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Abstract
Falls can have devastating consequences for older people. We determined the relationship

between the likelihood of fall incidents and daily-life behavior. We used wearable sensors to

assess habitual physical activity and daily-life gait quality (in terms of e.g. stability, variabil-

ity, smoothness and symmetry), and determined their predictive ability for time-to-first-and-

second-falls. 319 older people wore a trunk accelerometer (Dynaport MoveMonitor, McRo-

berts) during one week. Participants further completed questionnaires and performed grip

strength and trail making tests to identify risk factors for falls. Their prospective fall incidence

was followed up for six to twelve months. We determined interrelations between commonly

used gait characteristics to gain insight in their interpretation and determined their associa-

tion with time-to-falls. For all data -including questionnaires and tests- we determined the

corresponding principal components and studied their predictive ability for falls. We showed

that gait characteristics of walking speed, stride length, stride frequency, intensity, variabil-

ity, smoothness, symmetry and complexity were often moderately to highly correlated (r >

0.4). We further showed that these characteristics were predictive of falls. Principal compo-

nents dominated by history of falls, alcohol consumption, gait quality and muscle strength

proved predictive for time-to-fall. The cross-validated prediction models had adequate to

high accuracy (time dependent AUC of 0.66–0.72 for time-to-first-fall and 0.69–0.76 for

-second-fall). Daily-life gait quality obtained from a single accelerometer on the trunk is pre-

dictive for falls. These findings confirm that ambulant measurements of daily behavior con-

tribute substantially to the identification of elderly at (high) risk of falling.

Introduction
Falls occur frequently among older people. The annual incidence of falls in people aged 65 and
over is about one-third and about 15% of the people in this age group fall two or more times
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per year [1–3]. These falls are associated with high morbidity and mortality, making fall predic-
tion and prevention important issues. Falls may be predicted by questionnaires and physical
tests, and new insights suggest that wearable sensors may help to improve the accuracy of these
predictions [4–7].

Recent technical developments in wearable sensors allow for ambulatory monitoring of
human behaviour in daily life. Such methods can provide valid and reliable insight in an indi-
vidual’s habitual daily activities, which seems particularly useful to numerate physical inactivity
and to counter the associated detrimental effects on health our society is currently facing [8–
10]. In the context of ageing, ambulatory monitoring of daily activity may be especially relevant
for estimating fall risk. Physical inactivity is one of the main targets for fall prevention because
of its detrimental effects on fitness, balance ability and fall risk (e.g. [11, 12]). Several studies
showed that, in the long term, increasing habitual daily activity through training increases
physical function and thereby protects against falls [11, 12]. However, some studies suggest
that physical activity also increases exposure to risky situations and may hence increase the
risk of falls in the short term; particularly in frail, fall-prone individuals due to incongruence of
what they are able to do and actually do [5, 13, 14]. Objective assessment of habitual physical
(in)activity may thus be valuable to identify those at risk of falls.

Besides the amount of daily activity, ambulatory measurements now also allow for quantifi-
cation of quality of gait. The quality of daily-life gait seems to be a sensitive marker of intrinsic
factors underlying balance ability as well as actual exposure to balance threats in daily life. Pre-
vious studies showed that daily-life gait quality characteristics derived from acceleration sig-
nals, such as walking speed and stride frequency, are related to fall risk [4–6, 15]. More
sophisticated characteristics based on spectral ratios or temporal structure of trunk accelera-
tions during gait may be more sensitive and provide insight in factors underlying the increased
fall risk. Characteristics of daily-life gait such as the dominant frequency, root mean square,
stride autocorrelation, spectral magnitude and width at stride frequency, percentage of spectral
power under a predefined threshold, harmonic ratio, index of harmonicity, mean logarithmic
rate of divergence and sample entropy have previously been associated with prospective falls
[4–6]. The biological interpretation of such characteristics is still under debate (e.g. [16, 17]),
and may be encumbered as they are based on similar methods and thus likely quantify similar
aspects of gait. To improve our interpretation of these characteristics, we aim to establish their
interrelations.

