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Abstract

A somewhat perplexing finding in the systems neuroscience has been the observation that

physical injury to neural systems may result in enhanced functional connectivity (i.e., hyper-

connectivity) relative to the typical network response. The consequences of local or global

enhancement of functional connectivity remain uncertain and this is particularly true for the

overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a

sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months

following moderate and severe TBI. As anticipated, individuals with TBI showed increased

network strength and cost early after injury, but by one-year post injury hyperconnectivity

was more circumscribed to frontal DMN and temporal-parietal attentional control regions.

Cost in these subregions was a significant predictor of cognitive performance. Cost-effi-

ciency analysis in the Power 264 data parcellation suggested that at 6 months post injury

the network requires higher cost connections to achieve high efficiency as compared to the

network 12 months post injury. These results demonstrate that networks self-organize to re-

establish connectivity while balancing cost-efficiency trade-offs.

1. Introduction

Each year in the United States there are approximately 1.5 million to 2 million cases of trau-

matic brain injury (TBI) resulting from an external source and causing significant physical,

cognitive, and psychosocial impairment [1]. To aid in understanding the behavioral deficits

associated with TBI, over the last decade, blood oxygen level dependent functional magnetic

resonance imaging (BOLD-fMRI, or fMRI) has been widely used to study functional connec-

tivity changes associated with injury. In this literature functional connectivity strength has

commonly been defined as the degree of temporal-correlation in the fMRI signals recorded

from two identified regions in the brain [2]. Brain connectivity studies have provided novel

insights into the influence of TBI on neural networks during motor learning (see [3]), working
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memory and attentional control [4–6] and the relationship between distinct subnetworks and

cognitive performance (e.g., default mode network, DMN and salience network, SN) [4,7–10].

Here our goal is to use BOLD-fMRI to advance this literature in three important ways. First we

examine the phenomenon of functional hyperconnectivity (discussed below) with focus on the

timing when it occurs during the first year of recovery after TBI, and the regions where it is

most likely to be expressed. The second goal was to examine the inter-relationship between

network cost and its achieved efficiency (or cost-efficiency relationship) during the recovery

period. Finally, we examine hyperconnectivity in the context of cognitive performance. In

doing so this study represents an opportunity to examine global/local neural network charac-

teristics at three time points during the first year following moderate and severe TBI.

1.1 Functional hyperconnectivity

While much work using connectivity modeling in neurological disorders has focused on spe-

cific relationships between localized neuropathology and loss of functional connectivity (see

[11–13] and for review see [14]) one commonly observed response to injury and disease is

enhanced functional connectivity (henceforth referred to as hyperconnectivity). For the pur-

poses of this paper, we will define hyperconnectivity as the increase in the strength of func-

tional connections in the brain after injury relative to a healthy control (HC) sample. Given

that the pathophysiology observed in moderate and severe TBI results in disruption of neural

signaling, functional hyperconnectivity is a counterintuitive neural network response. In order

to understand the nature of hyperconnectivity after TBI, we aim to examine distributed net-

works and document the evolution of connectivity changes during recovery with specific inter-

est in the relationship between hyperconnectivity after TBI and network cost that remains

unexplored.

1.2 Network cost and efficiency

Human brain functioning is the result of a finely tuned orchestra of billions of neurons oscil-

lating across different spatio-temporal scales to achieve communication (i.e., connectivity).

The functional connections achieved during states of signal transfer in a healthy brain are

embedded within networks tuned to achieve optimal balance between network cost and rout-

ing efficiency [15–18]. We anticipate that the functional changes evident post injury and, in

particular hyperconnectivity, may disrupt this optimal balance between the cost and efficiency.

If it is the case that neurological disruption results in enhanced connectivity either in the mag-

nitude or number of connections, even in select regions within the brain, then this should

have important implications for overall network cost. The cost of the functional network can

be defined using the total number or the weight of the connections in the functional network.

This traditional way of defining network cost has one important drawback: it fails to consider

the physical length of a functional-connection which has important implications for the laten-

cies of neural transmission [19–20] and for the metabolic cost of signaling [21].

To capture network cost after injury in the current study and its consequences for effi-

ciency, we include several novel metrics: for cost we summarize a) whole-brain network cost,

and b) ROI-cost (see Section 2.6.3) and for cost-efficiency, we examine changes in global effi-

ciency as a function of changes in cost. The cost metric is based upon three important proper-

ties of the functional network: the number of functional connections, the strength of each

functional connection, and the physical length of each connection and this can be computed

locally and globally. The goal is to determine if the relationship between cost and efficiency

guides the evolution of neural network functioning during recovery from TBI. With the com-

bined examination of connectivity strength and cost during a critical early window after
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moderate and severe TBI, the current study will advance our understanding of early network

plasticity and its consequences for behavioral recovery.

1.3 Study goals and hypotheses

Our primary objective is to understand the early network response during the first year of

recovery from moderate to severe TBI with specific focus on hyperconnectivity and negotia-

tion of network cost and efficiency. In doing so, this will be the first study in TBI to examine

neural network changes at three time points during the first year after injury. The primary

hypothesis is that hyperconnectivity, defined as an increase in the number or strength of net-

work connections, will be most evident during the early recovery period after TBI. With nota-

ble exceptions (see [22–23]) prior findings that have reported enhanced connectivity within

the default mode network (DMN) and the executive control network (ECN) after moderate to

severe TBI [3,6–7,10, 24–25], we hypothesize that hub regions within the DMN and ECN will

primarily contribute to hyperconnectivity. Finally, we anticipate that network cost will be

greater as a result of hyperconnectivity, but that networks are obliged to equilibrate cost-effi-

ciency demands during recovery, so systems should gravitate to reduce network cost. As a

result, we hypothesize that at one year post injury the functional network will achieve higher

efficiency at a lower cost compared to the network early during the recovery period.

2. Materials and methods

2.1 Subjects

Subjects included 14 individuals who sustained moderate to severe traumatic brain injury

between the ages of 18 and 36 with education ranging from 12 to 18 years, and 12 healthy con-

trols of comparable age and education (see Table 1). A Glasgow Coma Scale (GCS) of 3–8 at

time of injury was indicative of severe injury and a GCS of 9–12 was indicative of moderate

injury [26]. Two subjects who originally received a GCS of 14 and one subject who received a

GCS of 15 were also included because their medical records indicated positive imaging find-

ings of brain damage and/or mental status change during their acute inpatient stay. Patients

were excluded if there were other concomitant injuries (e.g. orthopedic injuries or injury to

the spinal cord) that would cause difficulty for the patients to stay still in the MRI environ-

ment. All subjects with TBI completed three separate sessions approximately 3, 6, and 12

months following injury, referred to as Time-1, Time-2, and Time-3. In order to determine

the natural variation in network response over two measurements separated by time, we also

collected MRI data for healthy controls from two MRI sessions separated by approximately 3

months (see Table 1). Each testing session included both MRI data collection and cognitive

testing. The goal in the current study is to extend hyperconnectivity hypotheses from our pre-

vious work to examine metrics of cost and efficiency using whole-brain graph theoretical anal-

ysis and to include an additional time-point during the first year after injury. To provide

context with regard to other published work from our laboratory examining longitudinal

recovery in TBI, the data used in this study maintain partial overlap with Venkatesan et al. (9/

14 TBI subjects [10]). However, the analysis in Venkatesan et al., was a focused seed-based

analysis of the PCC and hippocampus at two time points. The current data do not overlap with

recent longitudinal work [8] which made use of task-based fMRI data also only at two time

points post injury. Moreover, the current fMRI data sets are completely distinct from other

prior work examining task-based connectivity [24, 25] and the samples in those studies main-

tain either no overlap [25] or minimal overlap (2/14 TBI subjects [24]) with the current

sample.
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All conducted research was approved by the institutional review board and the Pennsylva-

nia State University Office of Research Protections. Due to the nature of the study sample,

some individuals included in the study demonstrated some level of cognitive impairment.

