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Abstract

There has been growing recognition of the essential roles of citrate in biomechanical proper-

ties of mineralized tissues, including teeth and bone. However, the sources of citrate in

these tissues have not been well defined, and the contribution of citrate to the regulation of

odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes

were examined in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient C57BL/6

mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development,

characterized by absence of mature enamel, formation of aberrant enamel matrix, and dys-

plasia and hyperplasia of the enamel organ epithelium that progressed with age. These

abnormalities were associated with fragile teeth with a possible predisposition to tooth

abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Fur-

thermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone for-

mation in 13-week-old mice but not in older mice. The findings revealed the potentially

important role of citrate and Slc13a5 in the development and function of teeth and bone.

Introduction

Bone and teeth are highly mineralized organs [1, 2]. Calcium phosphate, in the form of nano-

sized apatite, is the major mineral component in bone, and in dentin and enamel [3]. In bone

and teeth, citrate concentration is 100–400 fold higher than that in plasma and most soft tis-

sues [4]. About 70% of whole body citrate is in bone [5], accounting for 5.5% by weight of the

organic matter, and about one sixth of the available apatite surface area [6]. For a long time cit-

rate was thought to regulate demineralization as a calcium-solubilizing agent [7]. However,

biophysical studies demonstrated that during apatite crystallization in aqueous solutions, cit-

rate not only stabilized existing nanocrystals but also was responsible for crystal nucleation [8,

9]. Furthermore, citrate was found to be strongly bound to the apatite nanocrystals [6, 10].

This is conserved in fish, avian, and mammalian bones [6, 10], indicating the critical role of
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citrate in bone across species. Although the role of citrate in the formation of dentin and

enamel has not been extensively studied, citrate may also be important given its high abun-

dance in teeth [4]. The outstanding role of citrate in bone and teeth draw intriguing questions

on what the sources of citrate are, how citrate abundance is regulated, and whether perturbed

citrate homeostasis leads to disorders in the development of teeth and bone.

Osteoblasts, odontoblasts and ameloblasts are cells) responsible for bone, dentin, and

enamel formation, respectively. Osteoblasts are responsible for de novo synthesis and produc-

tion of citrate, and provide the citrate that is incorporated into the apatite nanocrystals during

bone formation [11]. Conceivably, an alternative source of citrate in the tissues is plasma,

where citrate concentration is 50 ~200 μM [11, 12]. Osteoblasts, odontoblasts and ameloblasts

may take up citrate through transporters in the plasma membrane and use it for the synthesis

of bone and teeth. However, there are no data that conclusively indicate that citrate transport-

ers regulate citrate content in these cell types, and the role of the transporters in osteogenesis

and odontogenesis is not completely understood.

Three transporters, namely NaDC1 (SLC13A2), NaDC3 (SLC13A3), NaCT (SLC13A5)

have been reported to be expressed in kidney, liver, and other organs responsible for uptake of

carboxylate metabolites, including citrate, from plasma [13–15]. Notably among them, NaCT

is the only known membrane carrier that preferentially transports citrate over other carboxyl-

ates from the circulation [16–18]. NaCT mRNA is highly expressed in human liver and widely

detected in rodent liver, brain, testis, kidney and skeletal muscle [15, 16, 18, 19]. Recent studies

with microarray analysis also demonstrated NaCT mRNA was expressed in bone [20, 21], and

its expression level was upregulated during mouse bone matrix formation [20] and molar

tooth development [22]. Deletion of mouse Slc13a5 had decreased overall growth and shorter

body length, indicative of a smaller skeletal size, although the bone or tooth phenotypes were

not studied [19].