Recent studies revealed that prediction models comprising aspects of physical (in)activity
and gait quality were able to predict falls with better accuracy than models based on question-
naires and physical tests [4–6]. Such prediction models showed similar predictive ability for
falls, but differed considerable in the gait characteristics they comprised [4, 5]. A possible
explanation may be the aforementioned similarities of these gait characteristics, or over fitting
because of relative small sample sizes and lack of validation [18]. Our aim was therefore to
decrease the risk of over fitting by dimension reduction prior to fitting a prediction model for
falls. For generalization of these results and implementation of such models for risk detection,
validation is of great importance. In addition, these previous studies employed logistic regres-
sion to predict binary did or did not fall. Survival models predicting the time-to-fall may be
more sensitive and have the additional benefit that they allow for censoring as is often neces-
sary in follow up studies. We therefore employed a survival model with cross-validation after
dimensionality reduction to attain a generalizable fall prediction model.
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Methods

Participants
This study was part of the FARAO project concerning fall-risk assessment in older people per-
formed at the Vrije Universiteit Amsterdam. Participants were recruited between March 2011
and January 2014 in Amsterdam (the Netherlands) and surroundings via general practitioners,
pharmacies, training groups, hospitals, and residential care facilities. Eligible persons were
between 65 and 99 years of age, had a mini mental state examination score (MMSE [19]) of 19
to 30, and were able to walk at least 20 meters with aid of an assistive device if needed. All par-
ticipants provided written informed consent and the protocol was approved by the medical
ethical committee of the VUMedical Hospital (protocol 2010/290).

Fall incidences
Prospective fall incidences were obtained through monthly telephone contact in addition to fall
diaries to be filled out daily. When participants showed indications of impaired cognitive status
(either an MMSE score below 24 or observed during questionnaire assessment), a caretaker
was requested to assist with the fall diaries and accelerometer-wearing compliance. Follow-up
was initially 6 months but was extended up to 12 months if the participant was willing to con-
tinue receiving monthly calls and keeping daily fall diaries and if the study duration allowed.
Fall history was obtained by asking how frequent the participant had fallen in the 6 months
and full year preceding the study.

Accelerometry
Participants wore a tri-axial accelerometer (DynaPort MoveMonitor, McRoberts, The Hague,
The Netherlands) for 8 consecutive days. This accelerometer had a sample rate of 100 samples/
s and a range of -6g to +6g, and was worn dorsally on the trunk at the level of L5 using the sup-
plied elastic belt. Participants were instructed to wear the accelerometer at all times, except dur-
ing aquatic activities such as showering. The first and last 6 hours of the measurements were
omitted from analysis to discard any possible artefacts caused by transportation to and from
the participant's home.

Amount of physical activity. The amount of physical activity was quantified based on the
accelerometer data. Bouts of non-wearing, locomotion, sitting, lying and standing were identi-
fied using the manufacturer’s algorithm (see supplementary material of Dijkstra et al. [8] for
details). For days on which the accelerometer was worn more than 75% of the time [9], we cal-
culated the total duration of locomotion, sitting, standing and lying, and the number of strides,
average number of locomotion bouts, median and maximum duration of walking bouts, and
the number of transitions to stance. These numbers were averaged over all eligible days to
quantify habitual physical activity.

Gait quality characteristics. The daily-life gait quality was determined using methods
described before [4, 5]. In brief, raw accelerations were aligned offline to anatomical axes based
on the accelerometer's orientation with respect to gravity [20] and optimization of the left-
right symmetry [21]. Subsequently all locomotion bouts exceeding 10s in duration were
selected. These locomotion bouts were cut into 10-s windows for which we determined stride
length from vertical trunk displacement assuming compass gait [22], stride frequency, and
their product, walking speed [22]; gait intensity expressed as the root mean square of the signal;
gait variability expressed as stride-to-stride variability in walking speed, stride frequency and
stride length, the autocorrelation at the dominant period [23], the magnitude and width of the
dominant period in the frequency domain [6, 24] and the percentage of power below 0.7 Hz
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[15]; gait symmetry expressed as the harmonic ratio [17, 25]; gait smoothness expressed as the
index of harmonicity [26]; and gait complexity expressed as the mean logarithmic rate of diver-
gence per stride using Wolf's method [27] and sample entropy [28]. Median values of charac-
teristics over all 10-seconds windows were selected for further analysis to minimize problems
of non-stationarity and to avoid bias by differences in data series length [29–31]. Where appro-
priate, characteristics were determined for each of the three directions of acceleration, i.e. ante-
roposterior (AP), mediolateral (ML) and vertical (VT).