However, all individuals in the study retained the ability to sign medical documents and/or

functioned independently, so consent was accepted and caregiver consent was included when

available.

2.2 Behavioral data

Each subject was administered a neuropsychological battery of tests at Time-1, and all TBI sub-

jects were administered the same battery during subsequent time points. The battery was

designed to examine cognitive domains associated with deficits in TBI, focusing on the

domains of attention and working memory [27]. In order for the TBI sample to be capable of

reliably completing this battery at 3-months post injury, the battery was focused on those tests

most sensitive to deficits following TBI, including processing speed and working memory.

Tests administered included the Visual Search and Attention Test (VSAT), WAIS-III Digit

Span (Forward, Digits-F and Backward, Digits-B), Trail Making Test B (TMT), and Stroop

Color and Color-Word (Stroop). Because normative data were not available for all tests (e.g.,

digit span forward v. backward, WAIS-III) mean and standard deviation of the TBI subjects’

raw scores were used during analyses. Independent samples t-test comparing mean perfor-

mance at Time-1 for TBI with mean performance at time for HCs showed no differences in

performance between groups. (see Table 2).

Table 1. Subject demographics and TBI injury profiles.

a. Demographics Mean HC (sd) Mean TBI (sd)

Age 32.00 (11.5) 26.07 (6.5)

Education 12.92 (1.73) 13.42 (2.43)

Gender 6 M; 6 F 7 M; 7 F

GCS N/A 7.92 (4.9)

Mos. post Time-1 N/A 3.36 (0.74)

Mos. post Time-2 N/A 6.64 (1.45)

b. Mechanisms of injury No. TBI (%)

Motor Vehicle Accident 7 (50)

Fall 4 (29)

Struck by Vehicle 3 (21)

c. Initial clinical CT/MRI findings No. TBI (%)

Diffuse Axonal Injury 7 (50)

Total Hematoma and/or Hemorrhage * 13 (93)

HH Left Lateralized 5 (36)

HH Right Lateralized 3 (21)

HH Bilateral 4 (29)

HH Frontal Lobe 12 (86

HH Temporal Lobe 6 (43)

HH Parietal Lobe 4 (29)

HH Occipital Lobe 2 (14)

GCS, Glasgow Coma Scale; Mos., months; No. TBI, number of TBI subjects; HH, Hematoma and/or

Hemorrhage.

* One of the thirteen subjects with reports of intracranial hematoma and/or hemorrhage did not have a

documented location of this finding

https://doi.org/10.1371/journal.pone.0170541.t001
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2.3 Functional data

Subjects were scanned using a Philips Achieva 3T scanner in the Department of Radiology at

Hershey Medical Center, Hershey, PA (TBI n = 1; HC n = 6) or one of two identical Siemens

Magnetom Trio 3T scanners (one at the Social, Life, and Engineering Sciences Imaging Center

at the Pennsylvania State University in University Park, PA (TBI n = 1, HC = 4); the other at

the Department of Radiology at Hershey Medical Center in Hershey, PA, (TBI n = 12; HC

n = 2). TBI cases and HC cases were divided between the scanners and for repeated scanning,

all subjects were scanned on the same machine across time points. Prior to scanning subjects

were made aware of the importance of minimizing motion within the scanner. High resolution

T1-weighted anatomical images of the brain were acquired with isotropic spatial resolution of

1.0 mm. Echo planar imaging (EPI) was used to examine the blood oxygen level dependent

response for functioning imaging. Imaging parameters for EPI were 2000 ms/30 ms/90˚ (repe-

tition time/echo time/flip angle), 240 × 240 mm2 field of view, and 80 × 80 acquisition matrix

with 4 mm-thick axial slices parallel to the bicommissural line. This study demanded data col-

lection over seven years using more than 1 MRI scanner, so formal analysis of differences in

the temporal signal-to-noise-ratio (tSNR) was conducted to examine the possible contribution

of voxelwise differences in SNR on the findings (see Supplemental Analysis of Scanner tSNR

below).

2.4 fMRI data preprocessing

Resting data were collected over the course of a 5-minute period, resulting in 150 volumes of

data. The first five volumes were removed from analyses to control for signal instability, result-

ing in a time series of 145 volumes. All preprocessing steps were conducted using SPM8

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). For all volumes bad slices were first

repaired using art-slice procedure, which is part of ArtRepair toolbox [28]. The volumes were

then slice-timing corrected and realigned. Spike artifacts were eliminated using despike filter

available in ArtRepair toolbox. For each subject their high-resolution T1-weighted anatomical

image was co-registered to the mean functional image using SPM8. The co-registered anatom-

ical image was then segmented using SPM8, which produced a normalized gray matter image

in the standard Montreal Neurological Institute (MNI) brain space. The functional images

were then normalized to the MNI space. The normalized functional volumes and the gray

matter image were resliced to a spatial resolution of 3 mm isotropic. The equivalence of voxel

size allowed one to one mapping of voxels between normalized functional and anatomical

Table 2. Neuropsychological performance of TBI group.

Stroop mean (sd) VSAT mean (sd)

Color Time Color Total Color-Word Time Color-word Total Total

Time-1 62.15 (10.56) 111.69 (0.63) 105.62 (23.01) 106.83 (10.15) 110.08 (21.89)

Time-2 67.58 (16.64) 111.75 (0.62) 109.92 (11.44) 96.25 (25.69) 121.77 (25.90)

Time-3 61.23 (9.88) 111.62 (0.87) 109.25 (11.68) 102.42 (19.85) 122.46 (19.03)

Digits: mean (sd) Trails: mean (sd)

Forward Back Total A B

Time-1 10.69 (2.02) 6.92 (2.02) 17.62 (3.40) 29.31 (11.32) 61.38 (16.91)

Time-2 10.67 (1.96) 7.92 (1.75) 18.69 (3.35) 25.08 (5.99) 49.31 (14.26)

Time-3 10.84 (1,59) 7.23 (1.79) 18.08 (2.69) 21.23 (4.21) 46.08 (10.17)

Stroop C, color trial; Stroop CW, color/word interference trial; VSAT, visual search and attention task.

https://doi.org/10.1371/journal.pone.0170541.t002

The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0170541 April 19, 2017 5 / 26

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://doi.org/10.1371/journal.pone.0170541.t002
https://doi.org/10.1371/journal.pone.0170541


volumes, and provided a mechanism to extract gray matter signal (see the following section).

To reduce the effect of ringing artifact and to improve signal to noise ratio [29], a 6-mm isotro-

pic smoothing filter was applied to the normalized functional data. The cerebrospinal fluid

(CSF) and the white matter nuisance signals were regressed out, and a bandpass filter of 0.01

Hz to 0.12 Hz was applied using CONN toolbox. Finally, all functional data were movement

corrected using ArtRepair. The movement parameters have been summarized in Table 3.

2.4.1 Head motion correction. The removal of nuisance signal due to physiology and

head motion is a developing issue receiving significant recent attention in the resting MRI lit-

erature [30,31]. To correct motion, raw data were examined for motion- related slice and vol-

ume signal changes using ArtRepair [28] and standard 6-parameter realignment to serve as

null regressors. Using this pipeline reveals that in our TBI Time-1 group, where motion is typi-

cally the greatest concern, we can resolve motion problems in ~89% of the scans using stan-

dard ArtRepair guidelines (25% volume correction; exclusion of 7 data sets of 63 total (21

subjects originally enrolled, 3 time points each). Power and colleagues (2012) demonstrate that

global signal regression is a powerful method for reducing the effects of motion. Given con-

cerns published elsewhere [32,33] we did not employ that approach. Results of motion correc-

tion are available in Table 3.