The role of NaCT in the formation of mineralized organs was implicated in human genetics

studies, showing that SLC13A5 mutations with loss of function were associated with tooth hypo-

plasia, hypodontia, and gingival hyperplasia [23–25]. A recent study further demonstrated the

association of SLC13A5 mutations with Kohlschütter–Tönz syndrome, characterized by epilep-

tic encephalopathy, intellectual disability and amelogenesis imperfecta (AI), hereditary disor-

ders with developmental abnormalities in the quantity and quality of enamel [26, 27]. In the

current study, abnormalities in teeth and bone of Slc13a5 deficient (Slc13a5-/-) mice were char-

acterized. The findings indicate that NaCT may have an important role in the formation of

bone and teeth, and Slc13a5-/- mice potentially represent a novel nonclinical model of AI in

human.

Materials and methods

Experimental design and animals

Slc13a5-/- C57BL/6 mice were generated in Taconic (Köln, Germany) and bred in HD Biosci-

ences Co (HDB, Shanghai, China) (S1 Fig and S1 Text). Slc13a5-/- mice were born alive with

no noticeable external abnormality. The male/female ratio and litter size were normal. The

mice were not evaluated for neurological disorders in detail because there were no clinical

signs of behavioral abnormalities, seizure, or tremor. Evaluation of teeth and bones was con-

ducted using 13 and 32-week-old female littermates including Slc13a5-/- (homozygotes),

Slc13a5+/- (heterozygotes) and Slc13a5+/+ (wide type, WT) mice. All mice in this study were

maintained on a 12-hour light/12-hour dark cycle at 22˚C with ad libitum access to chow food

(Keaoxieli, Beijing, China) and water, 5~6 mice/cage. All animal procedures and experiments

were performed according to protocols approved by the IACUC of Taconic and HDB.
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Calcein incorporation into bone and tissue collection

The activity of bone formation was determined by incorporation of calcein into bone. Calcein

is spontaneously fluorescent, and binds to calcium phosphate deposited into the bone matrix

only in the actively forming bone or newly synthesized bone sites. Mice were injected subcuta-

neously with 0.5% calcein solution (Sigma Aldrich, St. Louis, MO, USA, 100 μL/mice) 10, 9, 3,

and 2 days prior to euthanasia (one injection each day, a total of four injections each mice).

On the day of necropsy, mice were euthanized via CO2 inhalation and blood was collected via

cardiac puncture into clotting tubes (Gene Era Biotech, Hangzhou, China). The skin and inter-

nal organs were removed, and the whole carcass, including the teeth and skeleton, was immer-

sion-fixed in 10% formalin for 24 hours, and then transferred and stored in 70% ethanol until

further analysis.

The calcein content in femora was extracted and measured by fluorescence intensity. This

quantitative measurement determines the total calcein incorporated into the entire bone seg-

ment. Briefly, femora were cut to evaluate distal metaphysis length and subject to deminerali-

zation for 1 week in 14% EDTA, pH = 7.2. The EDTA extraction was then diluted 1:1 with

water, and an aliquot was removed for measurement of calcein on a Cytoflour II fluorescence

plate reader (Thermo Fisher Scientific, Waltham, MA, USA) using excitation and emission

wavelengths of 485 and 530 nm, respectively, as previously described [28].

Serum biochemical assays

The serum level of intact osteocalcin (OCN, Alfa Aesar, Ward Hill, MA, USA) and type I of C-

terminal telopeptide collagen (CTX-I, ImmunodiagnosticSystems Ltd, Maryland, MD, USA)

were measured using commercially available kits according to manufacturers’ instructions.

Serum concentrations of calcium and inorganic phosphorous were measured with a Hitachi

Modular analytics automated chemistry analyzer (Roche Diagnostics, Indianapolis, IN, USA).

