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Abstract

In landscape genetics, model selection procedures based on Information Theoretic and

Bayesian principles have been used with multiple regression on distance matrices (MRM) to

test the relationship between multiple vectors of pairwise genetic, geographic, and environ-

mental distance. Using Monte Carlo simulations, we examined the ability of model selection

criteria based on Akaike’s information criterion (AIC), its small-sample correction (AICc),

and the Bayesian information criterion (BIC) to reliably rank candidate models when applied

with MRM while varying the sample size. The results showed a serious problem: all three cri-

teria exhibit a systematic bias toward selecting unnecessarily complex models containing

spurious random variables and erroneously suggest a high level of support for the incor-

rectly ranked best model. These problems effectively increased with increasing sample

size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and dif-

ferent sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based

on these findings, we strongly discourage the continued application of AIC, AICc, and BIC

for model selection with MRM.

Introduction

A primary goal of landscape genetics is to determine the relative influence of landscape com-

position (e.g., amount of habitat), configuration (spatial arrangement of habitat patches),

and matrix quality (landscape between habitat patches) on patterns of gene flow, genetic

discontinuities and population genetic structure [1–5]. Gene flow may be restricted by geo-

graphic distance (isolation-by-distance) and by resistance of land-cover types to movement

(isolation-by-resistance). Because gene flow depends on what lies between patches and not
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the conditions within patches (sampling locations), hypotheses are expressed in terms of

pairwise distances between patches [6]. While the genetic data are collected within patches,

genetic differentiation resulting from restricted gene flow is quantified in terms of pairwise

genetic distances. Hypotheses concerning the association of pairwise distances between sam-

pling units (i.e., genetic, geographic, environmental, or temporal distances) are often ana-

lyzed using Mantel tests [7] or its derivatives, such as partial Mantel test [8] and multiple

regression with distance matrices (MRM) ([9–11], for examples see [12–14]). Competing

hypotheses are typically defined in either of two ways: (1) each hypothesis is represented by a

single distance matrix Dx that integrates hypothesized effects of multiple landscape features,

or (2) each factor p is represented by its own distance matrix Dp and each hypothesis is

defined by a set of predictor matrices [6,10,15]. Various model selection approaches have

been proposed for identifying the model that best explains the observed spatial genetic struc-

ture and assessing the level of support for each competing hypothesis [8,16–23], but the accu-

racy and reliability of these approaches remain a topic of considerable debate in the context

of spatial analysis (e.g., [24,25]).

Model selection procedures based on Akaike’s information criterion (AIC) [26], its small

sample size correction (AICc) [27], and the Bayesian information criterion (BIC) [28] have

been suggested as a potential alternative to traditional statistical hypothesis testing for analyz-

ing landscape genetic data [5,29], and these methods have been used increasingly with the

Mantel test [30–33] and MRM [23,34–41]. AIC and AICc are information theoretic indices

and aim to identify the fitted model with the minimum loss of Kullback-Leibler (K-L) infor-

mation compared to the full reality, whereas BIC aims to identify the model with the fewest

parameters that is nearest to the truth as measured by K-L distance [17,18]. In practice, AIC

has a tendency to include too many predictors (overfitting) irrespective of sample size, whereas

BIC has a tendency towards underfitting that increases with sample size [42]. AIC, AICc, and

BIC values are not directly interpretable due to unknown scaling constants and strong depen-

dence on sample size, but instead rely on delta Δi values, which represent the difference in

AIC, AICc, or BIC values between candidate model i and the selected best model (i.e., Δi =

AICi − AICmin), and provide a quantitative measure of support for each competing hypothesis

[17,18]. In situations where more than one model from the candidate set of models is

supported by the data, model averaging procedures may be used based on model weights

wi ¼ expð� 1=2 DiÞ=SR
r¼1

expð� 1=2 DrÞ ([17], p. 75). Because each model i is weighted with

respect to all other models r in the entire set of candidate models R, model averaging generally

results in more robust parameter estimates and model predictions [17,18].

