

morphological characteristics, but using a simpler logistic regression model in order to classify

and model the probability of a positive Taenia sp., Fasciola hepatica, Diphyllobothrium latum,

and Trichuris trichuria egg. Our system using logistic regression as classification methodology

identified parasitic eggs with a high sensitivity and specificity.

Previous studies on automatic recognition of parasites describe methodologies that demon-

strate their ability to recognize different parasites, yet do not report the occurrence of any

cross-reactivity in the algorithms for other parasite types. In our study, we evaluated cross-

reactivity between Fasciola hepatica, Diphyllobothrium latum, and Trichuris trichuria, which

revealed no false positive identifications. Taenia sp. was not evaluated for cross-reactivity as it

does not share the same extracted features with the other three parasites.

The results obtained in the present study show that it is possible to diagnose certain intesti-

nal parasites using microscopic digital images with a high accuracy. The sensitivity and speci-

ficity were 99.10% and 98.29%, 99.15 and 98.18%, 100% and 98.13%, and 100% and 98.38% for

Taenia sp., Fasciola hepatica, Trichuris trichuria, and Diphylobotrium latum respectively. As

presented here, our 4 algorithms function in the open-source computational program Scilab is

capable of automatically recognizing human intestinal parasites. Given the widespread nature

of these parasitic infections in areas with low resources, we hope to contribute to automated

methods of surveying, diagnosing, and treating this disease.

Supporting information

S1 Fig. Steps of image processing of Taenia sp. Process: (a) Original image, (b) gray-scale

image, (c) image with contrast filter, (d) binarized image, (e) object filling and border smooth-

ing, (f) area filter and background coloration, (g) digital object skeleton and (h) drawn border.

(TIF)

S2 Fig. Steps of image processing of Fasciola hepatica. Process: (a) Original image, (b) gray-

scale image, (c) image with contrast filter, (d) binarized image, (e) object filling and border

smoothing, (f) area filter and background coloration, (g) digital object skeleton and (h) drawn

border.

(TIF)
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S3 Fig. Steps of image processing of Diphyllobothrium latum. Process: (a) Original image,

(b) gray-scale image, (c) image with contrast filter, (d) binarized image, (e) object filling and

border smoothing, (f) area filter and background coloration, (g) digital object skeleton and (h)

drawn border.

(TIF)

S4 Fig. Steps of image processing of Trichuris trichiura. Process: (a) Original image, (b)

gray-scale image, (c) image with contrast filter, (d) binarized image, (e) object filling and bor-

der smoothing, (f) area filter and background coloration, (g) digital object skeleton and (h)

drawn border.

(TIF)
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