2.5 Volumetric values

To help constrain the interpretation of neural network connectivity we integrate information

about brain volume change over time. The relative volumes of white matter, and gray matter

relative to the intracranial volume were calculated for each subject at each time point using the

VBM library in SPM8. To detect if there was significant brain atrophy after the injury, the vol-

umes of gray and white matters of later time points were compared with Time 1 (Paired t-test,

with multiple comparison correction for the TBI group) (See Table 4).

Table 3. Motion correction summary.

Mean PVR (sd) Mean SD of data (sd) Mean CT (sd) Mean CT, % of mean (sd)

TBI Time-1 3.30 (6.49) 1.59 (0.58) 6.23 (2.48) 1.30 (0.01)

TBI Time-2 3.17 (6.87) 1.68 (1.02) 6.45 (3.12) 1.30 (0.02)

TBI Time-3 3.05 (4.72) 1.67 (0.61) 5.82 (1.89) 1.30 (0.01)

HC Time-1 2.47 (2.70) 1.76 (0.88) 6.30 (1.91) 1.30 (0.01)

HC Time-2 0.86 (2.14) 1.67 (0.57) 6.10 (1.67) 1.30 (0.01)

PVR, percent of volumes repaired; SD, standard deviation; CT, current threshold.

https://doi.org/10.1371/journal.pone.0170541.t003

Table 4. VBM analysis: Volume ratio.

Mean GM/T (sd) Mean WM/T (sd)

TBI Time-1 0.471 (0.020) 0.370 (0.014)*

TBI Time-2 0.472 (0.017) 0.364 (0.017)

TBI Time-3 0.481 (0.013) 0.357 (0.023)*

HC Time-1 0.485 (0.025) 0.354 (0.017)

HC Time-2 0.483 (0.026) 0.353 (0.017)

GM/T, gray matter volume / total volume; WM/T, white matter volume / total volume.

* p = 0.024 calculated by pairwise t-tests

https://doi.org/10.1371/journal.pone.0170541.t004
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2.5.1 Lesion volumetrics. TBI is highly heterogeneous with respect to injury severity and

pathophysiology. To address this issue and determine the influence of global pathology on

brain networks, we created a 3-dimensional (3D) lesion model for each subject using 3D Slicer

[34] that utilizes information from multiple MR sequences, such as SWI, FLAIR, and T1

MPRAGE. In the first step of the lesion modelling process, a neuroradiologist manually located

and labelled all the hemorrhage and edema lesions in the three image modalities from each

subject. During the lesion modelling process, first the multimodality MR images (SWI, FLAIR,

and T1 MPRAGE) were co-registered, and then the lesions were segmented semi-automati-

cally with the Atlas Based Classification (ABC) toolkit based on the labelling in the previous

step. Finally, a 3D rendering of all lesions was generated and verified by the same neuroradiol-

ogist. As the goal here was to examine the overall effect of lesions on the global network met-

rics, we merged both lesion types (edema and hemorrhage) and lesion volume was calculated

as the ratio of lesion volume to gray matter volume.

2.6 Analytic approach and pipeline

To test our hypotheses (See section 1.2), a functional connectivity network for each subject at

each time-point was developed, and a subject-specific connectivity profile was created using

the functional network. The connectivity profile included metrics that summarize total func-

tional connections, network strength, network cost, and network efficiency.

In this article we performed two types of analyses: global and local analysis. For both these

analyses the following computational steps were implemented: 1. A subject-specific binary

gray matter mask at each time point was developed; 2. ROIs were defined using Power’s 264

anatomical coordinates and for each subject at each time point using the mean signal of each

ROI to evaluate functional connectivity. 3. Using graph theoretical procedures a connectivity

profile was developed for each subject at each time point.

In global analysis, we focused on examining the whole-brain connectivity changes during

recovery period and to determine if these changes predict behavior. Finally, we also performed

lesion analysis to determine the influence of focal pathology on global network metrics. In

order to guarantee that our approach to brain parcellation was not a primary determinant of

the regional and global network effects, we conducted a second brain parcellation using spa-

tially constrained independent components analysis (sICA) method (see [35]) followed by a

graph theoretical analysis for comparison (see Supplementary Analyses below).

In local analysis, we focus on finding regions (i.e. subsystems) in the brain that are consis-

tently hyper- or hypo-connected at all 3 time points and also examine their cost. Further analy-

sis using these hyper- hypo-connected subsystems are then conducted for only the TBI group.

The analytic pipeline along with the preprocessing steps are illustrated in Fig 1. These steps are

discussed in a greater detail in the following sub-sections.

2.6.1. Subject-specific binary gray matter mask. A specific binary mask for each subject

at each time point was created to better capture the change in the volumetric values across

time. The segmentation procedure in SPM8 assigns a probabilistic value to each voxel of the

gray matter segmented file (i.e. the probability that the voxel belongs to the gray matter).

Therefore, to develop a binary gray matter mask, we had to use a threshold. We used those

voxels with probability for gray matter greater than 0.6 as suggested by Zalesky and colleagues

[36]. For each subject their binary gray matter mask was then overlaid on the normalized func-

tional images to extract the BOLD signal from the gray matter voxels.

2.6.2. Developing subject-specific functional connectivity network. We used Power’s

264 anatomical coordinates [37] to segment the brain into 264 regions of interests (ROIs).

ROIs were defined as 15 mm spheres centered at these coordinates. Power’s 264 anatomical
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coordinates represent putative functional areas of the brain, and therefore, this way of defining

ROIs provides a mechanism to locate specific subnetworks as well as anatomic landmarks in

the brain that are most affected during recovery from TBI.

For each subject the average signal time course of the gray matter voxels in each ROI was

measured, and Pearson’s correlation between the signal time courses of all possible pairs of

ROIs was conducted. The correlations that fail the false discovery rate (FDR) at a p-threshold

of 0.05 were discarded. The remaining set of correlation values thus represent a subject specific

weighted functional connectivity network.

2.6.3 Subject-specific connectivity profile. The following network metrics were evalu-

ated: 1) Total functional connections, 2) Network strength, 3) Local efficiency: clustering coef-

ficient, 4) Global efficiency: average shortest path length, 5) Network cost.

The total functional connectivity in the brain for each subject at each time point was evalu-

ated by counting the total number of statistically significant (FDR criterion) functional edges.

This metric was used to determine the relative network connectivity.

Network strength was defined as the total sum of the absolute values of the network

weights. The correlation coefficient between each pair of ROIs represents the weight of the

connection. The rationale behind using the absolute value was to be able to examine the mag-

nitude of the synchronization between ROIs. If the magnitude of s synchronization is high, it

may be indicative of high metabolic consumption [38]. Additionally, we defined ROI-strength

as the total strength of all functional edges that are incident upon a ROI. This allowed us to iso-

late brain subsystems that showed hyperconnectivity.

In order to examine local communication efficiency within the network, we calculated local

clustering coefficient. Local clustering coefficient of vertex i is defined as:

Ci ¼
jfejk : vj; vk 2 Ni; ejk 2 Egj

kiðki � 1Þ
ð1Þ

where ki is total number of neighbors (i.e. neighboring nodes) of node i,Ni represents the set

of all nodes that are neighbors of node i, vj and vk are vertices in the neighborhood of i; E is the

set of all edges in the network, and ejk represents the connections that exist between the neigh-

bors of node i. A high clustering coefficient would mean that the neighbors of node i are well

connected, hence, suggesting a high local efficiency around node i.

