
RESEARCH ARTICLE

Inter-Individual Variability in the Adaptive

Responses to Endurance and Sprint Interval

Training: A Randomized Crossover Study

Jacob T. Bonafiglia1, Mario P. Rotundo1, Jonathan P. Whittall1, Trisha D. Scribbans1, Ryan

B. Graham2, Brendon J. Gurd1*

1 School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada, 2 School of

Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada

* gurdb@queensu.ca

Abstract

The current study examined the adaptive response to both endurance (END) and sprint

interval training (SIT) in a group of twenty-one recreationally active adults. All participants

completed three weeks (four days/ week) of both END (30 minutes at ~65% VO2peak work

rate (WR) and SIT (eight, 20-second intervals at ~170% VO2peak WR separated by 10 sec-

onds of active rest) following a randomized crossover study design with a three-month

washout period between training interventions. While a main effect of training was observed

for VO2peak, lactate threshold, and submaximal heart rate (HR), considerable variability

was observed in the individual responses to both END and SIT. No significant positive rela-

tionships were observed between END and SIT for individual changes in any variable. Non-

responses were determined using two times the typical error (TE) of measurement for

VO2peak (0.107 L/min), lactate threshold (15.7 W), and submaximal HR (10.7bpm). Non-

responders in VO2peak, lactate threshold, and submaximal HR were observed following

both END and SIT, however, the individual patterns of response differed following END and

SIT. Interestingly, all individuals responded in at least one variable when exposed to both

END and SIT. These results suggest that the individual response to exercise training is

highly variable following different training protocols and that the incidence of non-response

to exercise training may be reduced by changing the training stimulus for non-responders to

three weeks of END or SIT.

Introduction

Considerable heterogeneity exists in the individual response in peak oxygen uptake (VO2peak)

following exercise training [1–3]. Specifically, VO2peak can increase [2,4], decrease [5], or

remain unchanged [6,7] following structured endurance training (END). Similarly, inter-indi-

vidual variability in training responses have also been observed following supra-maximal

sprint interval training (SIT) [8,9]. While variability in training responses has been demon-

strated following both END and SIT, it is currently unknown whether individuals who fail to
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respond following one type of exercise training might respond to a different training stimulus

(i.e. different exercise volume, intensity and metabolic demand).

While END and SIT differ substantially in exercise volume, intensity, and metabolic

demand, at the group level they induce strikingly similar adaptations in VO2peak [10,11], lac-

tate threshold [12,13], and muscle oxidative potential [14–16]. Interestingly, limited evidence

demonstrating that central adaptations following training may differ between END and SIT

[17,18], supports the potential that the mechanisms underlying similar adaptations in

VO2peak may differ following END and SIT. Further, individual variability in both peripheral

[19,20] and central [17] adaptations following training have been observed. Together these

results suggest that both central and peripheral adaptations may vary in an individual follow-

ing END or SIT, supporting the hypothesis that an individual who fails to respond following

END may respond following SIT (and vis versa).

Therefore, in order to determine if individuals respond differently to END and SIT, the

present study compared individual responses following three weeks of both END and SIT uti-

lizing a randomized crossover study design with a three-month washout period between train-

ing interventions. Individual changes in VO2peak, lactate threshold, and submaximal heart

rate (HR) were compared and the incidence of response and non-response for all variables

were classified using typical error (TE), an index of measurement error that considers both

biological and technical variability [21]. We hypothesized that individual responses to END

would not necessarily reflect responses to SIT (and vis versa), potentially due to differences in

central and peripheral adaptations.

Methods

Twenty-one healthy recreationally active (self-reported < three hours of physical activity per

week) men (n = 9) and women (n = 12) volunteered to participate in the study. Each partici-

pant attended a preliminary screening session where they were briefed on the study, provided

informed consent, and had their height and weight recorded. Participants were not previously

trained in cycling and were not involved in a training program at the start of the study. Partici-

pants were informed to maintain their regular physical activity and nutritional habits through-

out the duration of the study. All experimental procedures performed on human participants

were approved by the Health Sciences Human Research Ethics board at Queen’s University.

