
RESEARCH ARTICLE

Polynomial probability distribution estimation

using the method of moments

Joakim Munkhammar1¤a*, Lars Mattsson2¤b, Jesper Rydén3¤c

1 BEESG, Department of Engineering Sciences/Uppsala University, Uppsala, Sweden, 2 Nordita, KTH Royal

Institute of Technology and Stockholm University, Stockholm, Sweden, 3 Department of Mathematics,

Uppsala University, Uppsala, Sweden

¤a Current address: Department of Engineering Sciences, Uppsala University, SE-751-21 Uppsala, Sweden

¤b Current address: Nordita, KTH Royal Institute of Technology and Stockholm University, SE-106 91

Stockholm, Sweden

¤c Current address: Department of Mathematics, Uppsala University, SE-751 06 Uppsala, Sweden

* joakim.munkhammar@angstrom.uu.se

Abstract

We suggest a procedure for estimating Nth degree polynomial approximations to unknown

(or known) probability density functions (PDFs) based on N statistical moments from each

distribution. The procedure is based on the method of moments and is setup algorithmically

to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF

approximations are obtained for the distribution families Normal, Log-Normal, Weibull as

well as for a bimodal Weibull distribution and a data set of anonymized household electricity

use. The results are compared with results for traditional PDF series expansion methods of

Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure

that could be used when traditional distribution families are not applicable or when polyno-

mial expansions of probability distributions might be considered useful approximations. In

particular this approach is practical for calculating convolutions of distributions, since such

operations become integrals of polynomial expressions. Finally, in order to show an

advanced applicability of the method, it is shown to be useful for approximating solutions to

the Smoluchowski equation.

Introduction

Estimating PDFs is essential in applied statistical analysis in many diverse fields of science, for

instance for a few examples from our own experience in engineering [1, 2], physics [3, 4] and

the Earth sciences [5, 6]. With knowledge of the PDF, further statistical problems can be tack-

led, such as for instance estimation of quantiles, and it can be used to construct stochastic

models for various applications [1, 2].

In applied statistics, a distribution family is usually decided upon for a particular situation,

and fitting a PDF then means determination of parameters by some estimation technique. Sev-

eral common parametric methods such as the method of maximum likelihood and the method

of moments are then well-known examples [7]. In case there is no prior knowledge of the
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distribution family, other methods can be used, for instance kernel-density estimation (see e.g.

[8]) or B-splines (see e.g [9], chapter 6). It is also possible to obtain approximation by means of

series expansions, e.g. Gram–Charlier series and Edgeworth series [10, 11]. However, such

expansions are often considered useful only in cases of moderate skewness [11]. Generally, the

complexity of series approximation methods and the simplicity of traditional distribution fit-

ting has inspired the use of series approximation methods in applied statistics, albeit to a lim-

ited level of use. See p.107-117 [12] for a review of approximation methods in statistics and

[13] for a recent review of series approximation methods in statistics.

The present paper suggests an algorithm for estimating an N-order polynomial approxima-

tion of a PDF, based only on N moments of the PDF. Polynomial approximations for example

distributions are given and a comparison with existing PDF series expansions is made. In addi-

tion to this, regarding more advanced problems, an example is used to illustrate that the proce-

dure can be useful for approximating solutions to the Smoluchowski equation for such cases

where moments of the solution are available.

Procedure

The method of moments estimates parameters of a predefined distribution f by equating

moments of sample values and moments of the distribution, see p.467 [14]. This forms a sys-

tem of equations which is often not analytically solvable, see p.467 [14], p.816 [15].

The procedure below estimates coefficients for a polynomial probability distribution

approximation of the PDF f. This is done, via the method of moments, by equating the known

moments of f with moments of the polynomial approximation of f.
The procedure is defined by the following algorithm:

1. Define a goodness-of-fit test T (for example a Kolmogorov-Smirnov test) for the PDF

approximation.