A linear relationship rxy between two normally distributed variables x and y observed at n
sampling locations translates into a linear relationship between two vectors of pairwise dis-

tances Dx and Dy, where each element in Dx is the difference (xj−xi) between two values of x
observed at locations i and j, with a linear (Mantel) correlation between Dx and Dy slightly

smaller than r2
xy [43]. Here, we refer to the analysis of the relationship between x and y as

node-based analysis, and the analysis of the relationship between Dx and Dy as distance-based
analysis [6]. Mantel tests evaluate the (full or partial) correlation between Dx and Dy, whereas

MRM performs regression analysis of Dy on one or more predictors Dx. While distance-based

analysis is a round-about and inefficient way for assessing the linear relationship between

x and y where node-based analysis can be applied, it is useful in cases where the predictor

variable exists only in the form of pairwise differences [44]. In the case of hypotheses about

landscape resistance to gene flow, the ecological distance between two sampling locations (pre-

dictor variable Dx) depends on the resistance values of all land-cover types between the two

locations, not on the values at the sampling locations.

Model selection with multiple regression on distance matrices leads to incorrect inferences
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MRM as a distance-based analysis differs from standard, node-based regression analysis in

important ways [45], as it tests the relationship between two or more vectors of N = n(n − 1)/2

unique distance values derived from n independent observations. Thus, values are not inde-

pendent, as each of the n original observations will contribute to n − 1 of the N values in the

distance vector. This leads to several complications. (1) Due to the non-independence of pair-

wise observations, statistical significance tests must be based on appropriate permutation tests

rather than parametric procedures (e.g., [43])–this is now routinely implemented. (2) Spatial

autocorrelation may further jeopardize statistical significance testing by inflating type I error

rates [24,25]. (3) MRM minimizes a different residual sum-of-squares (RSS) than linear regres-

sion of the node-based data from which the pairwise distances were derived [45]. Hence, even

if based on the same original data, we should not expect to find the same parameter estimates.

Indeed, the Mantel correlation rM, calculated from the N pairwise distances, is generally much

lower than the corresponding Pearson correlation r calculated from the n original values

[44,45]. (4) The non-independence of pairwise observations invalidates the use of AIC and

similar measures in MRM [22]. This problem cannot be easily fixed by adjusting for inflated

sample size, as the true degrees of freedom in distance matrices are unknown [22,46]. Hence,

adjusting the sample size in the calculation of AIC, AICc, and BIC is not a recommended strat-

egy. While these issues are known to exist, there is a lack of research that would allow authors

and reviewers to judge the severity of the consequences of using AIC, AICc or BIC with MRM

to assess the empirical support for competing models.

In this study, we used a simple Monte Carlo simulation approach to evaluate the behavior

and performance of AIC, AICc, and BIC when applied with MRM. Rather than mimicking the

full complexity, e.g., of landscape genetic data, we present an artificially ideal situation, where

pairwise distances are derived from node-based data simulated as multivariate normal vari-

ables with known linear correlation structure and without complicating factors, such as spatial

autocorrelation or collinearity, among predictor variables. This approach allowed us to use the

results from node-based analysis as a benchmark for the results from distance-based analysis.

We determined the ability of AIC, AICc, and BIC to (1) identify and provide empirical support

(i.e., delta values Δi and model weights wi) for the correct, single-predictor model when con-

fronted with a candidate set of models containing an increasing number of spurious predic-

tors, and (2) identify the correct model with multiple predictors varying in strength of

correlation (i.e., tapering effects) with the response variable. This study aims to address, in

part, a current research priority in landscape genetics, which is to (1) evaluate how well various

analytical approaches perform at identifying the relevant factors controlling gene flow in com-

plex landscapes, (2) determine under what conditions they perform reliably, and (3) assess

how they are affected by common violations of assumptions.

Methods

Using a Monte Carlo simulation approach, we evaluate the ability of AIC, AICc, and BIC to

identify the correct model when applied to MRM on distance transformed data. Simulations

allowed us to compare multiple linear regression and MRM analysis under conditions where

the relationship between the response and predictor variables in each simulated dataset were

known. Simulated data sets consisted of six random variables sampled from a multivariate nor-

mal distribution with zero means and a pre-specified covariance matrix, where all diagonal

values (variances) were set to one and all off-diagonal terms (covariances, i.e., expected corre-

lations ρij) were set to zero unless specified otherwise below. First, node-based data were

generated using the mvrnorm function in the MASS package [47] in R [48]. Each data set

included a single response variable y and five predictor variables x1 − x5, with all predictors

Model selection with multiple regression on distance matrices leads to incorrect inferences
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being independent of each other (i.e., no collinearity) and without spatial autocorrelation.