Fig 1. fMRI data preprocessing steps and the analytic pipeline.

https://doi.org/10.1371/journal.pone.0170541.g001
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In order to examine global network efficiency, shortest path length, d(i,j), is computed

between all pairs of nodes i and j. The global efficiency is then defined as follows:

EðGÞ ¼
2

nðn � 1Þ

X

i<j2G

1

dði; jÞ
ð2Þ

A measure of network cost was derived based on the assumption that the synchronization

between long distance ROIs must be more metabolically expensive than the short distance

ROIs. We defined the cost of each functional edge as the product of the Euclidean distance

between the ROI-pair and the absolute weight of the connection. The overall network cost was

then derived by totaling the cost of all edges that are part of the network. This definition of the

network cost encapsulates 3 different concepts into one: level of synchronization between all

pair of ROIs (network strength), number of functional edges, and physical distance of the

functional edges.

Additionally, we defined ROI-cost as the total cost of all functional edges that are incident

upon a ROI. This allowed us to isolate brain subsystems that make more expensive connec-

tions in an injured brain comparing to the HCs.

2.6.4 Global and local analysis. Once the subject specific connectivity profiles are devel-

oped, we perform the following global and local analyses to test the study hypotheses (see Sec-

tion 1.3). First, a global analysis was performed comparing network strength between the TBI

and HC samples; the comparison is performed at all three time points (TBI Time vs. avg HC).

To determine if differences in strength predicts cost, we also conducted a between group com-

parison of global network cost. We then examine how the cost-efficiency relationships change

during the recovery period. This is accomplished by performing simulations to test network

efficiency for different cost values at all three time points. We then examined the relationship

between global network metrics and cognitive functioning. Finally, we examine the relation-

ship between brain lesions for all TBI cases at Time-1 network connectivity and behavior.

For local analysis, we examined the subregions that contribute to hyperconnectivity, we

mapped the Power-ROIs to 20 functionally defined subsystems. These 20 sub-networks were

based upon prior findings in the TBI the literature and focused on the brain’s most robust sub-

networks. While one goal of the study was to focus on within TBI group change during the

first year, we first isolate the most high-strength and high-cost sub-regions in TBIs comparing

to the HCs. For these isolated subsystems, we calculate the connection cost of ROIs that are

part of these subsystems, and then analyze connection metrics (connection count, strength,

and physical distance) that govern the change in their cost across time. Finally, we examine the

relationship between the overall cost of these subsystems and behavioral performances.

2.6.5 Supplementary analyses. Implementing an identical pre-processing pipeline as

above, we substituted a spatially constrained ICA as the brain parcellation method to deter-

mine if brain parcellation was an important determinant of the network findings. There are, of

course, important limitations to these types of comparisons (see [39]) so the goal was not to

achieve identical results when comparing networks of distinct sizes. Instead the primary goal

was to determine if the hubs driving cost-efficiency tradeoffs were commensurate. We chose

ICA as a second approach for two reasons. First, in contrast to Power-264 based parcellation

scheme where the representative signal for a ROI is developed by averaging over all voxels

with in the ROI, in ICA, the representative signal is established using a weighted average; the

ICA procedure estimates a weight for each voxel using an adaptive algorithm. This provides us

an opportunity to examine if the parcellation scheme and also the mechanism by which ROI

representative signals are developed affects the results. Second, ICA is a well-established

approach receiving widespread application across a number of clinical samples (for review see

The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0170541 April 19, 2017 9 / 26

https://doi.org/10.1371/journal.pone.0170541


[40–41]). While details for this analysis are consistent with [8], in brief, the procedure included

the Group ICA of fMRI Toolbox (GIFT). To achieve a detailed component structure and

because a higher ordered dataset was desirable for graph theoretical analyses, we chose a rela-

tively high model order ICA (100 components) for all analyses [35, 42–44]. Preprocessing

included movement correction, coregistration, and normalization, but consistent with [35] we

did not remove signal from cerebrospinal fluid and white matter and did not conduct volume-

wise correction prior to the ICA. Subject-specific data reduction principal components analy-

sis retained 120 principal components and group data retained 100 principal components

followed by a component sort based upon dynamic range and low/high frequency ratio using

0.01 and 0.1 Hz as guidelines (consistent with [35]). The time series from retained components

were submitted to an adjacency matrix and connections were FDR corrected resulting in an

edge list that was submitted to graph theoretical analysis.

3. Results

3.1 Global analysis

3.1.1 Examining hyperconnectivity. To examine the hyperconnectivity hypothesis, we

used analysis of covariance (ANCOVA) with MRI scanner as a covariate in order to compare

the TBI distributions for network strength at each time-point to the mean HC distribution of

network strength; the mean HC distribution was established by averaging the 2 time-point HC

distributions. As expected, effects at the global level were subtle; heightened connectivity at a

global scale for network strength (p = 0.049; ηp
2 = 0.16) and number of links (p = 0.046; ηp

2 =

0.16) was observable only at time-2 (p = 0.049; ηp
2 = 0.16).

We also performed a similar analysis for the global network metrics, including clustering

coefficient and mean path length, to determine how network efficiency may be affected due to

TBI; the analysis revealed subtle effects for path length and clustering coefficient at Time-2

(see Table 5). A more nuanced analysis of cost and efficiency is performed in the following

sub-section (see Section 3.1.4).

3.1.2 Lesion analysis. The results of the 3D rendering procedure produced identifiable

lesions in 13/14 cases (Fig 2). In the case showing no conspicuous hemorrhage or contusion,

we anticipate that the injury was milder and/or diffuse. Results of the lesion analysis of the 13

cases with identifiable trauma lesions is illustrated in Fig 2. To examine the influence of total

lesion, we collapsed for hemorrhage and contusion and calculated a percentage of lesion vol-

ume to total gray matter volume at the individual subject level. Unsurprisingly, the results do

not show a significant relationship between lesion status and cognitive functioning based upon

composite scores (r-values ranging from r = -.02 to -0.22). This finding is consistent with a TBI

literature revealing inconsistent relationships between structural brain changes and cognitive

Table 5. Summary of graph network metrics (mean; sd).

Avg Short PL-U Avg Local CC-U Avg Local CC-W Network Strength Average Number Links

TBI Time-1 1.70 (0.07) 0.40 (0.08) 0.42 (0.08) 3363.56 (953.84) 10504.64 (2528.39)

TBI Time-2 1.69 (0.05)* 0.41 (0.05)* 0.43 (0.05)* 3456.77 (682.07)* 10822 (1886.06)*

TBI Time-3 1.71 (0.04) 0.39 (0.04) 0.41 (0.04) 3171.87 (509.80) 9988.85 (1418.27)

HC Average 1.71 (0.02) 0.38 (0.02) 0.40 (0.02) 3093.64 (284.43) 9784.29 (819.68)

Avg Short PL-U: Average shortest path length (unweighted); Avg Local CC-U: Average local clustering coefficient (unweighted); Avg Local CC-W: Average

local clustering coefficient (weighted); AFC.

* p < 0.05 calculated by ANCOVA, with MRI scanner as a covariate.

https://doi.org/10.1371/journal.pone.0170541.t005
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outcome after TBI [45–48]. Proportion of lesion volume also did not predict unweighted path

length in the network (T1 r-value = 0.01, T2 r = 0.20, and T3 r = 0.01) and did not predict

global network cost (T1 r = 0.05; T2 r = 0.24; T3 r = 0.09). Overall, the 3D lesion rendering

provided some context for these injuries, but was not significantly predictive of patient out-

come or the network response.

