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Abstract
The purpose of this work is to investigate the accurate trajectory tracking control of a

wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholo-

nomic WMRmay increase the slippage risk, when traveling on outdoor unstructured terrain

(such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and

accurately under the effect of slippage, an unscented Kalman filter and neural networks

(NNs) are applied to estimate the slip model in real time. This method exploits the model

approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is

used to train NN’s weights online. The slip parameters can be estimated and used to predict

the time series of deviation velocity, which can be used to compensate control inputs of a

WMR. The results of numerical simulation show that the desired trajectory tracking control

can be performed by predicting the nonlinear slip model.

Introduction
In recent years, as wheeled mobile robots (WMRs) have been implemented more popularly in
unstructured environments, motion control problems have received considerable attention in
the automation field. The phenomenon of wheel slippage always exists in certain real-life
motion tasks that have critical effects on the locomotion of mobile robots, which cannot be
ignored for accurate tracking control.

A dynamic-model-based method is proposed to estimate the longitudinal wheel slip and to
detect the immobilized conditions of WMRs traveling on outdoor terrain [1]. Slippage causes
the imperfect rolling of wheels, and makes the accurate tracking control difficult when vehicles
travel across off-road environments [2]. In order to attain higher performances, some research-
ers have studied the influence of slippage based on terramechanics analysis [3–5]. These meth-
ods have been proposed to identify the soil parameters for the wheel–ground interaction model
off-line, which are helpful to study the motility of mobile robots. However, the aspects of
wheel–ground interaction are needed for accurate models, which are neither well known nor
easily measurable in realistic applications, because they do not adapt to varying terrain proper-
ties. In order to enhance the real-time control of mobile robots and control accuracy, rapid
learning algorithms are required to be developed for identifying the slip model online. Some
researchers have considered slip ratio estimation and compensation for tracked robots and

PLOSONE | DOI:10.1371/journal.pone.0158492 July 28, 2016 1 / 16

a11111

OPEN ACCESS

Citation: Li Z, Wang Y, Liu Z (2016) Unscented
Kalman Filter-Trained Neural Networks for Slip Model
Prediction. PLoS ONE 11(7): e0158492. doi:10.1371/
journal.pone.0158492

Editor: Daniel Durstewitz, Heidelberg University,
GERMANY

Received: April 26, 2015

Accepted: June 16, 2016

Published: July 28, 2016

Copyright: © 2016 Li et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available within the paper and its Supporting
Information files.

Funding: 111 Project, No. B07018; Self-Planned
Task of State Key Laboratory of Robotics and System
(HIT), SKLRS20140MS09.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158492&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


WMRs in real time [6, 7]. For skid-steered WMR control in the presence of wheel skidding and
slipping, a Kalman Filter-based estimation system is designed by combining the inertial mea-
surements with centimeter accuracy RTK-GPS measurements to provide essential posture,
velocities, and perturbation information [8]. The EKF-based positioning and wheel slip-esti-
mation scheme are designed to enhance the precise tracking of velocity and posture [9]. These
methods are required to establish accurate system models and observe real-time slip velocities;
however, they are difficult to obtain in real applications.

NN is well suited to approximate the uncertain or nonlinear functions due to its online
learning ability and nonlinear characteristics [10]. They have been successful to identify
dynamical system models in actual applications [11–14]. However, the most continuous obser-
vations are to some extent contaminated by noise, which limits the function of many tech-
niques of identification and prediction. Therefore, these observations should be filtered by
some effective nonlinear filter methods, such as the extended Kalman filter (EKF) and the
unscented Kalman filter (UKF) [15–18].

In this paper, the predictive slip model is developed to work for real trajectory tracking of a
WMR using UKF-trained NN model, which includes the longitudinal, lateral and turning slip
parameters. These slip parameters are applied to define the weights of the NN, and adjusted by
the UKF. The control task is to accurately track the reference trajectory. The proposed method
depends on more reliable posture residuals rather than measurements of velocity.

In this paper, a feedforward NN model and a nonlinear filtering method are introduced in
Section 2. An unscented Kalman filter-based NN weight estimation is presented in Section 3.
Section 4 presents the slip model prediction based on the UKF and NN. The simulation of tra-
jectory tracking is presented and discussed in Section 5. Finally, Section 6 concludes the main
contributions and results of this paper.

NNModel and Nonlinear Filtering Method

The feedforward NNmodel
NNs have been widely applied to approximate nonlinear models due to their inherent learning
capabilities [10–14]. A typical feedforward NN is applied in this paper, and its simple structure
is shown in (Fig 1).