These conditions present an ideal situation, where the model selection methods we wanted

to test would be most likely to perform well. In a second step, node-based data were trans-

formed into distance-based data. Data were simulated under two scenarios: (1) with a single

meaningful predictor and four spurious predictors, and (2) with three meaningful predictors

with decreasing effects on y and two spurious predictors.

Node-based analysis–In the first series of simulations, we examined the ability of AIC,

AICc, and BIC to correctly penalize for spurious predictors, i.e., to select the correct model

containing a single meaningful predictor variable and zero independent random variables,

yi = β0 + β1x1 + εi, when confronted with a candidate set of models containing an increasing

number of independent random variables. In each simulation run, the single meaningful pre-

dictor x1 was assigned an expected correlation of ρxy = 0.60 with the response y, whereas vari-

ables x2 − x5 were simulated to be independent of y (ρxy = 0.0). Following Peres-Neto et al.

[49], we generated four incorrect models by sequentially adding four additional independent

random variables x2 − x5 to the correct model with the meaningful predictor x1.

In the second series of simulations, we examined the ability of AIC, AICc, and BIC to iden-

tify the correct model across different levels of strength of correlation with the response vari-

able. Specifically, we assessed the performance at correctly ranking models containing weak

tapering effects incorporated in the data; keeping in line with the variable selection problem

which is often the focus of multiple regression analysis [17,18]. We modified the correlation

matrix used to generate the simulated data sets assigning expected correlation values of ρxy =

0.30, 0.25, 0.20 to variables x1 − x3, with x1 having the highest and x3 the lowest correlation

with y. We simulated the remaining two variables x4 and x5 to be independent of y (ρxy = 0.0).

The candidate set of models contained again five models, but in this series of simulations the

correct model contained three meaningful predictors and zero independent random variables,

yi = β0 + β1x1 + β2x2 + β3x3 + εi, where the linear effects of variables x1 − x3 on y were assumed

to be additive. We performed regression analyses for both node-based simulations using the

lm function in R [48]. We calculated AIC and BIC using the basic R functions AIC and BIC,

and we calculated AICc using function AICc of R package ‘MuMIn’ [50].

Distance-based analysis–The six normally distributed random variables within each node-

based data set (described above) were transformed into Euclidean distance matrices using

the dist function in the R package ‘stats’, from which we extracted the lower-triangle values

as a vector of N = n(n − 1) pairwise distances, which we subsequently analyzed with MRM.

For pairs of linearly correlated normally distributed variables, we expected the correlation

between distance-transformed variables to be less than the square of the node-based values

[44]. The transformation into distance values can also introduce non-linearity of the rela-

tionship that further reduces linear correlation [45]. To account for the reduction in the

strength of correlation caused by the distance transformation, we modified the correlation

matrix to generate a second set of node-based data with higher expected correlation values of

ρxy = 0.8 instead of 0.6, and {0.58, 0.52, 0.47} instead of {0.30, 0.25, 0.20}. These data were

again transformed into a second set of Euclidean distance matrices (in this case, only the dis-

tance-based data were retained for analysis). Thus, we were able to evaluate the reliability of

AIC, AICc, and BIC when applied with MRM on distance data with a reduced correlation

derived directly from the raw data (low correlation set of distance vectors) and indepen-

dently simulated distance data with an empirical correlation equal to the original raw data

(high correlation set of distance vectors). The calculations for fitting an MRM model are no

different than those for multiple regression with raw data, and thus we fitted the same five

models used in the node-based analysis using the lm function in R [48], using the same func-

tions to calculate AIC, AICc and BIC.

Model selection with multiple regression on distance matrices leads to incorrect inferences
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For each set of simulations, we determined the reliability with which model selection algo-

rithms based on AIC, AICc, and BIC were able to identify the correct model when applied

with MRM by the proportion of 1000 replicate data sets where we identified the correct model

as the best model. To further understand how the number of observations n in the original raw

data influences the behavior of AIC, AICc, and BIC, we ran each simulation with three differ-

ent initial sample sizes, n = 30, 100, and 300. R code for generating and analyzing simulated

data sets is available as S1 File.