Questionnaires and tests of fall-risk factors
During a home visit at which participants started wearing the accelerometer, descriptive char-
acteristics such as age, weight, height, living conditions and the use of a walking aid were
obtained. Moreover, validated questionnaires and tests on fall-risk factors were completed.
These comprised the LASA fall-risk profile [3], cognitive function (Mini Mental State Exami-
nation; MMSE [19]), executive functioning (trail making test parts A & B; TMT-A & TMT-B
[32]), fear of falling (16-item fall efficacy scale; FES-I [33]) and depressive symptoms (30-item
geriatric depression scale; GDS [34]). The LASA fall-risk profile includes questions concerning
dizziness, independence in daily life, having pets, alcohol consumption, education duration
and required the measurement of hand grip strength, which was quantified using a handgrip
dynamometer (TKK 5401, Takei Scientific Instruments, Tokyo, Japan).

Statistical analysis
Numerical variables were transformed to z-scores and dichotomous variables were trans-
formed to -1 and +1 coding. We determined Pearson’s correlations between the 39 estimated
gait quality characteristics (6 general characteristics and 11 characteristics in 3 directions). Cor-
relations between 0.7 and 1.0 were considered strong, between 0.4 and 0.7 moderate and
between 0 and 0.4 weak.

To determine univariate associations between each of the gait quality characteristics and
time-to-first-fall and time-to-second-fall, we used an accelerated failure time (AFT) model.
This survival model is analogous to a Cox proportional hazards model in that it allows for cen-
soring as required given the different follow-up times in the current study, and has the benefit
of the estimation of a baseline hazard, which is essential for prediction models. The underlying
idea of this regression technique is that all cases will eventually experience the event and that
certain factors will accelerate the time to this event. We used a shape of 1 and scale of 1 for the
underlying generalized gamma distribution, effectively an exponential distribution, as this fit-
ted the data best.

Prior to fitting multivariate models, we performed a principal component analysis (PCA) as
data reduction technique. The number of principal components was determined using an
eigenvalue of 1 as stopping criteria and results were rotated using a varimax rotation with Kai-
ser normalization. The resulting factors were coined according to the variables that weighted
most heavily on each factor and subsequently used as input for multivariate AFT models with
time-to-first-fall and time-to-second-fall as outcomes. Factor scores were added stepwise to the
AFT model using forward selection until their addition did no longer contribute significantly
(p>0.05). The outcome of the prediction models, i.e. hazard per month, was transformed to
probability of survival. The prediction models were subsequently validated using leave-one-out
validation and classification accuracy was determined with time-dependent receiver operator
characteristics (ROC) curves with bootstrapping to obtain 95% confidence intervals.
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Results
A total of 319 older people were included in this study, out of which 51% was female and 90.3%
was community-dwelling (Table 1). Participants were on average 75.5 (SD 6.9) years old, 170.6
(SD 8.8) cm tall and weighed 74.3 (SD 13.5) kg. They had a mean MMSE score of 27.6 (SD 2.3;
17 people had a score below 24, indicating mild cognitive impairment). 224 out of 276 people
who were asked agreed to extend follow up after 6 months. The duration of the fall follow-up
ranged between 2 and 12 months with a median duration of 11 months (IQR 6), see Fig 1.

The amount of physical activity of 21 participants was excluded because they had failed to
comply with wearing the accelerometer at least 75% of any day [9]. Gait quality characteristics
of 18 participants were excluded because they did not exhibit sufficient (> 50 in total) locomo-
tion bouts exceeding 10 seconds [15]. One or more items in the questionnaires were missing
for 12 participants, which were imputed by mean values. This left data of gait quality char-
acteristics for 301 participants and complete data of 294 participants for further analysis.
People excluded because of wear compliance or insufficient locomotion bouts were generally
older (78.5 vs. 75.3 years; p = 0.025), were less often community dwelling (76.0 vs. 91.4%;
p< 0.0001), and made more often use of a walking aid (40.0 vs. 16.9%; p = 0.012). See Table 1
for baseline characteristics.