Verbal and written explanation of the experimental protocol and associated risks was provided

to all participants prior to obtaining written informed consent.

Experimental Design

The current study utilized a randomized crossover design (Fig 1) where participants com-

pleted two, three-week training interventions separated by a three-month wash-out period

during which participants were instructed to return to their pre-study levels of physical activ-

ity. Physiological testing occurred in the week preceding, and the week following each three-

week training intervention. All physiological testing and training for both experiments was

performed on a Monark Ergomedic 874 E stationary ergometer (Vansbro, Sweden). Eight

additional participants completed a supplemental experiment to determine typical error for all

variables. All participants were asked to refrain from alcohol and caffeine 12 hours before, and

nutritional supplements and exercise 24 hours before all physiological testing.

Physiological Testing

In the week preceding (pre) and the week following (post) training, participants reported to

the lab on three separate occasions, separated by 24–48 hours. During each visit participants
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completed a VO2peak incremental ramp test to volitional exhaustion as described previously

[22]. Briefly, following a 20 minute warm-up of four alternating five minute periods of load-

less and 80W pedalling at 80 RPM, work rate was increased by 25W per minute until volitional

exhaustion. Gas exchange and heart rate (HR) were collected throughout each ramp test using

a metabolic cart (Moxus AEI Technologies, Pittsburgh, PA) and Polar HR monitors (Polar

Team2 Pro, Kempele, Finland). VO2peak was calculated for each test as the highest 30 second

average VO2 value, whereas submaximal HR was calculated for each test as the 30 second aver-

age HR value during the third stage of the ramp protocol (~156 W). Final pre- and post-train-

ing VO2peak and submaximal HR were determined by averaging the three values obtained

during each testing period. RPM was collected continuously throughout each test and peak

aerobic power (WRpeak) was calculated using the average WR from the last 30 seconds of the

test, whereas the WR at VO2peak was calculated using the average WR during the same 30 sec-

onds used to calculate VO2peak.

Lactate Threshold

Fingertip capillary blood (~20 uL) was sampled at rest (baseline) and within the last 10 s of

each successive one-minute stage during the first VO2peak ramp test of pre- and post-testing

test using a Lactate Scout + (EFK Diagnostics, Magdeberg, Germany) as done previously [13].

Lactate threshold was determined as the first recorded work rate (WR) where lactate was>4

mmol/L [23,24], often referred to as the onset of blood lactate accumulation at 4 mmol/L

[25–27].

Training Interventions

Training consisted of two, three week training periods separated by ~three months. During

each training period participants were instructed to either cycle for 30 minutes at ~65% of WR

at VO2peak (END) or perform eight, 20-second intervals at ~170% of WR at VO2peak, sepa-

rated by 10 seconds of rest (SIT). Both training interventions required participants to train

four times per week and the order of training was counterbalanced such that 12 (six males; six

females) participants completed END first. All training sessions were preceded by a one-min-

ute loadless warm-up. Participants were instructed to maintain a cadence of 80RPM and

received verbal encouragement throughout all training sessions. HR was collected during

Fig 1. Overview of experimental protocol.

doi:10.1371/journal.pone.0167790.g001
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training, at three minute intervals (END) and at the end of each interval (SIT), using Polar HR

monitors (Polar Team2 Pro, Kempele, Finland). Ratings of perceived exertion (RPE) were col-

lected immediately following each training session using a 6–20 Borg Scale [28]. HR and RPE

were averaged over all training sessions to determine training HR and RPE for END and SIT.