Results

Simulations with an increasing number of spurious predictors

The first set of simulations resulted in empirical correlations between y and x1 for the node-

based data that varied around the expected correlation of ρxy = 0.60, with mean = 0.598

(sd = 0.063) based on 1000 replicate simulations with a sample size of n = 100. Transformation

to distance vectors reduced the average correlation to 0.322 and increased the standard devia-

tion of empirical correlation coefficients to 0.078. Increasing the pre-specified covariance for

the second set of distance vectors resulted in a mean correlation of distance vectors of 0.604

(sd = 0.062), closely matching the properties of the node-based correlations.

The results from a typical single simulation run with n = 100 (Fig 1) illustrate how the

behavior of AIC changed markedly when used with MRM on distance transformed data (pat-

terns for AICc and BIC were similar, not shown). For the node-based analysis (left column),

the correct model with a single meaningful predictor and zero independent random variables,

yi = β0 + β1x1 + εi, had the lowest absolute value (top row), and thus the lowest delta Δi value

(middle row), with values for both increasing monotonically with each additional variable

added to the model. The correct model also had the highest model weight wi (bottom row).

When applied to MRM, the absolute values, and more importantly, the delta values Δi, were

considerably larger than those observed for the node-based regression analysis, with similar

patterns for both sets of distance vectors (center column: low correlation, right column: high

correlation). As in this example, the correct model often had the largest absolute value and,

contrary to expectations, the values generally decreased with each additional variable added to

the model. Moreover, delta values Δi not only reversed the rank order of the five candidate

models, but also increased more rapidly between successive models than those reported for the

node-based analysis, and thus, provided high weight wi of support (bottom row) for the incor-

rect model, with the remaining models, including the correct model, receiving little support.

Across 1000 replicate simulations with an increasing number of spurious variables (Fig 2),

AIC, AICc, and BIC applied with multiple regression on the original raw data (node-based

analysis) were able to select the correct model as the best model in the majority of simulations,

and the ability of all three criteria to identify the correct model generally increased with larger

sample size n. Under this scenario, BIC performed more reliably than either AIC or AICc,

selecting the correct model in more than 76 percent of simulations, whereas, AIC and AICc

selected the correct model in less than 57 and 68 percent of simulations, respectively. These

results serve as a benchmark for distance-based analysis.

When applied to distance-based analysis MRM, AIC, AICc, and BIC exhibited a strong bias

toward selecting models containing spurious effects and, more surprisingly, the severity of this

bias increased markedly with larger sample size n. For simulations run with n = 300, AIC and

AICc selected the model with all four additional spurious variables in more than 76 percent of

simulations (for both low and high correlation), whereas BIC selected this same model in 45

and 47 percent of simulations for distance vector data generated with low and high correlation,

respectively.

Model selection with multiple regression on distance matrices leads to incorrect inferences
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Simulations with multiple meaningful predictor variables

The second set of simulations resulted in empirical correlations between y and x1 − x3 for the

node-based data that varied around the expected correlation of ρxy = 0.30, 0.25, and 0.20, with

mean = 0.299, 0.247, and 0.198 (sd = 0.092, 0.094 and 0.096) based on 1000 replicate simula-

tions with a sample size of n = 100. Transformation to distance vectors reduced the mean cor-

relation to 0.078, 0.053, and 0.037 (sd = 0.063, 0.060, and 0.055) for the low-correlation data

set (LC). Increasing the pre-specified covariance for the second set of distance vectors (HC)

resulted in a mean correlation of distance vectors of 0.30, 0.24, and 0.19 (sd = 0.080, 0.076, and

0.077), closely matching the properties of the node-based correlations.