Correlations between gait quality measures
Correlations between gait quality characteristics estimated from different acceleration direc-
tions were frequently moderate to strong and often stronger between VT and AP directions
than between other directions (see S1 Table). Exceptions were the index of harmonicity, ampli-
tude of the dominant frequency and width of the dominant frequency. The index of harmoni-
city in VT exhibited a weak negative correlation with ML (r = -0.39) and AP (r = -0.18). The
amplitude of the dominant frequency in VT exhibited a weak negative correlation with ML
(r = -0.33) and a weak positive correlation with AP (r = -0.27); the amplitude of the dominant
frequency in ML and AP did not correlate significantly (p = 0.80). The width of the dominant

Table 1. Baseline characteristics of the participants.

All participants Participants with� 75%wear time and� 50 locomotion episodes exceeding 10s

N 319 294

Age (years) 75.5 (6.9) 75.3 (6.8)

Male gender (%) 49.5% 49.2%

Length (m) 1.71 (0.09) 1.71 (0.09)

Weight (kg) 74.3 (13.5) 74.1 (13.4)

At least one fall in past year (%) 48.9% 48.8%

Two or more falls in past year (%) 24.8% 25.2%

Living independent (%) 90.3% 91.4%

Use of a walking aid (%) 18.5% 16.9%

Cognitive function (MMSE score) 27.6 (2.3) 27.7 (2.2)

Cognitive processing speed (time in s for TMT-A) 51.5 (25.0) 50.8 (23.6)

Executive functioning (time in s for TMT-B) 120.1 (56.7) 114.1 (55.0)

Hand grip strength (kg) 57.0 (19.9) 57.1 (19.9)

Depressive symptoms (GDS score) 4.8 (4.5) 4.8 (4.5)

Fear of falling (FESi score) 20.5 (5.6) 20.5 (5.6)

LASA fall risk profile (score) 5.34 (4.45) 5.19 (4.41)

Values represent mean (SD) or percentage.

doi:10.1371/journal.pone.0158623.t001
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frequency in VT did not correlate significantly with ML (p = 0.35) and moderately with AP
(r = 0.46); ML and AP correlated weak (r = 0.17).

Correlations between different gait quality characteristics were also often moderate to
strong (see S1 Table). Walking speed was strongly correlated with step length, and with root
mean square and range in VT and AP, as well as with amplitude of dominant frequency in VT
and rate of divergence per stride in VT. Variability of stride time, stride length and stride speed
were strongly correlated with each other and with autocorrelation in VT and AP direction, low
frequency power in VT and AP, and harmonic ratio and rate of divergence per stride in VT.
The index of harmonicity was strongly correlated with the amplitude of dominant frequency.
Moreover, autocorrelation at the dominant frequency, harmonic ratio, amplitude of dominant
frequency, and rate of divergence per stride were strongly correlated.

Univariate associations with time-to-fall
Stride frequency, root mean square in VT and AP, autocorrelation in VT and AP, amplitude of
the dominant frequency in VT and ML, width of the dominant frequency in AP, index of

Fig 1. Fall follow-up durations. Drop out before 1 year resulted from serious injury or death (N = 5), opting not
to continue after 6 months (N = 52) or the end of the study (N = 106).

doi:10.1371/journal.pone.0158623.g001
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harmonicity in VT and ML, harmonic ratio in VT and AP, and rate of divergence per stride in
VT and AP were all significantly associated with time-to-first- and time-to-second-fall (all
p<0.05, see Table 2). Range in AP was only associated with time-to-first fall and not to time-
to-second fall, although hazard ratios were comparable (0.82 (95% CI 0.68–0.99) vs. 0.84 (95%
CI 0.64–1.10)). Walking speed, stride length, amplitude of the dominant frequency in AP and
sample entropy in ML were only associated with time-to-second-fall (all p<0.05). None of the
physical activity characteristics was associated with time-to-first- or time-to-second-fall (all
p�0.06).