Histological evaluation of teeth

After removal of the skull from the carcasses, the crania and mandibles were separated. The

crania and the right hemi-mandible were decalcified, trimmed, embedded in paraffin or plas-

tic, sectioned, and stained with hematoxylin and eosin (HE). Undecalcified portions of the left

mandible were embedded in plastic to generate ground cross sections at the level of the first

molar, and were subsequently stained with Stevenel’s blue. The tissue sections were evaluated

via routine light microscopy by an American College of Veterinary Pathologists (ACVP)-certi-

fied pathologist. The severity of a microscopic finding was graded on a progressive 4-point

scale consisting of minimal (MI), slight (SL), moderate (MO), and marked (MA), with MI

being the mildest possible grade, i.e. a change that was minimally outside of normal, and MA

being the greatest possible grade, i.e. a change of very great intensity or extent. “Present, no

severity grade assigned” was used only to denote the presence of abscesses. WT mice were

used as the reference when microscopically evaluating tissues from Slc13a5+/- and Slc13a5-/-

mice.

Micro-Computed Tomography (μCT)

Femora and 5th lumbar vertebrae (LV5) were analyzed by quantitative μCT using an LTC-

100 μCT scanner (Hitachi-Aloka, Tokyo, Japan) with an automatic dose setting and with

mouse bone mode at 60 μm resolution. Scans of the femora were taken at 0.4 and 4.4 mm

from the end of the growth plate for distal metaphysis and midshaft analyses, respectively.

Bone mineral content (BMC) and bone area were reported using Aloka software (SYS-C320
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version 1.5) as previously described [29]. Bone mineral density (BMD) was calculated as BMC

normalized to bone volumetric area [29]. μCT measurements of left hemi-mandibles were con-

ducted at Charles River Laboratories Montreal (Senneville, Québec, Canada), with a Scanco μCT

100 scanner (Scanco Medical AG, Brüttisellen, Switzerland) with a dose of 70 kVp, 114 μA, 8 W

and at a isotropic voxel resolution of 5 μm. The software used for acquisition was μCT v6.1

(Scanco Medical AG, Brüttisellen, Switzerland) and the software used for analyses was μCT Eval-

uation v6.5–3 (Scanco Medical AG, Brüttisellen, Switzerland). The evaluation was completed

prior to processing portions of the left mandible to ground plastic sections (see above). Evalua-

tion included the determination of enamel (incisor and molar) and pulp volume in a gated area

in the left mandible (see S2 Fig and S2 Text for details).

Biomechanical analyses

Biomechanical properties of the mid femur (MF) were evaluated using three-point bending

[29]. Specimens were loaded in a 37˚C saline bath after being submerged for 2 minutes to

allow for equilibration of temperature. The femur length was measured using calipers (Mitu-

toyo, Kanagawa, Japan), and load was applied midway between two supports 8 mm apart.

Femora were positioned so that the loading point was about 4 mm proximal from the distal

popliteal space and bending occurred about the medial-lateral axis. Load-displacement curves

were recorded at a crosshead speed of 0.17 mm/sec using an MTS model 1/S materials testing

machine with a 100N load cell and analyzed using TestWorks 4 software (MTS Corp., Minne-

apolis, MN, USA).

Statistical analyses

All numerical data were expressed as mean ± standard deviation (SD). GraphPad Prism 6 was

used to analyze differences between samples by 1-way ANOVA with the post-hoc Tukey multi-

ple comparison test. P< 0.05 was considered statistically significant.

Results

Slc13a5 -/- mice were smaller and had an abnormal dental phenotype

Thirteen-week-old Slc13a5-/- mice were smaller in size, with decreased body weight and

shorter femur length when compared to Slc13a5+/- or Slc13a5+/+ littermates (Fig 1A and 1B).

At 32 weeks, body weight of Slc13a5-/- mice was less than that of the WT and the heterozygotes,

though not statistically significant (Fig 1C).

Small white, opaque areas of discoloration were observed on the labial surface of the inci-

sors of some of the Slc13a5-/- mice (Fig 2B), whereas incisors from Slc13a5+/- (not shown) or

Slc13a5+/+ (Fig 2A) littermates looked normal. Furthermore, incisors from the Slc13a5-/- frac-

tured readily (Fig 2C). Some Slc13a5-/- mice had discrete mandibular swellings which corre-

lated with tooth and mandibular abscesses in 13-week-old mice (Fig 2D and Table 1).