3.1.3 Examining the cost-efficiency relationship. We aimed to examine cost-efficiency

relationship over time with focus on Time-2 and Time-3 as high efficiency/high strength was

observed at Time-2 but not at Time-3 (based upon Table 5). High “efficiency” at Time-2 is a

secondary effect of its cost: increasing the number of links results in lower path length, but the

question remains whether Time-2 maintains superior cost-efficiency organization in the

absence of these additional links. The approach taken was to randomly delete edges to test the

cost-efficiency of the network as it becomes increasingly sparse. As an analogue, investigators

have used similar approaches to simulate random attacks on edges to determine how cost-effi-

ciency behaves [13, 49]. The steps involved in the simulation were the following:

Step-1. For a given time point, develop a group averaged weighted undirected functional con-

nectivity network (N_avg) using the weighted functional connectivity networks (see Section

2.6.2 for details) of the 14 TBI subjects. Please note, in a subject specific weighted functional

connectivity network, weight of each edge represents absolute correlation coefficient value.

Now make an inverse network (N_avg_inverse) by subtracting the weight of each edge from

Fig 2. Results of 3D lesion modeling for TBI subjects at Time 1 (approximately 3-months post injury). Total network

cost and the lesion volume are not significantly correlated at Time 1, Time 2, or Time 3.

https://doi.org/10.1371/journal.pone.0170541.g002
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1.01. That is, if the average weight of an edge is 1, then we make it 0.01 so that it represents

a short distance (but not a 0 distance) between the two ROIs; edges that are disconnected in

N_avg also remain disconnected in N_avg_inverse, and are represented with a weight of 0

in both the networks.

Step-2. Define an integer variable X and initialize it to 1.

Step-3. Randomly delete X% edges from N_avg_inverse to produce a new network

configuration.

Step-4. Evaluate the overall network cost and global efficiency of this new network and store it

in a file.

Step-5. Replace back the deleted edges in the network, N_avg_inverse.

Step-6. Repeat step-3 to step-5 50 times.

Step-7. If X is less than 99

Increment X by 1 and go to step-3.

Else

Stop.

The output for the above procedure, at each time point is a single file (each file has

99x50 = 4950 rows) consisting of 2 columns: cost and efficiency. The cost and the efficiency

values stored in these 3 files are then plotted as a graph (see Fig 3). We also ran the above simu-

lation for healthy control subjects, to examine if the cost-efficiency relationship at Time-3 was

similar to that of the healthy controls. Our results show, under random edge-attack, Time-3 is

more robust and will maintain high efficiency for a much greater range of network densities

(see cost of 50000 to 200000) than other time points. Also, the HC data are also plotted to pro-

vide context; Time-3 cost-efficiency relationship is more similar to the control subjects com-

pared to this relationship at Time 2.

3.2 Local analysis

3.2.1 Finding hyper/hypoconnected subsystems. In order to isolate the most consistently

observed regions showing hyper- and hypoconnectivity over the recovery period, we com-

pared the TBI sample with the HC sample for network strength and cost as an initial “filter”.

Global analysis demonstrated the most significant elevations in network strength and cost at

Time-2, with no significant differences between the TBI and HC groups at Time points 1 and

3. Therefore, to reduce the number of analyses and to test specific hypotheses regarding hyper-

connectivity in the brain’s subnetworks we grouped the 264 Power ROIs into 20 brain subsys-

tems and compared Time-2 data (where hyperconnectivity was evident in global analysis;

Table 5) to the HC data to determine regions of disproportionately greater connectivity. These

20 subnetworks derived from the Power 264 ROIs were based upon the brain’s most robust

subnetworks and commonly sites of hyperconnectivity based upon the TBI literature (see S1

Table). For each brain subsystem, to examine hyperconnectivity we developed TBI and HC

distributions of ROI-strengths (see section 2.6.3) using all ROIs that are part of the chosen sub-

system. Then we performed independent sample t-tests comparing TBI and HC distributions.

Thus, in all we performed 20 analyses for 20 collapsed brain systems for Time-2 data to direct

further local analysis. The p-values were then corrected for multiple comparisons using FDR

correction and in order to maintain sensitivity to medium effect sizes, we included result with

a Cohen’s d> 0.70. If the mean of the TBI distribution was higher than the HCs it was labeled

hyperconnected, and if it was less than the HCs then it was labeled hypo-connected. The
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results are summarized in Table 6 and the hyper- and hypo-connected sub-systems are shown

in Fig 4.

To examine cost, we performed an identical analysis as above for examining subsystem

strength using findings from global Time-2 analysis to direct us to specific subsystems for

within-group analysis. The results are summarized in Table 7. Based on the above strength and

cost analyses for Time-2 data, several consistent regions demonstrated significantly higher

Fig 3. Illustrates cost-efficiency relationship of group-averaged TBI network at all 3 time points (see

Section 3.1.4 for details). For cost bands 50000–100000, 100000–150000, and 150000–20000, there was a

significant difference between the Time-2 and Time-3 efficiency values based on independent sample t-test.

The Bonferroni corrected p-values and Cohen’s-d for all cost bands are as follows, 0–50000 (p-value = 0.61,

cohen’s-d = 0.04), 50000–100000 (p-value << 0.05, cohen’s-d = 0.30), 100000–150000 (p-value << 0.05,

cohen’s-d = 0.54), 150000–200000 (p-value << 0.05, cohen’s-d = 0.70), and 200000–250000 (p-value = 1,

cohen’s-d = 0.06).

https://doi.org/10.1371/journal.pone.0170541.g003

Table 6. Hyperconnected and hypoconnected sub-systems for Time 2 TBI compared to HCs.

Sub-region description Power Reg P-value a Hyper/Hypo Cohens-d

Left Frontal DMN ‡* 13 0.049 + 1.29

Right Frontal DMN ‡ 10 0.051 + 1.14

Left Cingulate/Parietal Memory Retrieval* 2 0.179 - -0.77

Right Frontal Task Control 9 0.051 + 1.11

Right Parietal Task Control 4 0.176 + 0.81

Right Ventral Temporal/Parietal Attention‡* 5 0.176 + 0.80

Power Reg, number of power regions in the sub-system; Hypo (-), hypoconnectivity; Hyper (+), hyperconnectivity; DMN, default mode network.
a p values were False Discovery Rate (FDR) corrected.
‡ Significantly hyperconnected at Time 1.

* Significantly hyper/hypo connected at Time 3.

https://doi.org/10.1371/journal.pone.0170541.t006
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strength and cost (Tables 6 and 7), so these regions served as the filter for examining Time-1-3

local effects.

Based upon the Time-2 filter, six regions were identified as high strength and seven regions

as high cost for further analysis (Tables 6 and 7). To determine if these regions also showed sig-

nificant increases at Time points 1 and 3, separate strength and cost analyses were conducted

by comparing Time-1 and Time-3 data to the HC sample using an analysis of covariance with

MRI scanner as a covariate in order to determine the influence of MRI scanner on results.