PCA and multivariate associations with time-to-fall
PCA revealed 18 principal components with an eigenvalue exceeding 1. Together, these princi-
pal components explained 80.5% of the variance in the questionnaire, tests, and accelerometry
data (in total 75 variables). The varimax-rotated factor matrix can be found in S2 Table. The 18
factors reflected aspects which we coined gait quality, vigour, ML balance, physical activity,
complexity, strength, disability, maximal gait duration, transfers, slow movements, history of
falls, executive function, fear and depression, physical inactivity, cognition, body composition,
alcohol consumption, and solace. The gait quality factor (which had a negative association with
fall risk) was explained for 93% by autocorrelation at dominant period in VT (β = -0.72), root
mean square of the signal in ML (β = 0.18), index of harmonicity in ML (β = 0.27) and magni-
tude at dominant period in frequency domain in AP (β = -0.20). The Kaplan Meier plot of sur-
vival times for people above and below average of this gait quality factor can be found in Fig 2.

The multivariate prediction model for time-to-first-fall comprised 3 factors: history of falls,
alcohol consumption and the factor on which almost all gait quality variables loaded. This pre-
diction model exhibited a cross-validated area under the curve between 0.66 and 0.72, which
decreased slightly with follow-up (Table 3).

The multivariate prediction model for time-to-second-fall included the same factors as the
prediction model for time-to-first-fall with an additional factor related to strength. The final
model included factors related to gait quality, fall history, strength and alcohol consumption.
This prediction model had a cross-validated area under the curve between 0.69 and 0.76, which
decreased slightly with follow-up (Table 4).

Discussion
We built upon previously reported fall prediction models that are based on the amount of daily
activity and daily-life gait quality. We determined interrelations between gait characteristics to
gain insight in their interpretation and subsequently assessed their predictive ability for time-
to-fall. We further developed a prediction model for falls comprising daily-life activities, gait
quality, and questionnaire data in a large and heterogeneous cohort of older people.

Gait quality characteristics were often highly correlated between methods even when they
theoretically should describe different aspects. Walking speed was highly correlated with the
root mean square and range in VT, which is not surprising since walking speed is estimated
based on vertical displacement of the trunk. Walking speed was also correlated with the magni-
tude of the dominant period in the frequency domain and rate of divergence per stride in VT.
A possible explanation could be that both are sensitive to walking speed, or that people with
better capacities, and thus superior variability and complexity, simply walk faster. The index of
harmonicity was highly correlated with the magnitude of the dominant period in the frequency
domain, likely because the index of harmonicity is defined as the amplitude of this dominant
frequency divided by itself plus the subsequent six harmonics [26]. Several variability measures
were highly correlated with the rate of divergence per stride in VT. This may be due to the
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Table 2. Univariate associations between gait quality and physical activity with time-to-fall.

Mean (SD) First fall (HR [95% CI]) Second fall (HR [95% CI])

Walking speed 0.83 (0.20) 0.84 [0.70–1.00] 0.70 [0.53–0.91]

Stride frequency 0.86 (0.08) 0.83 [0.70–0.98] 0.75 [0.59–0.95]

Stride length 1.07 (0.20) 0.89 [0.75–1.06] 0.78 [0.61–1.00]

Root mean square VT 1.75 (0.51) 0.78 [0.65–0.95] 0.71 [0.53–0.95]

Root mean square ML 1.21 (0.27) 0.93 [0.78–1.10] 1.04 [0.82–1.33]

Root mean square AP 1.26 (0.28) 0.78 [0.65–0.93] 0.75 [0.58–0.98]

Range VT 11.36 (2.88) 0.86 [0.72–1.03] 0.84 [0.64–1.10]

Range ML 8.79 (2.80) 0.92 [0.77–1.09] 1.01 [0.79–1.29]

Range AP 8.55 (2.43) 0.82 [0.68–0.99] 0.84 [0.64–1.09]