Slc13a5 -/- mice lacked mature enamel

Because of the macroscopic tooth abnormalities, the dental phenotypes of mice were charac-

terized microscopically. Dentition was complete in mice of all genotypes at 13 and 32 weeks of

age. Teeth from Slc13a5+/- and Slc13a5+/+ mice were microscopically normal. However, a com-

plete lack of mature mineralized enamel occurred in incisors and molars of all Slc13a5-/- mice

at both 13 and 32 weeks of age as evaluated via light microscopy using un-decalcified ground

plastic sections (Tables 1 and 2; indicated as enamel hypoplasia; Fig 3). Some 13-week-old

Sodium-dependent citrate transporter and enamel/bone development
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mice had tooth and mandibular abscesses (Table 1); however, no abscesses were identified in

32-week-old mice (Table 2).

In addition to the lack of mature mineralized enamel, there were other microscopic abnor-

malities in the incisors of Slc13a5-/- mice as evaluated using un-decalcified sections (Fig 3) and

decalcified, paraffin-embedded tissue sections (Fig 4). While amelogenesis in the incisors of

Slc13a5+/- and Slc13a5+/+ mice was morphologically normal at all stages of amelogenesis (Fig

4), Slc13a5-/- mice had abnormal and persistent enamel matrix (indicated as aberrant matrix in

Tables 1 and 2), and dysplasia/disorganization and hyperplasia of the enamel organ epithelium

(Fig 4, Tables 1 and 2). In the secretory stages of amelogenesis in Slc13a5-/- mice, the enamel

matrix was lesser in amount when compared to Slc13a5+/- and Slc13a5+/+ mice, and was char-

acterized by irregular aggregates of extracellular eosinophilic matrix of variable staining inten-

sity (Fig 4C), rather than the consistent uniform appearance expected of normal enamel

matrix at this stage (Fig 4A and 4B). The enamel organ epithelium of Slc13a5-/- mice had mul-

tifocal areas of disorganization, characterized by rosette-like epithelial structures surrounding

aggregates of eosinophilic extracellular matrix (Fig 4C).

During normal amelogenesis there was progressive degradation of the organic content of

maturing enamel, and this appeared in decalcified tissue sections as a clear space (“enamel

Fig 1. Slc13a5 -/- mice were smaller in size. (A) Body weight and (B) femur length were less in 13-week-old

Slc13a5-/- mice (n = 9/group) when compared to WT (Slc13a5+/+) or heterozygous (Slc13a5+/-) littermates. (C)

Body weight of 32-week-old mice. ** P < 0.01; *** P < 0.001 compared with Slc13a5+/+ group.

https://doi.org/10.1371/journal.pone.0175465.g001

Fig 2. Abnormal dental phenotypes in Slc13a5-/- mice. Representative pictures from WT (Slc13a5+/+) (A)

and Slc13a5-/- (B-D) mice. Slc13a5-/- mice had white, opaque areas of discoloration on the incisors (B and C,

solid arrows), fractured incisor (C, arrowhead), and/or abscess (D, solid arrow).

https://doi.org/10.1371/journal.pone.0175465.g002
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space”; Fig 4D, 4E, 4G and 4H). When compared to Slc13a5+/- and Slc13a5+/+ mice, the matu-

ration and post-maturation stage of amelogenesis in Slc13a5-/- mice were characterized by an

enamel space that was reduced in size and retained irregular, globular, often large aggregates

of eosinophilic extracellular enamel matrix (Fig 4F and 4I). The aberrant matrix was unminera-

lized to poorly mineralized, as determined using undecalcified plastic sections (Fig 3F), and did

not have the expected organized striated and prismatic structure of normal enamel (i.e. striae of

Retzius, enamel prisms). Surrounding the aberrant matrix were rows and ribbons of enamel

organ epithelium, which exhibited dysplasia/disorganization and hyperplasia (increased numbers

of cells) (Fig 4F and 4I). These changes were present throughout the length of the enamel organ

of the incisors, although the most pronounced areas of disorganization and hyperplasia occurred

in the maturation and post-maturation stage of amelogenesis. In some of the Slc13a5-/- mice the

enamel organ epithelium formed a few small cyst-like structures with clear to granular eosino-

philic contents (not shown). The microscopic changes were of greater severity in 32-week-old

mice when compared to 13-week-old mice, indicating that the changes progressed with age

(Tables 1 and 2). Slc13a5-/- mice had no light microscopic abnormalities in odontoblasts, dentin,

or other areas of teeth.