Determination of Typical Error

In order to determine typical error (TE) for VO2peak, lactate threshold and submaximal HR, a

supplemental experiment involving eight recreationally active participants (four males; four

females, age, 21±1 yrs; BMI, 21±2 kg/m2; VO2peak, 44±6 mL/kg/min) reported to the lab on

two separate occasions separated by at least a week as described previously [9]. On each visit to

the lab participants performed identical incremental ramp tests to volitional fatigue as

described above. VO2peak, lactate threshold and submaximal HR were determined for each

test as described above and the resulting values were utilized to calculate TE.

Typical error (TE) of measurement was calculated for VO2peak, lactate threshold, and sub-

maximal HR as described previously [21] utilizing the following equation:

TE ¼ SDdiff=
ffiffiffi
2
p

Where SDdiff is the variance (standard deviation) of the difference scores observed between

the 2 repeats of each test. A non-responder for VO2peak, lactate threshold, or submaximal HR

was defined as an individual who failed to demonstrate an increase or decrease that was greater

than two times the TE away from zero. A change beyond two times the TE means there is high

probability (i.e. 12 to 1 odds) that this response is a true physiological adaptation beyond what

might be expected to result from technical and/or biological variability [21].

Statistical Analysis

Data are expressed as means and standard deviation. To ensure efficacy of the washout period

baseline and response measures of VO2peak, lactate threshold, and submaximal HR between

training period one and two were compared using unpaired t-tests as described previously

[29]. Effects of training protocol (END vs. SIT) and time (Pre vs. Post) for all variables were

examined using a two-way, repeated measures ANOVA. Any significant main effects or inter-

actions were subsequently analyzed using a Bonferroni post hoc test where appropriate.

Unpaired t-tests were also used to assess differences in the training response for all variables

between males and females following END and SIT separately, and to determine if responses

following END or SIT differed between training periods. A simple linear regression was used

to determine the relationship between baseline variables between training period one and two

and between the magnitude of response between END and SIT. Differences in training HR

and RPE between END and SIT were assessed using paired t-tests and simple linear regres-

sions were used to determine if these variables were related to the magnitude of physiological

responses following training. A McNemar’s test was used to determine whether END and SIT

elicited similar rates of response for VO2peak, lactate threshold, and submaximal HR. Statisti-

cal significance was accepted at p< 0.05.

Results

Attendance at training sessions was 100% and all data reported are solely from those partici-

pants that completed the full study protocol. Three participants dropped out of the study

following pre-training testing in the first training period and were not included in final analy-

sis. Average HR during and RPE immediately following SIT (HR: 172.8 ± 7.8 bpm; RPE:
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17.9 ± 0.9, mean ± SD) was significantly higher (p< 0.05) than END (HR: 166.2 ± 13.7 bpm;

RPE: 15.5 ± 1.4, mean ± SD). Interestingly, RPE reported immediately following each SIT

session was significantly related with the magnitude of change in VO2peak induced by SIT

(r = 0.5, p< 0.05). Baseline measures, and the magnitude of response for all variables for train-

ing periods one and two are presented in Table 1. Unpaired t-tests revealed no differences

between baseline measures for VO2peak (p = 0.62), lactate threshold (p = 0.12), and submaxi-

mal HR (p = 0.86) between training periods one and two. No differences were observed in the

magnitude of response between training periods one and two for VO2peak (p = 0.20), lactate

threshold (p = 0.55), or submaximal HR (p = 0.62). Additionally, there was no difference in

the mean END or SIT response for any variable between training periods. Further, baseline

measures for training periods one and two were significantly related for VO2peak (r = 0.94,

p< 0.05), lactate threshold (r = 0.82, p< 0.05), and submaximal HR (r = 0.82, p< 0.05).

Participant characteristics and pre- and post-training values for END and SIT are presented

in Table 2. A main effect of training (p< 0.05) was observed for VO2peak (Fig 2A), lactate

threshold (Fig 2B), submaximal HR (Fig 2C), and WRpeak (Fig 2D). No condition (END vs.