Walking speed variability 0.07 (0.02) 1.09 [0.92–1.29] 0.97 [0.76–1.24]

Stride time variability 7.53 (4.09) 1.08 [0.94–1.25] 1.12 [0.92–1.37]

Stride length variability 0.06 (0.02) 1.08 [0.91–1.27] 0.97 [0.76–1.24]

Autocorrelation at dominant period VT 0.45 (0.16) 0.82 [0.69–0.97] 0.72 [0.57–0.92]

Autocorrelation at dominant period ML 0.34 (0.11) 1.01 [0.85–1.20] 1.09 [0.86–1.38]

Autocorrelation at dominant period AP 0.40 (0.11) 0.84 [0.70–1.00] 0.75 [0.58–0.97]

Magnitude of dominant period in frequency domain VT 0.62 (0.21) 0.83 [0.70–0.98] 0.69 [0.53–0.88]

Magnitude of dominant period in frequency domain ML 0.37 (0.16) 1.18 [1.01–1.38] 1.28 [1.03–1.59]

Magnitude of dominant period in frequency domain AP 0.52 (0.12) 0.94 [0.79–1.12] 0.75 [0.58–0.97]

Width of dominant period in frequency domain VT 0.76 (0.20) 1.09 [0.95–1.25] 1.10 [0.92–1.32]

Width of dominant period in frequency domain ML 0.77 (0.08) 0.89 [0.74–1.08] 0.80 [0.59–1.09]

Width of dominant period in frequency domain AP 0.72 (0.06) 1.24 [1.09–1.40] 1.30 [1.14–1.49]

Percentage of power under 0.7 HZ VT 0.19 (0.19) 1.04 [0.92–1.18] 1.09 [0.93–1.28]

Percentage of power under 0.7 HZ ML 8.29 (6.86) 1.07 [0.92–1.24] 1.18 [0.97–1.43]

Percentage of power under 0.7 HZ AP 8.48 (5.96) 1.11 [0.97–1.28] 1.19 [0.99–1.43]

Index of harmonicity VT 0.70 (0.15) 0.84 [0.72–0.98] 0.72 [0.59–0.88]

Index of harmonicity ML 0.49 (0.22) 1.21 [1.02–1.44] 1.35 [1.05–1.74]

Index of harmonicity AP 0.72 (0.09) 1.16 [0.98–1.39] 1.09 [0.85–1.39]

Harmonic ratio VT 2.19 (0.59) 0.81 [0.68–0.96] 0.69 [0.53–0.90]

Harmonic ratio ML 1.85 (0.35) 0.97 [0.82–1.16] 0.97 [0.76–1.26]

Harmonic ratio AP 1.82 (0.42) 0.76 [0.63–0.91] 0.64 [0.49–0.85]

Mean logarithmic rate of divergence VT 1.49 (0.29) 1.21 [1.01–1.44] 1.46 [1.12–1.90]

Mean logarithmic rate of divergence ML 1.73 (0.20) 1.00 [0.84–1.19] 0.92 [0.72–1.16]

Mean logarithmic rate of divergence AP 1.65 (0.22) 1.21 [1.01–1.45] 1.45 [1.10–1.91]

Mean logarithmic rate of divergence per stride VT 1.76 (0.40) 1.23 [1.04–1.45] 1.48 [1.16–1.88]

Mean logarithmic rate of divergence per stride ML 2.04 (0.30) 1.10 [0.93–1.30] 1.10 [0.86–1.41]

Mean logarithmic rate of divergence per stride AP 1.94 (0.31) 1.29 [1.09–1.54] 1.61 [1.24–2.08]

Sample Entropy VT 0.25 (0.07) 1.04 [0.92–1.18] 1.00 [0.81–1.25]

Sample Entropy ML 0.35 (0.06) 0.88 [0.74–1.06] 0.66 [0.50–0.89]

Sample Entropy AP 0.27 (0.08) 1.07 [0.93–1.23] 1.01 [0.81–1.27]

Duration of locomotion 1.23 (0.55) 0.97 [0.81–1.15] 0.85 [0.66–1.10]

Number of strides 6407 (2971) 0.95 [0.79–1.13] 0.83 [0.64–1.07]