Based upon a minimum of ηp
2 = 0.06 (small to medium effects size), at Time-1, three areas

showed relatively greater strength in connections for the left DMN [F(1) = 2.4; p = 0.134; ηp
2 =

0.095], right DMN [F(1) = 2.6; p = 0.12; ηp
2 = 0.10], and the cingulo-parietal memory retrieval

network [F(1) = 1.91; p = 0.179; ηp
2 = 0.07]. Time-1 also showed elevations in two subregions

for cost: left DMN [F(1) = 2.3; p = 0.139; ηp
2 = 0.09] and right DMN [F(1) = 2.4; p = 0.13; ηp

2 =

0.10]. Similarly, for strength findings Time-1, the subregions Time-3 included hyperconnec-

tivity for right frontal DMN and the right ventral parietal attention network and hypoconnec-

tivity for the left cingulo-parietal memory retrieval network [left DMN: F(1) = 1.85; = 0.186;

ηp
2 = 0.07; cingulo-parietal memory retrieval: F(1) = 5.7; p = 0.025, ηp

2 = 0.20; right ventral

parietal attention: F(1) = 4.46; p = 0.046) ηp
2 = 0.16]. A primary difference at Time-3 compared

to Time-1 and Time-2 was that no hyperconnected regions showed significantly elevated

Fig 4. Hyper- and hypo-connected sub-systems in the brain found using local analysis (see Section

3.2.1 for details).

https://doi.org/10.1371/journal.pone.0170541.g004

Table 7. High cost brain sub-systems for Time 2 TBI compared to HC sample.

Sub-region description Power Reg P-value a Hyper/Hypo Cohens-d

Left Cingulate/Temporal DMN 20 0.208 + 0.74

Left Frontal DMN * 13 0.037 + 1.34

Right Frontal DMN * 10 0.070 + 1.08

Right Frontal Task Control 9 0.070 + 1.06

Right Parietal Task Control 4 0.13 + 0.90

Right Ventral Temporal/Parietal Attention 5 0.208 + 0.71

Right Dorsal Temporal/Parietal Dorsal Attention 5 0.208 + 0.77

Power Reg, Number of power regions in the sub-system; Hypo (-), hypoconnectivity; Hyper (+), hyperconnectivity; DMN, default mode network.
a p values were false discovery rate (FDR) corrected.

* Time 1 also significantly elevated for cost in these regions; No Time 3 also significantly elevated for cost in these regions.

https://doi.org/10.1371/journal.pone.0170541.t007
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cost—even in left DMN and parietal attention networks. In a final analysis, we aimed to deter-

mine the difference in cost from Time-2 to Time-3 in these hyperconnected regions (below).

3.2.2 Local cost x time analysis. Analyses comparing regions showing high connectivity

and cost at Time-2 and Time-3 revealed hyperconnectivity in two subregions: the left frontal

DMN and the ventral parietal attention network, but in the absence of increased cost at Time-

3. To understand why these regions showed increased connectivity at both time points but

heightened cost only at Time-2, we examined the factors that govern the cost (i.e. link strength,

link distance, and link count). In this analysis, we first created a 2-dimensional (2-D) histo-

gram of edge counts at each time point as follows (see Fig 5). For a given time point and for a

given subsystem, for all connections that are incident upon the ROIs in the subsystem, the con-

nection length and the connection strength of all TBI subjects were stored in a 2 column table.

This table was then converted to a 2-D histogram where the color of each bin (or square box in

the 2-D histogram) represents the number of connections that fall in that bin. These histogram

plots were then overlaid with contour lines representing cost. A given contour line (e.g. con-

tour line of cost = 80) represents all possible values of connection distance and strength that

can produce the same cost value (distance�strength). For example, if the connection length is

40 mm and strength is 0.6 for a given connection, then the cost is 24, which is same as if the

length was 60 mm and the strength was 0.4. Hence, both these points will fall on the same con-

tour line, i.e. contour line of cost = 80. To compare Time-2 and Time-3 data, we then sub-

tracted Time-3 histogram from Time-2 histogram to create a difference histogram. As shown

in Fig 5, for Left Frontal DMN, Time-2 networks consisted of a greater number (pink regions)

of medium/long length and medium/weak strength connections than Time-3 networks. A

similar effect was also seen for Right Ventral Temporal/Parietal Attention regions; this effect

appears to account for the cost differences in networks between Time-2 and Time-3 for these

nodes.

Fig 5. 2-D histograms represent the distribution of connections that are incident upon ROIs within left frontal DMN (top) and Right

Ventral Temporal/Parietal Attention (bottom) as a function of connection length and connection strength. A contour line (e.g.

contour line of cost = 80) represents all possible values of connection distance and connection strength that can produce the same cost

value (distance*strength).

https://doi.org/10.1371/journal.pone.0170541.g005
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3.2.3 Behavioral analysis. To test whether the most consistently costly nodes within the

network during recovery predict performance, we used bivariate Pearson correlations compar-

ing cost and cognitive performance. To reduce the number of comparisons, we focused

analyses on Time-2 and Time-3 connectivity data compared with three neuropsychological

measures sensitive to deficits in TBI in the areas of executive control/switching (Trail Making

Test), working memory (Digit Span Backward), and processing speed (VSAT total score). At 6

months post injury (Time-2), cost in the temporal-parietal attentional control region was sig-

nificantly associated with performance on Digit Span backward (r = 0.777, p = 0.02); cost in

this region was correlated with Trail Making Test (r = 0.462, p = 0.11), but showed no relation-

ship with VSAT total (r = -0.052, p = 0.87). By contrasts, cost within the left frontal DMN

showed little relationship with performance on Digits Backward (r = 0.033, p = 0.91) and Trail

Making Test (r = 0.184, p = 0.55), but showed modest association with performance on the

VSAT (r = -0.492, p = 0.09).

At 12 months post injury (Time-3), cost within the temporal-parietal attentional control

region showed a modest association with performance on Digit Span Backward (r = 0.427, p =
0.15), and had little relationship with performance on Trail Making Test (r = -0.33, p = 0.92)

and VSAT (r = 0.098, p = 0.75). Cost within the left frontal DMN showed the strongest associa-

tion the Digit Span Backward (r = 0.664, p = 0.01), followed by performance on Trail Making

Test (r = 0.410, p = 0.16) and the VSAT (r = -0.336, p = 0.26).

Overall, these data indicate that as cost increases, speed and executive control are reduced.

Cost was positively associated with working memory performance, so there appears to be a

trade-off between on-task processing efficiency and untimed working memory functioning.

Indeed, in the TBI sample, working memory was negatively correlated with efficiency speeded

performance.

3.2.4: Supplementary brain parcellation using ICA. To examine the reliability of the

findings in the global analysis, we introduced an identical connectivity analysis, changing only

the method of brain parcellation. The initial findings using a network composed of Power 264

regions demonstrates high cost early after injury that partially resolves toward 1-year post

injury. These findings are generally confirmed in the Supplementary analysis with one impor-

tant difference: the timing of this resolution. The Supplementary analysis using ICA, high cost

networks are more pronounced at Time 1 and this diminishes at Time 2 and Time 3 (see

Tables A-C in S1 File). We offer an explanation for the differences in the timing of cost-effi-

ciency resolution between the two approaches below.

Local analysis was highly consistent between the two separate analyses. The most highly

connected node at all three time points is the anterior default mode network (medial left and

right prefrontal cortex; see Figs A-C in S1 File) which overlaps with the primary finding from

the Power 264 analysis in Table 7. Therefore, the locations for the expression of high cost (i.e.,

hubs) remain the same irrespective of analysis, but the global findings (e.g., network cost) are

dependent upon the parcellation approach.