SIT) or interaction (condition x time) effects were observed for any variable examined. While

males had higher baseline VO2peak, lactate threshold, submaximal HR, and WRpeak than

females (p< 0.05), there were no statistical differences in the magnitude of training responses

between sexes (Table 2). No significant relationships were observed between END and SIT for

individual changes in VO2peak (r = 0.14, p = 0.57; Fig 3A), lactate threshold (r = 0.10, p = 0.70;

Fig 3B), or submaximal HR (r = 0.17, p = 0.46). Baseline VO2peak did not predict changes in

VO2peak following END (r = 0.28, p = 0.22) but was negatively related with the change in

VO2peak induced by SIT (r = -0.59, p< 0.01). Baseline lactate threshold, and submaximal

HR were not related with training-induced changes following either END (lactate threshold:

r = 0.0, p = 1.0; HR: r = 0.37, p = 0.10) or SIT (lactate threshold: r = 0.29, p = 0.23; HR: r = 0.11,

p = 0.63).

Unpaired t-tests revealed that the baseline characteristics of the participants used in the

ancillary TE study did not statistically differ from the participants in the present study for all

variables in Table 2. Two times TE was 0.107 L/min for VO2peak, 157 W for lactate threshold,

and 10.0 bpm for submaximal HR. Individual patterns of response and rates of non-response

for VO2peak, lactate threshold, and submaximal HR following both END and SIT are pre-

sented in Fig 4. Following training six non-responders were observed where an individual par-

ticipant failed to improve in one measured variable following either END or SIT; however, in

all cases these non-responders improved at least one variable following training utilizing the

other exercise protocol. McNemar’s tests did not reveal significant differences in the incidence

of response for VO2peak (p = 0.6), lactate threshold (p = 0.1), and submaximal HR (p = 0.6)

between END and SIT.

Table 1. Pre-training and magnitude of response for training periods 1 and 2 for all participants.

Training Period One Training Period Two

Pre-training Response Pre-training Response

VO2peak (L/min) 3.0 ± 0.9 +0.05 ± 0.2 2.9 ± 0.9 +0.15 ± 0.3

VO2peak (mL/kg/min) 42.7 ± 6.4 +0.7 ± 3.2 41.2 ± 6.9 +2.2 ± 3.2

Lactate Threshold (W) 165.9 ± 43.2 +20.2 ± 18.3 190.7 ± 51.4 +14.7 ± 34.9

HRsubmax (bpm) 153.9 ± 24.7 -5.8 ± 7.8 152.6 ± 21.5 -4.1 ± 12.8

Values are means ± standard deviation.

doi:10.1371/journal.pone.0167790.t001
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Discussion

The current study examined individual responses in VO2peak, lactate threshold and submaxi-

mal exercise heart rate (HR) following three weeks of both END and SIT. Carryover effects

from training period one to two were absent and the magnitude of responses between training

periods was not different for any variable. These data highlight the effective implementation of

our randomized cross-over study design [29]. In summary, the current study demonstrates

inter-individual variability in the training responses to END and SIT and suggests that individ-

ual patterns of response are dependent on the training protocol utilized.

The major novel findings of the current study are that: 1) while END and SIT increased

VO2peak, lactate threshold and submaximal HR at the group level with no differences

observed between protocols, improvements within a given individual following END did not

predict the improvement observed following SIT (and vice versa), 2) individual patterns of

response were observed following both END and SIT, however these patterns varied within

individuals between END and SIT, and 3) while our analysis revealed non-responses for one

or more variables within most participants, we failed to observe a global non-response to END

and SIT in any individual.

Similar Group Responses in the Initial Adaptations to END and SIT

At the group level, END protocols are effective at increasing VO2peak and lactate threshold

[30], while SIT protocols at supra-maximal intensities also improve VO2peak [31] and lactate

Table 2. Participant characteristics and group responses to END and SIT.