Number of locomotion bouts 405 (144) 1.05 [0.88–1.25] 0.95 [0.74–1.21]

Maximum duration of locomotion bouts 313 (239) 0.95 [0.79–1.14] 0.82 [0.60–1.10]

Maximum number of strides in one locomotion bout 565 (508) 0.94 [0.78–1.13] 0.80 [0.58–1.11]

Median duration of locomotion bouts 6 (1) 0.94 [0.79–1.12] 0.87 [0.67–1.12]

Median number of strides in one locomotion bout 7 (1) 0.89 [0.75–1.06] 0.82 [0.63–1.07]

Duration of lying 9.65 (2.52) 0.96 [0.81–1.14] 0.91 [0.71–1.18]

(Continued)
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above-hypothesized relation with walking speed, but may also indicate that the rate of diver-
gence per stride as estimated by Wolf’s method in daily life quantifies (aspects of) variability or
its inverse, regularity. This notion is strengthened by its high correlation with the harmonic
ratio and the autocorrelation at the dominant period. Future studies are required to determine
whether gait quality characteristics in daily life indeed mainly quantify–aspects of–regularity of
gait.

None of the physical activity characteristics was associated to time-to-fall. This is remark-
able since we and others previously showed that the amount of gait and duration of lying were,
independent or after controlling for gait quality, risk factors for falls [4–6, 14, 35]. A possible
explanation could be that this relation is modified by physical capacity (such as gait quality)
and that our group of participants was too heterogeneous to find such specific effects. Analysis
of subgroups (e.g. [36]) may reveal such interactions in the future. We identified several gait
quality characteristics that were associated with time-to-fall. These associations suggest that
people with a higher risk for falls walked slower, less regular, less symmetric and less stable,
more variable and less smooth in VT and AP, and less variable, smooth and predictable in ML,
and these findings are comparable to those previously reported by us and others [4–6]. In line
with these univariate findings, the negative loading of the gait quality factor after PCA suggests
that people who display a lower autocorrelation at dominant frequency in VT (more variable),
higher standard deviation of the signal in ML (more intense), higher index of harmonicity in
ML (more smooth) and lower power at dominant frequency in AP (more variable) are at
increased risk for falls.

Our results indicate that factors related to history of falls, alcohol consumption and gait
quality predicted time-to-first-fall with an adequate to good accuracy (AUC 0.66–0.72). With
the addition of the factor related to strength, these factors were able to predict time-to-second-
fall with adequate to good accuracy (AUC 0.69–0.76). For prediction up to 6 months this accu-
racy is slightly better than that of commonly used prediction models for falls, which generally
achieve AUCs ranging from 0.55 to 0.74 [37–39]. Predictive ability of both models slightly
declined with time to follow-up. A possible explanation may be that gait characteristics’ predic-
tive ability declines over time; however, future studies are required to verify this. The obtained
prediction models performed slightly better in predicting second falls, which are less likely
purely incidental and hence may be easier to predict.

The developed prediction models and gait quality component appear useful to identify
those prone to falling, but may also be suitable to evaluate the effects of interventions. Future
steps would be validation of here-developed method in an independent cohort and implemen-
tation in clinical setting. Intervention studies are required to determine whether these methods
are sensitive enough to detect meaningful effects.

To the best of our knowledge, this study is the first to describe and take advantage of the
correlations between gait quality measures to enhance fall prediction. However, it also has

Table 2. (Continued)

Mean (SD) First fall (HR [95% CI]) Second fall (HR [95% CI])

Duration of sitting 9.12 (2.38) 1.04 [0.87–1.24] 1.13 [0.88–1.46]

Duration of standing 2.62 (0.96) 1.12 [0.95–1.32] 0.99 [0.78–1.26]

Number of transfers 136 (58) 1.13 [0.96–1.32] 1.22 [0.99–1.50]

Duration of unclassified activities 0.36 (0.15) 1.00 [0.85–1.18] 1.01 [0.80–1.28]