2. Choose a real interval [a0, b0] on which the approximation should hold good.

3. Choose a polynomial degree N 2 [0, 1, 2, 3, . . .] for approximating a not necessarily known

PDF f.

4. Ensure that nth order statistical moments for n 2 [0, . . ., N] of f based on a real valued inter-

val [a, b] are available. ([a, b] may equal [a0, b0], but not necessarily)

5. As an approximation to f, define an Nth order polynomial P on the real interval x 2 [a0, b0]:

PðN; xÞ � w0 þ w1x þ w2x2 þ w3x3 þ � � � þ wNxN ð1Þ

where wn, for each n 2 [0, . . ., N], are unknown weights.

6. When solvable, the equation system resulting from equating the known ith moment of f on

the interval [a, b] with the unknown ith moment of the approximation P, for i 2 [0, . . ., N]

and interval [a, b], is used to determine wn for n 2 [0, . . ., N]. If not solvable, repeat from

step 2 or 3 with increased (or decreased) N or changed [a, b].

7. To qualify as a PDF, P(N, x), defined on [a0, b0], must be non-negative on [a0, b0]. If this is

not met repeat from step 3 with increased (or decreased) N or changed [a, b].

8. Also, to satisfy the conditions for a PDF on [a0, b0], P(N, x) should be normalized by

PðN ; xÞ ! PðN ; xÞ=
R b0
a0 PðN ; xÞ dx so that

R b0
a0 PðN ; xÞ dx ¼ 1.

9. The procedure holds good if the polynomial approximation P(N, x), for the predefined

measure of goodness-of-fit T , sufficiently approximates f on [a0, b0]. For improved fit,
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repeat the procedure from step 3 with increased (or decreased) N or different choices of

[a, b].

In step 1 it is instructive to adopt a goodness-of-fit test such as for example a Kolmogorov-

Smirnov test or Akaike’s information criterion in order to ensure goodness-of-fit and applica-

bility compared with other distributions, and set proper limits for pass and fail depending on

application, see e.g. [16] and [17] for more information on that.

Given a defined goodness-of-fit test and a real interval [a0, b0] for the distribution steps 3

and 4 certify the existence of N statistical moments. Consider a random variable X with proba-

bility density function f(x), then the statistical moment of order k is defined by:

Ef ½X
k� �

Z b

a
xkf ðxÞdx; ð2Þ

where a, b are real valued limits for the statistical moment. With only a data set {x1, x2, x3, . . .,

xM} available, the sample moment of order k is given by:

Ef ½X
k� �

1

M

XM

i¼1

xk
i : ð3Þ

Although the distribution f is considered continuous, it is not a requirement of the procedure.

However, step 5 in the algorithm is motivated by the use of a continuous distribution since the

Weierstrass approximation theorem shows that a continuous function on an interval [a, b] can

be approximated arbitrarily good with a polynomial [18, 19]. With step 5 and Eq (2) it is possi-

ble to obtain the statistical moment of order n for the approximate polynomial P(N, x):

EP½Xk� ¼

Z b

a
xkPðN; xÞdx ¼

¼ w0

xkþ1

kþ 1
þ w1

xkþ2

kþ 2
þ � � � þ wN

xkþNþ1

kþ N þ 1

� �

jba;

ð4Þ

Via step 6 the moments Ef[Xn] of f are equated with the moments EP[Xn] of the approximation

P. With the polynomial approximation this can be setup in a linear equation system in wn:

Mw ¼ E; ð5Þ

where:

M ¼

b � a
b2 � a2

2
� � �

bNþ1 � aNþ1

N þ 1

b2 � a2

2

b3 � a3

3
� � �

bNþ2 � aNþ2

N þ 2

b3 � a3

3

b4 � a4

4
� � �

bNþ3 � aNþ3

N þ 3

..

. ..
. . .

. ..
.

bN � aN

N
bNþ1 � aNþ1

N þ 1
� � �

bNþN � aNþN

2N

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; w ¼

w0

w1

w2

..

.

wN

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; E ¼

Ef ½X0�

Ef ½X1�

Ef ½X2�

..