END

Pre Post

Males (n = 9) Females (n = 12) Total (n = 21) Males (n = 9) Females (n = 12) Total (n = 21)

Age (yrs) 20.4 ± 1.2 19.9 ± 1.2 20.3 ± 0.9 - - -

Height (cm) † 181 ± 6 165 ± 7 172 ± 12 - - -

Body mass (kg) † 81.9 ± 10.3 62.0 ± 11.6 70.0 ± 14.7 82.0 ± 10.9 61.2 ± 11.5 69.5 ± 15.6

VO2peak (L/min) † 3.7 ± 0.5 2.4 ± 0.5 3.0 ± 0.9 3.8 ± 0.5 2.5 ± 0.5 3.1 ± 0.9*

VO2peak (mL/kg/min) † 46.0 ± 3.9 39.3 ± 6.7 42.2 ± 6.4 47.3 ± 5.4 41.4 ± 6.2 43.9 ± 6.4*

Lactate Threshold (W) † 209 ± 38 149 ± 40 175 ± 47 233 ± 40 171 ± 46 199 ± 51*

WRpeak (W) † 296 ± 42 196 ± 39 238 ± 64 309 ± 58 210 ± 32 252 ± 66*

HRsubmax (bpm) † 135 ± 11 166 ± 19 152 ± 22. 129 ± 8 159 ± 18 146 ± 21*

SIT

Pre Post

Males (n = 9) Females (n = 12) Total (n = 21) Males (n = 9) Females (n = 12) Total (n = 21)

Age (yrs) 20.4 ± 1.2 19.9 ± 1.2 20.3 ± 0.9 - - -

Height (cm) 181 ± 6 165 ± 7 172 ± 12 - - -

Body mass (kg) † 82.8 ± 11.6 62.2 ± 12.4 70.4 ± 15.6 83.1 ± 11.2 61.7 ± 11.5 70.3 ± 15.6

VO2peak (L/min) † 3.7 ± 0.6 2.4 ± 0.5 3.0 ± 0.9 3.7 ± 0.5 2.6 ± 0.4 3.1 ± 0.9*

VO2peak (mL/kg/min) † 45.0 ± 9.3 39.2 ± 5.5 41.7 ± 6.9 44.7 ± 5.5 41.6 ± 5.4 42.9 ± 5.5*

Lactate Threshold (W) † 215 ± 36 154 ± 40 180 ± 47 230 ± 33.3 165 ± 41 192 ± 47*

WRpeak (W) † 292 ± 45 202 ± 30 241 ± 57 314 ± 46 210 ± 32 255 ± 63*

HRsubmax (bpm) † 133 ± 13 169 ± 19 155 ± 24 129 ± 9 167 ± 20 151 ± 25*

Values are means ± standard deviation. WRpeak, peak aerobic power; HRsubmax, submaximal heart rate.

†Significant baseline difference between males and females, p < 0.05.

*Main effect of training, p < 0.05.

doi:10.1371/journal.pone.0167790.t002
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threshold [12,13]. Consistent with these results and previous work form our lab utilizing the

same protocols [16], a main effect of training was observed in the current study for VO2peak,

lactate threshold, and submaximal HR. Also consistent with previous studies comparing END

and SIT [14–16] no differences were observed between protocols for the magnitude of

response at the group level. While the primary purpose of present study was not to determine

if the group responses to END and SIT differ, the observation of similar group responses to

END and SIT may suggest that a larger sample size is required to attain statistical power in

order to detect potential interaction effects between training protocols.

Individual Variability in Responsiveness to END and SIT

While variability in the individual responses to END is established [2,6,7,19,32,33], we recently

demonstrated similar variability in response to the SIT protocol utilized in the present study

[9]. The major novel finding of the current study is our demonstration of variability in the indi-

vidual responses following different training protocols (END and SIT). Specifically, our results

demonstrated that exercise protocols which differ in intensity, time, and metabolic demand,

like END and SIT, can induce different adaptive responses in VO2peak, lactate threshold and

submaximal HR within a given individual. These findings confirm the hypothesis that individu-

als who are not sensitive to a given exercise protocol may experience adaptation if exposed to a

Fig 2. Group responses following 3 weeks of END and SIT. Group responses for VO2peak (A), lactate threshold (B), submaximal HR (C), and WRpeak (D).