Table 1. Microscopic findings in 13-week-old Slc13a5 -/-, Slc13a5+/-, and Slc13a5+/+ mice (n = 9).

Tissue Findings Group

Slc13a5+/+ Slc13a5+/- Slc13a5 -/-

Incisors Enamel hypoplasia — — 9 MA

Aberrant enamel matrix — — 1 MA

4 MO

4 SL

Dysplasia/disorganization, enamel organ epithelium — — 4 MA

2 MO

3 SL

Hyperplasia, enamel organ epithelium — — 5 MI

1 SL

Molars Abscess with bacteria — — 2P

— = finding not occur.

MI = minimal; SL = slight; MO = Moderate; MA = Marked; P = Present, no severity grade assigned; the numbers in front of the microscopic findings indicate

the number of the mice identified with the findings.

https://doi.org/10.1371/journal.pone.0175465.t001

Table 2. Microscopic findings in 32-week-old Slc13a5 -/-, Slc13a5+/-, Slc13a5+/+ mice (n = 5).

Tissue Findings Group

Slc13a5+/+ Slc13a5+/- Slc13a5 -/-

Incisors Enamel hypoplasia — — 5 MA

Aberrant enamel matrix — — 5 MO

Dysplasia/disorganization, enamel organ epithelium — — 3 MA

2 MO

Hyperplasia, enamel organ epithelium — — 3 MO

1 MI

1 SL

— = finding did not occur.

MI = minimal; SL = slight; MO = moderate; MA = marked; the numbers in front of the microscopic findings indicate the number of the mice identified with the

findings.

https://doi.org/10.1371/journal.pone.0175465.t002

Sodium-dependent citrate transporter and enamel/bone development

PLOS ONE | https://doi.org/10.1371/journal.pone.0175465 April 13, 2017 7 / 17

https://doi.org/10.1371/journal.pone.0175465.t001
https://doi.org/10.1371/journal.pone.0175465.t002
https://doi.org/10.1371/journal.pone.0175465


Slc13a5 -/- mice had decreased enamel volume

To further characterize the microscopic changes in enamel observed in the Slc13a5-/- mice, left

mandibles of 32-week-old Slc13a5-/- mice and their heterozygous and WT littermates were

analyzed by μCT (Figs 5 and 6). Visual evaluation of the images and morphometric analysis

confirmed absence of enamel in Slc13a5-/- mice (Figs 5C, 5F and 6A). Slc13a5-/- mice lacked

the layer of densely radio-opaque enamel in the incisors and molars (Fig 5). The incisor pulp

volume (PUV) (Fig 6B) of Slc13a5-/- mice was increased when compared to Slc13a5+/+ mice.

The cause for the increase in PUV was unclear, and may have been due to decreased thickness

of the dentin layer of the incisor (Fig 5F). However, no microscopic differences in the structure

or thickness of dentin were identified in tissue sections. Enamel volume and PUV in heterozy-

gous littermates did not differ from that of WT.