3.2.5: Supplementary analysis: Influence of MRI scanner on connectivity results. In

order to examine potential differences in tSNR between scanners, tSNR maps were generated

for each visit of each subject based on the contrast between the mean signal of and the standard

deviation of the EPI time-series for each voxel (after detrending with a second-order polyno-

mial) (see Figs D-G in S1 File). For group analyses, the tSNR maps were normalized to the

standard MNI brain space using the same normalization parameters for the fMRI data. The

cross-system comparisons were conducted using one-way ANOVA with multiple compari-

sons. The longitudinal stability of tSNR for each MRI system was analyzed using the Sandwich

Estimator for Neuroimaging Longitudinal Data (warwick.ac.uk/tenichols/SwE). There were

no differences in tSNR in the same scanner across time, which is vital given the goals of this
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paper to examine the evolution of cost-efficiency during recovery. Between-scanner analyses

revealed differences among the three scanners primarily in the mid-posterior cortical area of

the inferior frontal lobe and the inferior cortical area of the temporal lobe. There are two

important reasons why we do not anticipate that these differences between scanners influence

the current findings. First, the higher tSNR occurs in the two scanners (Siemens HMC and

Philips, Figs D-G in S1 File) where 8/12 HCs (and 21/26 total) were scanned, making tSNR as

the determinant for hyperconnectivity in the TBI sample less intuitive. Second, there are few

instances where tSNR overlaps spatially with the hubs that were seen as drivers of connectivity

differences (e.g., insula; Figs F,G in S1 File). In summary, analysis of voxelwise tSNR revealed

no observable influence of time on MRI signal which is vital to the central analyses presented

in this paper. Additional, with regard to the few between-scanner findings observed, we antici-

pate that differences in scanner tSNR are not the source of the findings given the direction of

these differences and the lack of spatial overlap with primary findings. We present these data

in the Supplementary materials and make all data are publicly available.

4. Discussion

The current study used a graph theoretical analysis of whole-brain resting fMRI data and

structural MRI to examine the changes in the brain connectivity during the first year following

moderate and severe TBI. In doing so, this represents the first study to examine the evolution

of network cost-efficiency trade-offs during recovery from neurological insult. Using a net-

work of 264 functionally defined regions, hyperconnectivity was observable across distinct

regions (e.g., hubs, peripheral nodes) and connection types (long-distance, short-distance con-

nections) but, in the current data, increased connectivity peaked at about 6-months post injury

(Time-2) before equilibrating in most subjects resulting in residual hyperconnectivity in only a

few subnetworks by Time-3.

Hyperconnectivity at Time-3 did not result in significantly elevated cost and we interpret

this to indicate that hyperconnectivity may be necessary to accommodate network disruption

early after injury, but networks do not optimally sustain this early response. The relationship

between early hyperconnectivity and later cost-efficiency trade-offs is elaborated upon in the

following. Of note, there were important differences in network metrics based upon the parcel-

lation approach used (Power 264 v ICA), but for reasons elaborated upon below, in this Dis-

cussion we focus our attention on the result of the analysis using the Power 264 parcellation

approach.

4.1 Hyperconnectivity as a response to injury

The primary hypothesis that physical neurological disruption results in functional hypercon-

nectivity was supported; individuals with TBI showed increased network strength which peaked

at around 6 months post injury (Time-2). Targeted analyses of the brain’s subnetworks revealed

that the left frontal DMN and temporal-parietal attentional control regions were consistently

hyperconnected at Time-1 and Time-2 and residual hyperconnectivity remained at Time-3,

supporting hypothesis-2 that enhanced connectivity would be more evident in the “rich-club”

regions (i.e. the most highly connected cortical hubs). Moreover, connectivity in frontal DMN

and attentional control networks were both positively correlated with simple working memory

rehearsal functioning at Time-3, but predicted reduced speed/efficiency, so the relationship

between network cost and cognitive performance may not be entirely straight-forward.

Overall, the Time-3 findings presented here are largely consistent with the cross-sectional

research examining TBI years post moderate and severe injury, showing residual hypercon-

nectivity in select subnetworks (see [3–7]). Given the significance of the injuries in this
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population, we endeavored to determine the influence of local pathology on large-scale net-

works using 3D lesion modeling. However, global metrics such as network strength and link

count were not correlated with lesion percentage (total gray/lesion volume) and even explor-

atory analysis of the three regions significant connectivity differences at both Time-2 and

Time-3 (e.g., left frontal DMN, cingulo-parietal memory network, parietal attention network)

maintained only very small relationships to brain lesion percentage, with the highest at Time-3

ranging from r-values of 0.20 to 0.25.

In sum, hyperconnectivity was observed with significant elevations in connectivity at Time-

2 and residual hyperconnectivity in network hubs at Time-3. The finding that Time-3 showed

no regions of elevated cost paralleling the effects observed in Time-2 was an intriguing finding

and became a focus of cost-efficiency analysis.

4.2 Balancing network cost-efficiency in the injured brain

The normally developed human cortex is organized so that local regions are more highly con-

nected [13,17, 49–50] and connection density falls off as an inverse square function [51] which

has been tied to optimal wiring to balancing cost-efficiency and may have important implica-

tions for how networks might adapt to injury. We aimed to examine the relationship between

elevated connectivity and network cost after injury with particular interest in determining if

hyperconnectivity occurred equally across distinct connection distances. To examine the rela-

tionship between hyperconnectivity and connection distance, we introduced novel metrics to

estimate the cost of each functional connection by considering their length and the strength.

Examination of the regional differences in network cost revealed that bilateral frontal DMN

maintained elevated cost at Time-1 and Time-2 (see Table 7). By contrast, the increased net-

work cost observed at the first two time points diminished by Time-3 so that while subtle

effects of hyperconnectivity were apparent at Time-3 it did not result in elevated network cost.

In Fig 5, we examined the factors that govern the cost (i.e. link strength, link distance, and link

count); a contour line represents all possible values of connection distance and strength that

can produce the same cost value (distance�strength). These data reveal that the elevation in

Time-2 cost is most likely attributable to a higher number of medium-range connections (as

opposed to long-distance connections as anticipated). This finding is important as it could

provide heuristics for understanding the edges most likely to be exploited during the expres-

sion of network plasticity and is likely related to the higher probability for observing hypercon-

nectivity in centrally located medial structures.

In a global analysis designed to examine cost-efficiency over time, simulations revealed that

cost-efficiency was lowest at Time-2 (even less efficient than Time-1) and was optimized by

Time-3 resulting in residual relative hyperconnectivity but diminished overall cost (Fig 3). We

interpret this finding to indicate that Time-2 cost is not sustainable and the system adapts to a

less costly, but efficient network. Several imaging studies have confirmed that the functional

connectivity network of a healthy brain is configured to produce high efficiency (i.e. efficiency

of information exchange) at a low connection cost [51–52]; i.e., healthy brains have been

shown to exhibit some small-world-like characteristics. It is reasonable to assume that main-

taining such high cost networks is accompanied by unwanted metabolic demand resulting in a

network configuration that achieves higher efficiency at Time-3.

We observed elevated connectivity in the same sites at all three time points. Enhancing con-

nectivity via hubs during recovery is consistent with the principle of preferential attachment

[53,54], where the most highly connected nodes are the sites for integration of additional con-

nections. These effects have been observed in animal models of neurodevelopment where the

“rich get richer” during the formation of neural networks [55]. Hyperconnectivity via hubs
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after injury achieves two important goals. First, it may provide the opportunity to re-establish

connectivity while maintaining an efficient network architecture. Second, centralized hub

nodes are the most metabolically efficient regions in the brain [56]. Therefore, enhancing the

connections in rich-club nodes permit re-establishing network functioning during critical

recovery windows while balancing essential cost/efficiency trade-offs.