*Significant main effect of training, p < 0.05.

doi:10.1371/journal.pone.0167790.g002
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different protocol [5], potentially due to different sensitivities to training volume [7] and/or

intensity [32]. While the mechanisms determining individual variability in sensitivities to differ-

ing training protocols are unknown, genetic predispositions [34] may be responsible for vari-

ance in the capacity of central [17] and peripheral [14,35] adaptations to training. A similar

disassociation between individual changes in VO2peak has previously been observed following

END and resistance training [33], but to our knowledge we are the first to demonstrate inter-

individual variability in the response to two protocols known to induce equivalent improve-

ments in aerobic capacity at the group level. Importantly, while the current data suggests that

individuals may respond favorably to a change in training stimulus, we cannot rule out the pos-

sibility that the different individual responses observed between END and SIT were a result of

simply training twice at two different times (i.e. it is possible that an individual completing

END twice may not demonstrate identical responses), differences in external physical activity

between training periods and/or changes in nutritional habits caused by different training pro-

tocols (i.e. END vs. SIT), or training at different times of the year (i.e. fall vs. winter). Addition-

ally, the present study only examined individual variability in the initial response to training

(i.e. the response to three weeks of training), and it remains possible that individual differences

Fig 3. Correlations of individual responses following 3 weeks of END and SIT. Relationship between individual

responses in VO2peak (A) and lactate threshold (B). Dashed lines represent the typical error cut-offs. Individuals falling

within the shaded area failed to improve either VO2peak or lactate threshold following both END and SIT, while the

hashed area represents an adverse response following both training protocols.

doi:10.1371/journal.pone.0167790.g003

Fig 4. Individual patterns of response following three weeks of training. Positive responses (white boxes), non-responses (grey boxes) and adverse

responses (black boxes) are shown for all participants across all variables following END (A) and SIT (B). A dashed box indicates that data was unavailable

for a given variable. Individuals who failed to improve any variables for either END or SIT, “Overall non-responders” are indicated by diamond filled boxes.

The percentage of participants demonstrating a non-response (NR; including both non- and adverse responses) for each variable, and overall, is also

provided.

doi:10.1371/journal.pone.0167790.g004
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observed following three weeks of END and SIT may not persist following longer training peri-

ods. Thus, while our results support the consideration of multiple training protocols when

attempting to optimize individual exercise prescription [36], there remains very little data, and

much future work still needed, before we fully understand inter-individual responsiveness to

different training protocols.

Consistent with previous observations of heterogeneity in the individual response to END

[7,32,33,37] and SIT [8,9] we have also observed significant rates of non-response following

both END and SIT in the current study (Fig 4). The present finding that END and SIT elicited

similar rates of non-response for VO2peak, lactate threshold, and submaximal HR agrees with

previous observations that END and SIT Importantly, while inter-individual variability in the

response to training has been repeatedly demonstrated [7,33,37], attempts to quantify individ-

uals as responders or non-responders are relatively recent [5–9,32,38]. In the current study,

the use of two times the typical error (TE) to identify responders and non-responders [21]

may have led to higher incidences of non-responses than previously reported [6–8,32]. How-

ever, despite the use of this conservative method of identifying responders, we have observed a

subset of adverse responders to VO2peak, lactate threshold, and submaximal HR following

both END and SIT that is consistent with previous observations of adverse responses to exer-

cise for a variety of cardiovascular risk factors [5]. Interestingly, a non- or adverse response to

VO2peak, lactate threshold, or submaximal HR following one training protocol did not pre-

clude a positive response following the other training protocol. Recently, several reports have

recommended that before individuals are classified as responders or non-responders, it is

important to determine if variability in the individual responses within the experimental con-

dition are greater than within-subject variation [39–41]. While we were unable to conduct this

analysis due to our current study lacking a time-matched control group, it is important that

future studies examining rates of response/non-response to exercise training consider the

recently recommended approach to performing these analyses [39–41]. This the limitation

aside, the current study adds to a growing body of literature that identifies a portion of the

population that either does not respond, or responds adversely to exercise training and sug-

gests that these non-/adverse-responders may respond more positively to different training

protocols.