Fig 3. Slc13a5-/- mice lacked mature enamel. Representative images of ground thick plastic sections of the first molar (A-C) and incisor (D-F, at the level of

the first molar) from the left mandible from 32-week-old Slc13a5+/+ (A, D), Slc13a5+/- (B, E) and Slc13a5-/- (C, F) mice. The first molars (C) and incisors (F) of

Slc13a5-/- mice lacked mature mineralized enamel when compared to Slc13a5+/+ and Slc13a5+/- mice. Unmineralized to poorly mineralized aberrant matrix

was present where mature enamel should have been located (F, arrows). Stevenel’s blue. Black arrows in A-B, D-E = mature enamel, black arrows in

F = unmineralized (blue green material) or poorly mineralized aberrant enamel matrix. d = dentin; p = pulp.

https://doi.org/10.1371/journal.pone.0175465.g003
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Fig 4. The enamel organ epithelium of the incisors of Slc13a5 -/- mice was disorganized and dysplastic in all stages of amelogenesis. Representative

images of decalcified, paraffin-embedded sections of lower incisors (A-I) from 32- week-old Slc13a5+/+ (A, D, G), Slc13a5+/- (B, E, H) and Slc13a5 -/- (C, F, I)

mice. Images A to C were from the secretory stages of amelogenesis of the incisors near the apex of the tooth, D to F from the maturation stages of

amelogenesis at the level of the first molar, and G to I from the post-maturation stages of amelogenesis near the site of eruption. Hematoxylin and Eosin.

em = enamel matrix; es = enamel space.

https://doi.org/10.1371/journal.pone.0175465.g004
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Slc13a5 deficiency led to decreased bone mineral density and impaired

bone formation

Bone and teeth share many common mechanisms in biomineralization during formation and

development, and therefore, the effect of Slc13a5 deficiency on bone was studied. μCT analysis

showed that BMD of distal femur (DF) and LV5 was similar between each group, while BMD

of mid femur (MF) was significantly decreased by 14% in Slc13a5-/- mice when compared to

Slc13a5+/+ (Fig 7A). Meanwhile, Slc13a5-/- mice trended (p = 0.096) to have lower midshaft

peak load in the bone three-point bending biomechanical analyses (Fig 7B). Furthermore,

incorporation of calcein in femur, injected prior to sacrifice to assess dynamic bone formation

activity, was significantly decreased, by 32% in Slc13a5-/- mice (Fig 7C). These results suggested

bone mineralization and formation was impaired in Slc13a5-/- mice. In the 32- week-old mice,

BMD of MF, DF, and LV5 were comparable among all groups (Fig 7D). There was no signifi-

cant difference in calcein incorporation in femur (Fig 7E).

Serum concentrations of calcium, inorganic phosphorus, OCN, and

CTX-I

As calcium and inorganic phosphorus (IP) are the main inorganic component of apatite nano-

crystal in teeth and bone, their concentrations in serum were evaluated for potential systemic

changes that may have contributed to the dental and skeletal phenotypes in Slc13a5-/- mice.

Slc13a5-/- mice had similar serum concentrations of calcium and IP when compared to

Slc13a5+/- and Slc13a5+/+ at 13 weeks of age (Fig 8A and 8B). There were no changes in serum

Fig 5. μCT evaluation showed Slc13a5-/- mice lacked mature, densely-mineralized enamel in the

molars and incisors. Representative μCT images of volumetric renderings (A-C) or slices (D-F) of first

molars and incisors from 32-week-old WT (A, D), Slc13a5+/- (B, E) and Slc13a5-/- (C, F) mice. Tissue colored

in red in panels A and B corresponds to mature enamel in molars or incisors. Tissue colored white in panels A

to C corresponds to bone or dentin, both of which have generally similar radio-density. Enamel (e), dentin (d),

and pulp (p) are indicated in molars (top) and incisors (bottom) in panels D through E. Size bar in panels

A-C = 100 micrometers; size bar in panels D-E = 1 millimeter.

https://doi.org/10.1371/journal.pone.0175465.g005
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bone formation marker intact OCN and bone resorption marker CTX-I (Fig 8C and 8D).

These results suggested that deficiency of enamel and differences in bone mineral density were

not caused by abnormal serum concentrations of calcium and IP, but rather due to a local

effect in teeth and bone.