.

Ef ½XN �

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

: ð6Þ

By inspection M is symmetric and a Hankel matrix [20]. The unknown weights wn for

n 2 [0, . . ., N] constituting the vector w can now be obtained by computing the inverse of the
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matrix M:

w ¼ M� 1E: ð7Þ

It should be noted that since the matrix M is a Hankel matrix there exists particular algorithms

for computing the inverse of the matrix as long as it is finite [21]. Also, the special case of using

a = 0 and b = 1 makes M a Hilbert matrix, for which there exists an explicit expression for

inversion, see [22]. Inserting w from Eq (7) in the polynomial approximation P(N, x) in Eq (1)

brings the polynomial approximation for f:

PðN; xÞ ¼ w � ½1 x x2 x3 . . . xN �: ð8Þ

The fact that P(N, x) is supposed to approximate a PDF (Step 7) requires that P(N, x) is non-

negative on the interval [a0, b0], which is not generally certified. As described in more detail in

step 9 increased (or decreased) N or changed [a, b] could solve this issue. When step 7 is

checked, step 8 normalizes the PDF on [a0, b0], and if P(N, x) satisfies the goodness-of-fit test T
(step 9), the procedure is finished.

Step 9 is important since there is no explicit check for convergence inside the procedure, a

property not uncommon for series approximations in statistics, see p.114-115 [12]. Also, it is

not unlikely that the set of moments might not uniquely describe a distribution, see [23].

With the computed weights wn the CDF and the statistical moments of the polynomial dis-

tribution P(N, x) is in turn possible to calculate analytically using Eq (4).

From a statistical point of view, an interesting property of a polynomial distribution

approach is the convolution of distributions. The convolution of PDFs g(x) and h(x), both

valid for some domain x 2 [c, d], is defined as:

ðg � hÞðxÞ ¼
Z d

c
gðtÞhðx � tÞ dt: ð9Þ

Convolution of probability distributions is a complicated mathematical procedure for most

applications. Also, only few distributions can be convoluted analytically and often this is

instead handled numerically or approximated with e.g. the central limit theorem, such as in

[2]. With the use of polynomial distributions P(N, x)� w0 + w1x + w2x2 + � � � + wNxN and Q
(M, x)� z0 + z1x + z2x2 + � � � + zMxM the convolution Eq (9) in turn becomes a polynomial

expression:

ðP � QÞðxÞ ¼ ðv0 þ v1x þ v2x2 þ � � � þ vNþMxNþMÞj
b0

a0 ð10Þ

for some computable weights v0, v1, . . ., vN+M.

For data on the sum of correlated stochastic variables X1, X2, . . . it is possible to obtain a

polynomial approximation of the resultant distribution by using moments from the sum of the

stochastic variables. For such situations, which might be multimodal, and generally for more

complex distributions, the polynomial estimation procedure simplifies the process which oth-

erwise involves using complicated methods for determining parameters of mixture distribu-

tions. See [24] for information on the use of mixture distributions, and [1] for an applied

example of mixture distributions in solar engineering.

Polynomial expansions of known probability distributions

In Fig 1, we present examples of the procedure applied to commonly used PDFs. For each of

three distribution families (Normal, Weibull, Log-Normal), four parameter settings were con-

sidered. The moments were directly calculated from explicit expressions for each distribution.

Probability distribution estimation
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Fig 1. A set of distributions (black line) and polynomial approximations (dashed line) to level 10 for

the common distributions: Normal, Weibull, Log-Normal, Bimodal. The polynomial distributions were

computed from numerically integrated moments on the interval a = 0, b = 5.

https://doi.org/10.1371/journal.pone.0174573.g001
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Moreover, order N = 10 of the polynomial was chosen to ensure a high level goodness-of-fit,

however in principle any N terms can be used, with varying degree of goodness-of-fit as a result.