Mechanisms Underlying Individual Variability to END and SIT

Despite marked differences in the physiological stress they impose, a single bout of END or

SIT elicits analogous molecular responses in skeletal muscle [16], leading to similar peripheral

adaptations including changes in fibre-type distribution [16], increased skeletal muscle oxida-

tive capacity [14–16,42] and resting muscle glycogen content [14–16]. Interestingly, the central

adaptations elicited by END or SIT are inconsistent [17,18], however, only central adaptations

associated with six weeks of END prevails as independent predictors of the VO2peak responses

[43]. Few studies have compared both central and peripheral adaptations to multiple training

protocols and significant differences in training duration, frequency, and volume limits the

ability to compare and interpret findings from different studies [43,44]. While recent research

has elucidated mechanisms that primarily explain the adaptive responses to training [43],

future research is needed to determine if variability in the mechanisms that underlie changes

in exercise capacity/performance explain individual response variability following training.

At the individual level, heterogeneity in both central [17] and peripheral adaptations are

present following END [19,20] and SIT [14], which suggests that variability in individual

responses to END and SIT may be due in part to individual variance in the magnitude of

peripheral and central adaptations. Why variance in central and/or peripheral adaptations

Individual Responses to Endurance and Sprint Interval Training
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may exist within an individual following different training protocols is currently unknown,

however, evidence from the HERITAGE study suggests that much of this variability may

results from a genetic predisposition to a specific type of training stimulus [2]. Interestingly,

recent evidence has found associations between several genetic markers and individual train-

ing responses [34,45,46], however, while these findings are a step towards optimizing individ-

ual exercise prescriptions [34] whether genetic signatures exist that may predict which type of

training an individual is most likely to respond to is unknown. This remains an interesting

and important area for future investigation.

Individual Patterns of Response

Following END and SIT we observed individual patterns of response, where improvements in

VO2peak were not necessarily associated with improvements in lactate threshold or submaxi-

mal HR (Fig 4). The existence of individual patterns of response is consistent with previous

studies demonstrating that non-responders in VO2peak can be responders to other variables

associated with END [6,19] and SIT [8,9]. An additional novel finding of the present study is

that individual patterns of response were different following END and SIT. This variability in

individual patterns of response meant that even though several individuals failed to improve

any variable following either END or SIT, no “global non-responders” (i.e. individuals that

failed to improve following either protocol) were observed. These results further support the

consideration of multiple training protocols when prescribing exercise, and raise the possibil-

ity that an individual who does not appear to be responding to an initial exercise prescription

may respond more favourably if an alternative mode of training is prescribed. As continuing

the training stimulus beyond initial exposure (four weeks) reduces the incidence of non-

response in VO2peak [32], whether switching training protocols after initial exposure or

extending the amount of training prescription is equally effective at diminishing non-

responses remains an area for future research.

Conclusion

The current study assessed individual responses in VO2peak, lactate threshold, and submaxi-

mal exercise heart rate (HR) following three weeks of both END and SIT. While training elic-

ited significant improvements in all variables at the group level, considerable heterogeneity

was observed in the individual responses including a number of non-/adverse-responders.

Further, individual patterns of response were not related across END and SIT and appear to be

training protocol dependent. All participants demonstrated a positive response in at least one

variable following the completion of both END and SIT suggesting that the existence of true

non-responders to exercise training is unlikely and that different training protocols should be

considered when optimizing individual exercise prescription.
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