Discussion

The current study examined the tooth and bone phenotypes in C57BL/6 mice deficient in

Slc13a5. We have demonstrated and further characterized, in a preclinical model, that Slc13a5

Fig 6. Slc13a5-/- mice had decreased enamel volume as measured with μCT. (A) 32-week-old Slc13a5-/-

mice lacked mature enamel as measured by μCT when compared to Slc13a5+/- and Slc13a5+/+. (B) Pulp

volume was modestly increased in Slc13a5-/- mice. Mice were 32-week-old, n = 4~5/group. ** P < 0.01; ****
P < 0.0001 compared with Slc13a5+/+ group. Volume was measured in mm3.

https://doi.org/10.1371/journal.pone.0175465.g006
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deficiency results in defective tooth development with morphologic characteristics similar to

hypoplastic AI described in human [26]. Collectively, the dental phenotypes of Slc13a5-/- and

the reported association of tooth and enamel abnormalities in patients with SLC13A5 loss of

function mutations [23–26] indicate that NaCT plays a critical role in tooth development. Fur-

thermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone

Fig 7. Measurements of bone mineral density, strength and formation. At 13 weeks old, (A) Slc13a5-/- mice had similar BMD in distal

femur (DF) and 5th lumbar vertebrae (LV5) to Slc13a5+/+ mice, but had decreased BMD in mid femur (MF), and a trend with decreased bone

strength (B) (P = 0.096), and decreased calcein incorporation (C) compared with Slc13a5+/+ (n = 9 each group). At 32 weeks old, Slc13a5-/-

mice had similar BMD in DF, LV5 and MF (D) and calcein incorporation (E) to Slc13a5+/+ (n = 5 each group). ** P < 0.01; *** P < 0.001 vs

age-matched Slc13a5+/+ mice.

https://doi.org/10.1371/journal.pone.0175465.g007
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formation in young adult mice, revealing the potentially important role of NaCT and citrate in

the formation and function of bone.

Citrate is highly enriched in bone and other mineralized organs [4, 5], and has recently

been demonstrated to be essential for the organization of the bone apatite nanocrystals [6, 10].

Osteoblasts [11], and possibly odontoblasts and ameloblasts, are responsible for synthesis of

the citrate incorporated into the apatite nanocrystals in bone and teeth. Citrate in these cells is

derived from de novo citrate synthesis, predominantly in mitochondria, and from uptake

from plasma. Knockout of the mitochondrial citrate transporter Slc25a1, responsible for trans-

port of citrate from mitochondria to cytosol, resulted in notable reductions in the number of

osteoblasts and the amount of osteoid in mice [30], underscoring the important role of citrate

in osteoblast differentiation and formation of osteoid. An alternative source of cellular citrate

is uptake from plasma through membrane carboxylate transporters, including NaCT [12]. The

expression level of NaCT mRNA in bone and primary osteoblasts/osteocytes, and teeth, was

confirmed in the current study (S3 Fig and S3 Text), consistent with the earlier findings [20–

22, 26, 31, 32]. Slc13a5 deficiency led to defective tooth and bone development in mice from

our study, demonstrating the importance of the citrate transporters in the biology of these

tissues.

Our findings are supported by several previous reports that evaluated NaCT expression in

teeth and bone. NaCT mRNA was upregulated in developing molar teeth from postnatal mice

[22]. Furthermore, in human tooth buds, NaCT mRNA expression level increased during

Fig 8. Serum concentrations of calcium, inorganic phosphorus, OCN, and CTX-I. Serum concentrations of calcium (A), inorganic

phosphorus (B), intact OCN (C), and CTX-I (D) were similar among 13-week-old Slc13a5+/+, Slc13a5+/- and Slc13a5-/- mice (n = 9/group).

https://doi.org/10.1371/journal.pone.0175465.g008
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differentiation of pre-ameloblasts into secretory ameloblasts [32], potentially linking the trans-

porter to enamel formation. NaCT mRNA was upregulated and its expression level peaked

during the synthetic phase of bone formation induced by mechanical loading [20], potentially

implicating NaCT in the synthetic activity of osteoblasts. In the Hyp mouse homolog of X-

linked hypophosphatemic rickets/osteomalacia, a model with impaired bone mineralization,

NaCT mRNA expression was decreased in bone, and this was thought to deprive osteoblasts of

citrate and increase local extracellular citrate levels, which may have contributed to impaired

mineralization [21].