For the 1000 replicate simulations run with three meaningful predictors with tapering

effects (Fig 3), AIC, AICc, and BIC applied with multiple regression on the original raw data

(node-based analysis) exhibited considerable uncertainty in selecting the correct model, partic-

ularly for small sample size n = 30, though the ability of all three criteria to identify the correct

model improved with larger sample size n. In simulations run with n = 300, AIC and AICc

Fig 1. Results from a single simulation run. The absolute values (top row), delta values Δi (middle row), and model weights wi (bottom

row) for node-based analysis (Node: left column), distance-based analysis with low correlation (Dist (LC): middle column), and distance-

based analysis with high correlation (Dist: (HC): right column) as a function of the number of spurious random variables added sequentially

to the correct model with a single meaningful predictor x1 (ρxy = 0.6) for node-based, based on n = 100.

https://doi.org/10.1371/journal.pone.0175194.g001

Model selection with multiple regression on distance matrices leads to incorrect inferences
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performed less reliably than BIC; both measures identifying the correct model in 70 percent

of simulation, whereas, BIC identified the correct model in 100 percent of simulations. Again,

these results of node-based analysis provide a benchmark for the results from distance-based

analysis.

When applied to distance-based analysis with MRM, AIC, AICc, and BIC were unable to

reliably identify the correct model regardless of sample size n or strength of correlation used

to generate the raw data. The overall performance of AIC, AICc, and BIC in distance-based

analysis decreased markedly with larger sample size n. AIC and AICc exhibited a strong bias

toward selecting the model containing all five variables (i.e. full model), but the bias was

slightly less severe for BIC data generated with high correlation.

Discussion

When applied with MRM (distance-based analysis), model selection procedures based on

AIC, AICc, and BIC were unable to reliably rank candidate models or consistently identify the

correct model, and thus often led to incorrect inferences about the relationships between

Fig 2. Proportional selection of the correct model by means of MRM among 1000 simulated data sets with a different number of

spurious predictors. The proportion of 1000 simulated data sets where each of the five candidate models was selected as the best model

using AIC (top row), AICc (middle row), and BIC (bottom row) with three different sample sizes of n = 30 (left column), n = 100 (middle

column), n = 300 (right column) for the node-based analysis with low correlation (Node LC), the distance-based analysis with low correlation

(Dist LC), and the distance-based analysis with high correlation (Dist HC). The correct model included only the single meaningful predictor x1

(black), whereas, the four additional models contained the single meaningful predictor x1 and one (dark grey), two (medium dark grey), three

(medium light grey), and four (light grey) spurious variables (x2 − x5).

https://doi.org/10.1371/journal.pone.0175194.g002

Model selection with multiple regression on distance matrices leads to incorrect inferences
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response and predictor variables. All three criteria exhibited a systematic bias toward selecting

unnecessarily complex models and indeed would often select the full model (with two or four

spurious predictors included depending on the scenario) as the best model. The absolute and

relative values (i.e., delta values Δi) of AIC, AICc, and BIC exhibited very different behavior

that interfered with the ability of each criterion to correctly rank candidate models. The large

delta values suggested a high level of support for the incorrectly selected best model, and thus

provided little support for other models in the candidate set, including the correct model. The

observed change in behavior goes beyond the general bias toward overfitting often cited for

AIC (and AICc) when comparing models containing a small number of predictors with large

effect [17,18]; a pattern that can be seen in the results from the node-based analysis. The

observed bias became more pronounced when we increased the sample size n used to generate

the original raw data, which is directly related to using N = n(n − 1)/2 pairwise distance values

to calculate AIC, AICc, and BIC values for MRM on distance matrices. BIC performed slightly

better, as its penalty increases with sample size, but this was not sufficient to correct for the

problem in distance-based analysis. Manually adjusting for sample size in the calculation of

AIC, AICc, and BIC may confer some improvement (S2 File; S1–S3 Figs) but cannot be

Fig 3. Proportional selection of the correct model by means of MRM among 1000 simulated data sets for different levels of

correlated predictors. The proportion of 1000 simulated data sets where each of the five candidate models were selected as the best

model using AIC (top row), AICc (middle row), and BIC (bottom row) with three different sample sizes n = 30 (left column), n = 100 (middle

column), n = 300 (right column) for the node-based analysis with low correlation (Node LC), the distance-based analysis with low correlation

(Dist LC), and the distance-based analysis with high correlation (Dist HC). We were primarily interested in determining whether AIC, AICc,

and BIC selected the correct model containing three meaningful variables with tapering effects (black) or selected an underfitted (dark grey)

or overfitted (light grey) model.

https://doi.org/10.1371/journal.pone.0175194.g003

Model selection with multiple regression on distance matrices leads to incorrect inferences
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recommended as it does not adequately address the problem of unknown degrees of freedom

[46]. Thus, our results suggest considerable caution should be taken when interpreting and

evaluating studies that have relied on model selection with MRM to assess the relationship

between landscape features and patterns of gene flow [23,34–41].