By visual inspection of the plots, the agreement between the theoretical curve and the polyno-

mial approximation seems satisfactory. Moreover, in Fig 1, we present an example with a

bimodal distribution constructed from two Weibull distributions. Also here, the polynomial

approximation adequately reproduces the distribution. Note that [a0, b0] is not explicitly defined

for the results presented in Fig 1, but could be used for at least the entire interval displayed in

the plots (which equals [a, b]), in all cases except for the normal distribution with mean 2.5 and

variance 0.4 which is negative for some parts of the interval. In that case changed [a, b] or N, or

if changed [a0, b0] would be admissible (such as e.g. a0 = 2 and b0 = 3), could aid this issue.

The convergence rate with increasing order of polynomials is illustrated with an example

distribution in Fig 2. In this example a two-parameter Weibull distribution with shape param-

eter k = 3 and scale parameter λ = 2 was chosen. Moreover, the values N = 4, 6, 8, 10 were cho-

sen for the approximating polynomials. In this case, as N increases the goodness-of-fit

increases. However, note the fluctuations and negative values of the polynomial approximation

for different choices of N on the displayed interval. This shows that the possible choices of

interval [a0, b0], for which the polynomial approximation needs to be positive, depends on N.

However, note the fluctuations and negative values for the polynomial approximation for

certain choices of [a0, b0] for each choice of N.

Comparison with Gram–Charlier series approximations

A common type of polynomial-series expansion for PDFs is the Gram–Charlier type. In short,

when the true PDF f(x) of a random variable X is unknown, it is approximated with a PDF of

the form:

gðxÞ ¼ pNðxÞ�ðxÞ ð11Þ

where ϕ(x) is the PDF for a Normal distribution with zero mean and unit variance. The

Fig 2. A Weibull distribution and polynomial distributions for certain number of terms N. The

polynomial distributions were computed from numerically calculated moments on the interval a = 0, b = 5. In

the polynomial distributions, note the wiggle of and negative values when the PDF is close to zero.

https://doi.org/10.1371/journal.pone.0174573.g002
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polynomial pN(x) is then of the form:

pNðxÞ ¼
XN

i¼1

ciHiðxÞ ð12Þ

where Hi(x) represents Hermite polynomial of order i.
The expansions, in terms of the coefficients ci, can be presented in various equivalent ways,

using cumulants or moments ([11], Chapter 6). Introducing γ1 and γ2, the skewness and

(excess) kurtosis (with μ2, μ3 and μ4 being the second, third and fourth central moments, giv-

ing the relations g1 ¼ m3=m
3=2

2 and g2 ¼ m4=m2
2
� 3.) of the distribution, we can write in a com-

pact way, when X is a standardized random variable (zero mean and unit variance):

p4ðxÞ ¼ 1þ
g1

6
H3ðxÞ þ

g2

24
H4ðxÞ: ð13Þ

This is referred to as Gram–Charlier type A. The related Edgeworth expansion involves one

more Hermite polynomial, while keeping the number of parameters constant:

p6ðxÞ ¼ 1þ
g1

6
H3ðxÞ þ

g2

24
H4ðxÞ þ

g2
1

72
H6ðxÞ: ð14Þ

In the sequel, we use the former type, Eq (13), as will be commented upon shortly. Examples of

successful modelling are found in various applications, see for instance [25, 26].

These expansions have a serious drawback, also apparent for the polynomial distribution:

the approximation could result in negative values. Conditions on ensuring positive outcome

were given by Barton and Dennis [27], where it was shown that for the Edgeworth expansion,

Eq (14), the range for γ1 and γ2 over which positivity of the approximation is guaranteed is

smaller than for the Gram–Charlier one [28].

Moreover, from a practical point of view, the series must have a finite number of terms. Use

of higher-order terms does not necessarily guarantee a better result [11, 29]. For instance, in

[11] a numerical example is given where actually four- and five-term series are worse than the

three-term; each giving a negative frequency at a high value and a second mode at a low value

(contrary to the data).