Slc13a5 deficiency appeared to have differential effects on the mineralized tissues in our

study. In Slc13a5-/- mice, mature enamel did not form, and the data suggested that amelogen-

esis was potentially impaired at the secretory and maturation stage (Fig 4). The enamel matrix

that did form was lesser in amount, was unmineralized to poorly mineralized, was not

degraded during maturation of enamel as expected in normal mouse incisor, and did not have

the organized striated and prismatic microscopic structure of normal mature enamel [33].

Schossig et al. in their case report of AI of the hypoplastic type in patients with mutations in

SLC13A5 [26] indicated that the tooth of one patient had decreased thickness of the enamel

layer, and the enamel did not have the organized striated and prismatic microscopic structure

of normal mature enamel. Slc13a5-/- mice appeared to have a more severe disturbance in

enamel than that described by Schossig et al [26] in one patient. Similar to the reported

patients [26], there were no microscopically detectable abnormalities in dentin in Slc13a5-/-

mice, although μCT evaluation of the teeth from Slc13a5-/- mice suggested that the layer of

dentin was potentially thinner, as evidenced by small increase in the volume of the pulp cavity

(Fig 5). The discrepancy between the microscopic and μCT evaluation was likely related to the

limitations of the two methods, and the small magnitude of the difference in pulp volume,

which suggested that the possible difference in dentin thickness was small. Nevertheless, our

data suggested that Slc13a5-/- mice potentially represent a novel in vivo preclinical model of AI,

and highlighted the important role of the transporter in amelogenesis in human and other

animals.

Bone mineral density decreased and bone formation was impaired in 13-week-old mice,

but there were no differences in BMD and bone formation in 32-week-old mice. The transient

effects in the bones of younger mice suggest NaCT plays an important role in bone formation

and growth, but NaCT may not be as critical in the maintenance of a mature skeleton. The dif-

ferent effects on enamel, dentin, and bone may be due to differences in the mineralization

matrix and the mode of mineralization. Enamel forms by apatite crystallization on a noncolla-

genous protein matrix, which is secreted from ameloblasts and immediately mineralized. In

contrast, bone and dentin form similarly on a preformed, unmineralized, collagenous matrix

[1]. The crystals in bone and dentin are of a similar size, and about ~10 times smaller in all

dimensions than enamel crystals. During enamel formation, the immediate need for minerali-

zation [1], and the extent to which enamel depends on citrate in crystal nucleation, thickening

and stabilization could potentially explain why the tissue is more susceptible than bone and

dentin to perturbed citrate homeostasis due to Slc13a5 deficiency. Furthermore, the lack of cit-

rate uptake may be uniquely detrimental to amelogenesis in Slc13a5 deficient mice, because

citrate may regulate cellular acid-base balance, which is critical during the formation of crystals

in amelogenesis, demonstrated when sodium bicarbonate homeostasis and intracellular pH

regulation was disrupted in patients with mutations of SLC4A4 and in Slc4a4 deficient mice

[27].

In conclusion, the roles of NaCT in teeth and bone were studied in Slc13a5-/- mice. Slc13a5
deficiency resulted in abnormalities in the enamel and bone, demonstrating the importance of

the transporter in amelogenesis and osteogenesis. While there is pharmaceutical interest in
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targeting NaCT as a potential treatment for insulin resistance and non-alcoholic steatohepati-

tis [19, 34, 35], one must take into consideration the potential risks highlighted by human [23–

26, 36] and /or rodent data, mainly epilepsy, developmental delays, and bone and tooth

disorders.
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