Another substantial barrier to the application of AIC, AICc, and BIC with MRM is the non-

independence of pairwise distances; this violates a basic assumption of linear regression analy-

sis [51] and can strongly bias model selection results [17,18]. Clarke et al. [52] developed the

maximum-likelihood population effects model with a covariate structure to explicitly model

the correlated error structure in MRM, relying on restricted maximum likelihood (REML) to

generate unbiased estimates of the variance components of the mixed effects models. However,

Van Strien et al. [22] stated that model selection procedures based on AIC, AICc, and BIC

should not be used to compare mixed models where parameter estimation is performed using

REML with different fixed effects. Autocorrelated residuals resulting from various spatial pro-

cesses (e.g., isolation-by-distance; IBD), can also severely affect regression results; potentially

leading to spurious correlations in genetic analyses [53]. Recent studies demonstrated that

including a vector of geographic distance to account for IBD does not sufficiently remove spa-

tial autocorrelation [24,25]. Therefore, additional research is required to develop approaches

that explicitly model the correlated error structure within vectors of pairwise distances dij, as

well as spatial autocorrelation among errors, and while still allowing the use of AIC, AICc, and

BIC for model selection.

Depending on the nature of the data and question being addressed, a number of alternative

analytical approaches are available that are not subject to the statistical issues associated with

the analysis of pairwise distances [6]. Neighborhood-level approaches can be used to reduce

pairwise distance matrices into node-level data vectors based on connectivity indices calcu-

lated for each focal site with all other sites within its local neighborhood; these represent either

a single environmental factor or a resistance surface containing multiple factors [6]. Canonical

redundancy analysis (RDA) [11], which has been shown to have greater power than Mantel-

based approaches [25,45], can then be used to test for relationships between connectivity indi-

ces and measures of genetic diversity, genetic differentiation, a matrix of allele frequencies or a

set of PCoA scores (distance based RDA) [54]. The functional connectivity (as measured by

gene flow) through a network of observations can also be evaluated using gravity models

which incorporate both at- and between-site variables, and allowing multiple parameters to be

estimated from the sample data [55]. Alternatively, a predictor distance matrix may be used to

define the error correlation structure in a node-based framework, using a table of allele fre-

quencies rather than a genetic distance matrix as the response (e.g., [56]), either in a Bayesian

context or with generalized linear mixed models (GLMM) [57,58]. There are, however, con-

cerns about the validity of such covariance models [59], and it is unclear how valid model

selection with multiple competing hypotheses could be performed in this type of analysis.

While these approaches offer considerable promise for incorporating geographic and environ-

mental distance into a single analysis, valid methods for statistical inference and model selec-

tion with landscape genetic data urgently require further development and evaluation.

Conclusions

The development of statistically valid methods for comparing alternative hypotheses regarding

the effects of landscape features on patterns of gene flow remains an important area of research

in landscape genetics. Our results clearly demonstrated that AIC, AICc, and BIC were unable

to reliably rank candidate models when applied with MRM, even under artificially ideal condi-

tions, leading to systematically incorrect inferences. While e.g. AIC is known to overfit models
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in node-based analysis e.g. by including one predictor more than necessary, application to dis-

tance-based analysis typically resulted in AIC reversing the expected ranking of candidate

models and preferentially selecting the full model with the maximum number of spurious pre-

dictors available. Methods for explicitly modeling the correlated error structure within vectors

of pairwise distances dij resulting from non-independence of observations or spatial autocorre-

lation within a MRM framework are currently being explored, but additional research is

needed to develop and test approaches that permit the use of AIC, AICc and/or BIC in a MRM

framework [6]. Until these issues have been adequately addressed, we strongly discourage the

continued used of AIC, AICc, and BIC with MRM.
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