4.3 Influence of brain parcellation approach on findings

In a Supplementary Analysis, using a nearly identical processing stream up to the brain parcel-

lation where we employed a spatially constrained ICA for comparison with the Power 264

functional atlas. Comparison of these two sets of results revealed nearly identical spatial over-

lap for regions with the highest cost in the TBI sample (e.g., medial frontal cortex, ECN). How-

ever, at the global level, there was partial resolution of hyperconnectivity by Time 2 as opposed

to Time 3 observed in the Power 264 analysis. We anticipate that Time 2 hyperconnectivity

was less evident using ICA because the most highly connected areas contributing to these

effects using a Power 264 parcellation were collapsed into fewer nodes. Support for this inter-

pretation is evident when inspecting the regional overlap between the two analyses. Unlike

Time 1 and Time 3, for Time 2 all of the 10 most highly connected regions in the Power 264

analyses were contained within parts of the DMN and ECN. Mirroring this finding in Power

264, the three highest cost regions in the ICA at Time 2 included these same networks (see

Figs A-C in S1 File). Thus network cost at Time 2 was differentially driven by nodes within the

DMN and ECN, which were under-sampled during ICA. To underscore this point, right and

left frontal DMN were the two most highly connected regions at Time 2 comprising 23 distinct

Power “DMN” nodes in the prefrontal cortex (see Table 6). By contrast, of the 46 total compo-

nents used for the network analysis after the ICA sort, only 3 frontal DMN regions were

retained for network analysis thus greatly reducing the number of possible connections and

the associated network cost observed in the DMN at Time 2. We therefore attribute the differ-

ences in Time 2 global results to the detailed sampling represented in the Power 264 compared

to the ICA. Given the spatial overlap of the local findings and the more detailed spatial sam-

pling provided by the Power 264 within identical regions, we anticipate that our focus on the

Power 264 data offers a nuanced network analysis of cost-efficiency.

4.3 The implications of hyperconnectivity and increased network cost

There is a 150-year history in the neurological sciences of “lesion mapping” with the goal of

pairing specific injury sites to functional loss [57] and in TBI this has been most recently

observed in the resting state functional connectivity literature by examining specific connec-

tion loss in association with identified white matter disruption (see [4,6]). Given this context,

the somewhat paradoxical, but consistent, finding that functional hyperconnectivity can occur

in conjunction with loss of structural integrity of the brain must be integrated into models of

functional plasticity. Hyperconnectivity after TBI appears to occur independent of the form or

severity of pathological insult and this is particularly true when pathology does not target net-

work hubs; in fact there are common profiles of hyperconnectivity across distinct clinical sam-

ples [58]. This conceptualization is consistent with a recent review of the influence of lesions

on neural networks [59] and, in the current study global connectivity metrics such as network

strength and path length maintained very little relationship to overall lesion load using 3D

lesion mapping (see Fig 1) and residual hyperconnectivity was observable in centralized hubs

(e.g., left frontal DMN) at Time-3 even in the context of global white matter volume loss from

Time-1 to Time-3 (measured via VBM, see Table 4). Therefore, we argue that in order to

understand system-level plasticity after neurological disruption, it is essential to understand
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the active network response to injury as opposed to focusing on the primary consequences of

injury, which has been the longstanding emphasis in lesion mapping.

The mechanisms responsible for hyperconnectivity after TBI remain unclear, but there is

increasing evidence that injury results in enhanced network connectivity in subnetworks of

the brain (see [58] review) and we aimed to quantify how this brain response might influence

network cost during the first year after injury. Establishing the timeline for the expression of

hyperconnectivity and increased network cost may have important implications for brain

health over the life span. For example, given the growing evidence in both animal [60–62] and

human [63–65] research that local hypermetabolism may be a predictor of pathological protein

deposition (e.g., beta amyloid), determining the permanence of the expression of high cost

hyperconnectivity after injury may hold important implications for pathological aging and

long-term outcome after TBI [66–68].

It should be made clear that our definition of cost is based upon a measure that integrates

the number, strength, and Euclidean (physical) distance for connections of each node. Euclid-

ean distance represents a linear physical distance that does not conform to the natural shape of

the white matter which is an important simplification for interhemispheric or u-shaped fibers.

Moreover, signaling time is not constant with axonal diameter playing an important role in

propagation times [69]. So while a measure of physical distance may not be sensitive to subtle

cost dimensions in processing time and metabolism, we anticipate that the cost metric we use

here is a good starting-point for a within-subject cost-efficiency analysis where these factors

remain constant over time.

4.4. Study conclusions and limitations

The current approach provides an important opportunity to examine whole-brain connectiv-

ity over multiple observation points during a critical window of recovery. The current sample

is unique to the TBI functional brain imaging literature with respect to injury severity and

time line for assessment of network functioning. Moreover, TBI samples have commonly been

heterogeneous with respect to age, ranging from late teens to mid-50s [4–7, 9, 10, 24,70] and

time-post-injury often ranges from months to years even within the same sample [4,7,9,70].

Both of these factors have influence on the observed network response and have therefore

been addressed with this relatively homogeneous sample with respect to age. Also, most studies

to date have focused on a limited number of regions-of-interest (ROIs) [3–5,9–10,70], or

relied-upon seed-based (10) or averaging signal across large ROIs determined via anatomical

atlases [25] leaving unknown the effects of TBI on more finely parcellated networks. Even so,

this study is not without limitations requiring discussion.

First, much work remains to be done in order to determine those factors that define the bal-

ance of hyper/hypo connectivity in distributed networks, the primary neural substrates

involved and their role in cognitive performance, and the temporal dynamics of these subnet-

works when examined over longer windows of time (e.g. establishing the stationarity of con-

nections). If windows of network plasticity can be established, it may serve as the foundation

for more focused research on: 1) healthy and pathological mechanisms of network change and

2) stage-specific interventions during periods of both recovery and decline.

Because this study required data collection over a long window of time (~7 years) and at

separate sites, it required the inclusion of multiple MRI scanners during data acquisition.

Between-site data collection of MRI data remains an important methodological challenge for

longitudinal work and multi-center studies [71–72] and we made efforts to guarantee the com-

parability of the signal-noise level across systems and the stability of each system over the

study period with routine quality assurance scanning and analysis. In all formal between-
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group analysis of the data we included “MRI scanner” as a covariate to determine the contribu-

tion of scanner. Moreover, we conducted whole-brain voxelwise analysis of the tSNR revealing

no differences in SNR in the same scanner over time which is vital to the within-subject

hypotheses presented here. Between-scanner analysis revealed only subtle differences between

the Philips and Siemens machines with each showing greater SNR in some locations (see Figs

D,F in S1 File). More significant differences were evident when comparing the two Siemens

scanners (see Fig E in S1 File), but for reasons discussed above, it is not clear how these

regional affects would account for the current findings given the lack of spatial overlap. We do

anticipate that scanner affects make it more difficult to observe consistent results between-

groups and over time so we may lack sensitivity to very subtle effects during network analysis

so the data collection across scanners remains a limitation of this study. The resting fMRI data

included ample signal for examining connectivity (145 volumes), but remains only a brief

representation of functioning in a dynamic system. Also, there are difficulties endemic to TBI

when engaging in long, continuous scanning (e.g., fatigue, head movement), but longer time

series provide the opportunity for examining the reliability of the results. While this is the larg-

est sample of its kind in a study of recovery in moderate to severe TBI, the sample here remains

small by behavioral study standards and a larger sample would permit more nuanced investi-

gation of the relationship between distinct injury and clinical profiles and brain connectivity.

Finally, to test the reliability of these findings, we provide examination of distinct data par-

cellation techniques (e.g., Power 264 v. ICA) revealing an influence of parcellation approach

on global metrics, but not in local findings. The influence of brain parcellation on network

metrics is not surprising given the differences in the number of nodes (264 vs. 46) and the

nature of the signal (i.e., averaged signal over a 15 mm cube of voxels vs. statistically derived

“component”). The juxtaposition of the data resulting from these approaches is confirmatory

regarding the specific regions showing the greatest contribution to elevated network cost after

injury, but are a reminder that global metrics are node and degree dependent (see [66]).
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