We consider cases with the Gram–Charlier expansions applied to some of the distributions

and parameter settings presented in Fig 3. Note that these examples do not represent a situa-

tion with zero mean and unit variance; a transformation (and back transformation) had to be

done to get the right scaling.

In Fig 3, we compare the cases of a two-parameter Weibull distribution (shape parameter

k = 1, scale parameter λ = 1) and a Normal distribution with mean 2.5 and standard deviation

0.4. For each distribution, expansions with 3, 4 or 5 Hermite terms were considered. For the

Weibull case, we note that for this particular parameter combination, the behavior at origin is

difficult to capture for the various expansions and we get contributions of probability also at

negative values, in addition to negative values of the density function itself. Note that the poly-

nomial approximation proposed in the present paper approximates the true density more

closely, cf. Fig 1. For the Normal distribution, we note that the overall mode behavior is found,

but there are negative values in the resultant density.

Data application example

As an example of an application of the procedure, we consider a data set on measured house-

hold electricity use with ten-minute resolution for a detached house over one year, see [2, 30].

In power systems modeling it is conventional to fit a unimodal distribution family such as a

Probability distribution estimation
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Log-Normal or Weibull distribution to this type of data, although the data set does not always

correspond to an ideal unimodal distribution [2]. The data set is here fitted with Weibull,

Gram–Charlier and polynomial distributions, and the resulting PDFs are shown in Fig 4. The

moments for the data set were obtained using Eq (3). For the Gram–Charlier expansion,

Fig 3. Examples of Gram-Charlier series expansions of a Weibull distribution (left) and a Normal

distribution (right).

https://doi.org/10.1371/journal.pone.0174573.g003
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moments were estimated from data by the routine emm from the R package actuar. The

parameters of the Weibull distribution were estimated with the maximum likelihood estimate

routine wblfit in Matlab. For the computation a = 100 and b = 4000 were used, which were

also assumed as upper and lower limits for the polynomial approximation, as to represent rea-

sonable lowest and highest power use for the household.

Based on the calculations we may conclude that the results from the Gram–Charlier series

approach is similar to the Weibull distribution by displaying unimodal characteristics, albeit

with a different location of the peak. For higher number of terms in the Gram–Charlier series

approach the resulting PDF becomes negative in the interval and displays a rugged behavior.

The polynomial distribution, on the other hand, captures both peaks of this particular data set.

However, it is negative for values near zero, but this is not an issue as the valid interval [a0, b0]
of the polynomial distribution is chosen to be [100, 4000], on which it is positive. The polyno-

mial distribution also has some extra fluctuations between 3 kW and 4 kW, which is similar to

Runge’s phenomenon [31], and stems from the polynomial approximation characteristics of

the approach, which is analogous to polynomial interpolation.

Integro-differential equation application: The Smoluchowski

coagulation equation

The procedure may be used to approximate solutions to certain differential and integro-differ-

ential equations whose solutions are probability density distributions. The formal criteria are

that the solution is a probability density distribution and that N moments for the solution are

available.

One example of this is the Smoluchowski coagulation equation (SCE) [32], for which

moments of the solution can be obtained for certain cases, and thus the moment transform

can be used to approximate the resulting probability distribution. The Smoluchowski coagula-

tion equation is [33]:

@f
@t
¼

1

2

Z m

0

Kðm � m0;m0Þf ðm � m0; tÞf ðm0; tÞdm0�

� f ðm; tÞ
Z 1

0

Kðm;m0Þf ðm0; tÞdm0;

ð15Þ

Fig 4. Histograms of household electricity use data with Gram–Charlier PDF (left), Weibull PDF (right) and

polynomial PDF (right) fit. The polynomial distributions were computed from numerically calculated moments on

the interval a = 100, b = 5000. A Weibull or Log-Normal PDF is usually a typical choice for this type of data [2].

https://doi.org/10.1371/journal.pone.0174573.g004
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which describes the process of a particle of mass m joining with another particle of mass m0,
given an initial mass distribution f(m, 0) and a coagulation kernel K(m, m0). Here it is implic-

itly assumed that the kernel K(m, m0) is such that exact equations can be formulated for inte-

ger-order moments, although the equations may, in principle, include non-integer order

moments.