Hazard ratios (HR) with 95% confidence intervals (95% CI). VT: vertical, ML: mediolateral, and AP: anteroposterior direction. Boldface indicates associations

significant at p<0.05. All mean (SD) values are in Standard Units (m, sec, m/sec), except total durations of activities, which are in hours.

doi:10.1371/journal.pone.0158623.t002
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some limitations. We have used an extensive set of gait quality characteristics for the PCA, but
adding other gait characteristics may affect the outcomes. We performed several sensitivity
analyses in which we excluded variables to determine effects on the outcomes, and these
appeared to be limited. We included questionnaire items with dichotomous variables in the
PCA, which may not be desirable since it transforms the data such that the first principal com-
ponent has the most variance and subsequent principal components have the highest variance
possible while being orthogonal to the previous ones. To minimize the effect of these variables
we coded them to be centered around zero with unit amplitude. Their number was low and

Fig 2. Kaplan-Meier curve depicting survival time for people with below and above average gait quality. + indicates censoring.

doi:10.1371/journal.pone.0158623.g002
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excluding them from the analysis had limited effect on the final outcomes. Follow-up duration
would have ideally been a full year (or longer) for all participants however organizational con-
straints prevented this. As result, the number of participants in the study decreased consider-
ably after 6 months. The dropout was random for participant characteristics and the employed
model was suitable for censoring, so we expect that this did not affect our results. We used a
principal component analysis prior to fitting accelerated-failure time regression models; future
studies could consider to employ feature selection and regularization methods such as LASSO
or ridge regression. The population of this study, albeit large, is likely biased towards relatively
healthy older people, since most were community-dwelling and their habitual walking speed
was relatively high (i.e. 0.83 m/s). Additional analyses showed that predictive ability in individ-
uals that used a walking aid in daily life, who are likely the more frail people, was comparable
to that of the whole population (N = 49, 1st fall AUC 0.59–0.75, 2nd fall AUC 0.62–0.81). Stud-
ies in other populations are required to further establish the predictive ability of the developed
methods for time-to-fall in more frail populations.

In conclusion, we showed that gait quality in daily life, expressed by separate characteristics
or a composite factor based on these highly related variables, is predictive for both time-to-first
and time-to-second falls in both univariate and multivariate models. The developed and cross-
validated models for first and second falls can predict falls with adequate to good accuracy.
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S1 Data. Data underlying the finding described in the manuscript.
(XLSX)

S1 Table. Correlations between gait quality characteristics. Boldface indicates significance at
p<0.05. Dark grey shade indicates correlations between different directions of acceleration
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Table 3. Predictive ability of multivariate predictionmodel for time-to-first-fall.

Time-to-first-fall Month

1 2 3 4 5 6 7 8 9 10 11 12

Area under the ROC curve 0.69 0.72 0.69 0.71 0.69 0.67 0.66 0.66 0.66 0.67 0.67 0.66

Lower bound 95% confidence interval 0.58 0.63 0.62 0.64 0.62 0.59 0.59 0.59 0.58 0.60 0.60 0.58

Upper bound 95% confidence interval 0.78 0.79 0.76 0.77 0.75 0.73 0.72 0.73 0.73 0.73 0.74 0.74

Number of participants 294 294 294 294 294 294 240 227 214 207 205 203

Number of fallers 34 53 68 84 96 104 109 111 116 125 131 134

doi:10.1371/journal.pone.0158623.t003

Table 4. Predictive ability of multivariate predictionmodel for time-to-second-fall.

Time-to-second-fall Month

1 2 3 4 5 6 7 8 9 10 11 12

Area under the ROC curve 0.76 0.72 0.77 0.74 0.74 0.71 0.72 0.72 0.72 0.71 0.69 0.69

Lower bound 95% confidence interval 0.55 0.60 0.68 0.66 0.65 0.62 0.63 0.64 0.63 0.61 0.61 0.61

Upper bound 95% confidence interval 0.89 0.83 0.85 0.81 0.80 0.78 0.78 0.79 0.79 0.78 0.76 0.76

Number of participants 294 294 294 294 294 294 224 208 191 184 182 178

Number of fallers 6 17 25 34 42 48 51 56 57 58 62 65

doi:10.1371/journal.pone.0158623.t004
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