With the moments Mn of f(m, t) as previously defined, the moment equations correspond-

ing to the SCE are

dMn

dt
¼

1

2

Z 1

0

Z 1

0

Kðm;m0Þ f ðm; tÞf ðm0; tÞ ½ðmþm0Þn �

mn � ðm0Þn� dm0 dm: ð16Þ

For kernels K which are expressible as a combination of powers of the particle masses m and

m0, the right hand side will only contain moments of f(m, t). However, due to the term on the

right-hand side containing the (m + m0)n − mn factor, it is only possible to construct equations

for integer-order moments regardless of the kernel K.

The SCE has three known exact analytical solutions. These are for a constant (K = K0), lin-

ear (K/m + m0) and product (K/mm0) kernel [34]. With Kðm;m0Þ ¼ 1

2
ðmþm0Þ, M0(0) =

M1 = 1 and an initial configuration corresponding to infinitesimally small initial clusters (note

that f(m, 0) has a singularity at m = 0), the solution of the SCE is [33, 34]:

f ðm; tÞ ¼
1

ffiffiffiffiffiffi
2p
p

m3=2
exp �

m
2
e� 2t � t

� �
: ð17Þ

Multiplying with mn and integrating over m 2 [0, a], an expression for the truncated moments

~Mn is obtained,

~M nða; tÞ ¼
Z a

0

mn f ðm; tÞ dm ¼

2n� 1 e2ðn� 1Þ t

ffiffiffi
p
p G n �

1

2

� �

� G n �
1

2
;
a
2
e� 2t

� �� �

ð18Þ

which provides the time evolution of any truncated moment of arbitrary order n. Using the

above expression for ~Mn a polynomial approximation of f(m, t) should be possible to obtain

for a given time t. Since an exact solution exists for this particular case (see Eq (17)), it is possi-

ble to test the reliability of the method as a way of obtaining approximate solutions to the SCE.

Before the results of this example are presented, a known but not yet fully understood weak-

ness of the procedure outlined in this paper, is mentioned. Recreating power-laws is problem-

atic and usually leads to the occurrence of “wiggles” in the polynomial approximation. This is

analogous to Runge’s phenomenon and probably related to the same [31]. However, if a

power-law component can be identified, it can be removed before the transformation is made.

In the case considered above, this would correspond to multiplication by m3/2, before the

moments ~Mn are calculated. Then, dividing the resultant polynomial with m3/2 will yield an

approximation of f(m, t) which does not suffer from Runge’s phenomenon, except at the upper

end of the mass scale where f(m, t)! 0.

The results for polynomial approximation of the solutions for constant (A) and linear kernel

(B) is shown in Fig 5. By visual inspection, the polynomial approximation is reasonable fit to

the analytically calculated results. For time 0.04 in the constant kernel case and time 0.4 in the

linear kernel case there is some deviation, which is likely due to Runge’s phenomena. For other

choices of mass-range and time steps the deviations could be dominant. This suggests that
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developing an internal check for convergence in the procedure would be helpful, in particular

when there are no analytical solutions or even numerical simulations available to compare with.

Practical issues

From computations with the polynomial distribution procedure it is possible to conclude two

practical issues of particular interest:

1. Numerical computations of the inversion of M can become problematic as N increases.

2. When the PDF is close to zero there is a high tendency for mismatch.

Issue 1 arises since the Hankel matrix, and in particular the Hilbert matrix, are ill-condi-

tioned [35]. This can be alleviated by using the algorithm for inverting Hankel matrices [21],

or using the inversion formula for the Hilbert case of a = 0 and b = 1, when applicable [22].

The second issue has characteristics similar to Runge’s phenomenon, see [31] for more infor-

mation on that. This issue appears not to be easily resolved, it is instead instructive to use the

algorithmic step 9 and adapt N and the interval [a, b] for the moments, or the interval [a0, b0]
for the distribution if admissible, so that the mismatch can be minimized.

Discussion

We have suggested a simple procedure for estimating an N-order polynomial approximation

to a known or unknown distribution based on N statistical moments of the distribution. The

Fig 5. A plot of approximate solutions to the SCE for constant kernel (A) and for linear kernel (B). The

approximation was based on the moment transform and polynomial degree N = 8.

https://doi.org/10.1371/journal.pone.0174573.g005

Probability distribution estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0174573 April 10, 2017 11 / 14

https://doi.org/10.1371/journal.pone.0174573.g005
https://doi.org/10.1371/journal.pone.0174573


procedure offers a possibility to use polynomial distributions as simple approximations of dis-

tributions which alleviates the necessity for identifying and defining distribution families or

even particular parameters of interest. This could be particularly useful for approximating

non-unimodal distributions such as the aforementioned examples of a bimodal distribution

and the distribution of household electricity use.

The procedure is based on the perhaps simplest possible polynomial approximation. For a

potentially better fit it is possible—without changing the framework of the procedure—to

adopt alternative polynomial expansions, such as a Chebychev polynomial or a Hermite poly-

nomial, like in the Gram-Charlier series expansion. Alternatively, expansions and moments

that are not centered at the origin could be used. It is suitable to let the goodness-of-fit and

applicability determine the choice of polynomial expansion. However, with alternative polyno-

mial expansions there is no guarantee that the matrix remains Hankel type, or even that it is

invertible. Another possibility for improved goodness-of-fit is to use different order (e.g., non

integer-orders) of moments, since there is no requirement within the framework of the proce-

dure that the moment orders must be consecutive natural positive integers, even if integer-

order moments are most commonly used in statistics.

Since the polynomial approximation only has satisfactory goodness-of-fit within a limited

interval [a0, b0], the procedure is perhaps most suitable for applications which are defined on

truncated probability distributions.

More advanced analysis of the convergence of the procedure is needed, in particular results

which provide an explicit internal check for convergence.

Detailed investigations regarding the overall fitness of the procedure compared with other

nonparametric probability density estimators such as kernel-density estimation and B-splines

could be interesting to pursue for various types of distributions. For such investigations model

complexity would be an interesting measure alongside approximation fitness, where perhaps

the Akaike information criterion (AIC) could be a useful combined measure of this [17].

Generally, the applicability to differential or integro-differential equations is largely

unknown, since only an example was given in this paper. More detailed investigations into this

could prove fruitful. It is conjectured that this procedure can be generally useful for finding

approximations to differential equation solutions when moments of the solution are available.

Supporting information

S1 Dataset. Data set on household electricity use used in this paper.

(TXT)

Acknowledgments

The authors wish to thank Prof. Svante Janson, Prof. Rolf Larsson and Dr. Johan Björklund at

the department of mathematics at Uppsala University for discussions on the method presented

in this paper. This work was partially funded by the Lundström-Åmans scholarship.

Author Contributions

Conceptualization: JM.

Formal analysis: JM LM JR.

Investigation: JM LM JR.

Project administration: JM.

Probability distribution estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0174573 April 10, 2017 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174573.s001
https://doi.org/10.1371/journal.pone.0174573


Writing – original draft: JM LM JR.

References
1. Hollands KGT, Suehrcke H. A three-state model for the probability distribution of instantaneous solar

radiation, with applications. Solar Energy 2013; 96: 103–112. https://doi.org/10.1016/j.solener.2013.

07.007

2. Munkhammar J, Rydén J, Widén J. Characterizing probability density distributions for household elec-

tricity load profiles from high-resolution electricity use data. Applied Energy 2014; 135: 382–390.

https://doi.org/10.1016/j.apenergy.2014.08.093

3. Chabrier G. Galactic Stellar and Substellar Initial Mass Function. Publications of the Astronomical Soci-

ety of the Pacific 2013; 114: 763–795.
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