A nonlinear smooth function g(x):Rp ! Rm can be expressed by the NN model:

sl ¼ sð
Xp

i¼1

xiw
I
ilÞ; l ¼ 1; . . . ; h; ð1Þ

gjðxÞ ¼
Xh

l¼1

slw
o
lj; j ¼ 1; . . . ;m; ð2Þ

where x = [x1,. . .xp]
T is the input vector of an NN; g = [g1,. . .gm]

T is the output vector of an
NN; matrix wI ¼ fwI

ilgp�h is the weight from input layer to the hidden layer; s is an activation

function, and s = [s1,. . .,sh] is the output of the hidden layer; matrix wo ¼ fwo
ljgh�m is the weight

from the hidden layer to the output layer.
In this paper, a popular logistic sigmoid function is considered as the activation of hidden

neuron for (1):

sðxÞ ¼ 1

1þ expð�xÞ ð3Þ
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Nonlinear filtering method based feedforward NN training model
In this section, a filter is used to predict the state vector, which is composed of the NN weights.
The model outputs of the NN are considered as the measurements of the nonlinear filter. In
the nonlinear filter, the uncertainty in both states and measurements are correctly treated. The
transition and observation models are used by standard nonlinear Kalman filtering algorithm
as shown below.

Transition Model

wkþ1 ¼ f ðwk; xkÞ þ εk ð4Þ

where wk ¼ ½wI
11 . . .w

I
1h; . . . ;w

I
p1 . . .w

I
ph; w

o
11 . . .w

o
1m; . . . ; w

o
h1 . . .w

o
hm�k is the weight vector in

the k-th collected sample, and specifies the state transition equation corrupted by process noise
εk, which is characterized with covarianceQk.

Observation Model
The output of the observation model can be expressed by

yk ¼ gðwk; xkÞ þ σk ð5Þ

where σk is the observation noise, with the covariance Rk,and �yk ¼ gðwk; xkÞ denotes the pre-
dicted output.

Fig 1. The structure of feedforward NN.

doi:10.1371/journal.pone.0158492.g001
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UKF-Based NNWeights Estimation
The unscented Kalman filter is an effective nonlinear filtering method [18–20], and has been
widely applied in parameters prediction and estimation. The UKF–based NN weights estima-
tion proceeds as follows, which is considered to predict the nonlinear model in the next
section.

(a). Initialized with:

�w0 ¼ E½w0�; P0 ¼ E½ðw0 � �w0Þðw0 � �w0ÞT�; ð6Þ

(b). Calculate the sigma points and weights for k 2 {1,. . .,1}:

w0 ¼ �w; wi ¼ �w þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ lÞPk

p
Þi; i ¼ 1; . . . ;N; ð7Þ

wi ¼ �w � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ lÞPk

p
Þi�N ; i ¼ N þ 1; . . . ; 2N; ð8Þ

Wm
0 ¼ l=ðN þ lÞ; Wc

0 ¼ l=ðN þ lÞ þ ð1� a2 þ bÞ; ð9Þ

Wm
i ¼ Wc

i ¼ 1=2ðN þ lÞ; i ¼ 1; . . . ; 2N; ð10Þ

where �w and Pk are assumed as the mean and covariance of w, respectively, λ = a2(N + κ)
− N is the condition parameter, and parameter a decides the range of the sigma point
around �w , which is often a small positive number (e.g., 1e–3). According to [19], we have
κ = 0 and b = 2.

The vector of sigma points are mapped through the nonlinear function g to:

gi ¼ gðwiÞ; i ¼ 0; . . . ; 2N: ð11Þ

According to the weighted posterior sigma points, the approximation of the mean and
covariance for y can be obtained as:

�y �
X2N
i¼0

WðmÞ
i gi ð12Þ

Pyy �
X2N
i¼0

WðcÞ
i ðgi � �yÞðgi � �yÞT ð13Þ
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(c). Time update for prediction:

�w i;k ¼ f ðwi;k�1; xk�1Þ; ð14Þ

�wk ¼
X2N
i¼0

WðmÞ
i �w i;k; ð15Þ

�Pk ¼
X2N
i¼0

WðcÞ
i ð�w i;k � �wkÞð�w i;k � �wkÞT þQk; ð16Þ

�g i;k ¼ gð�wk; xkÞ; ð17Þ

�yk ¼
X2N
i¼0

WðmÞ
i �g i;k: ð18Þ

(d). Measurement update equations of the Gaussian statistics and observation:

Pykyk
¼

X2N
i¼0

WðcÞ
i ½�g i;k � �yk�½�g i;k � �yk�T þ Rk; ð19Þ

Pwkyk
¼

X2N
i¼0

WðcÞ
i ½�w i;k � �wk�½�g i;k � �yk�T; ð20Þ

Kk ¼ Pwkyk
P�1
ykyk

; ð21Þ

ŵk ¼ �wk þ Kkðyk � �ykÞ; ð22Þ

Pk ¼ �Pk � KkPykyk
KT

k ; ð23Þ

Pyk
¼ detð2pPykyk

Þ�1
2exp½� 1

2
ðyk � �ykÞTP�1

ykyk
ðyk � �ykÞ�; ð24Þ

whereQk is the covariance of process noise, Rk is the covariance of measurement noise,
and Kk is the Kalman gain.

Slip Model Prediction of WMR
The WMR is a typical nonholonomic mechanical system (Fig 2). The right and left wheels
are driven independently. The motion and orientation are controlled by independent actua-
tors, and torque of all wheels is provided by DC motors. For self-coordination of the robot,
there are three degrees of freedom velocity including longitudinal, lateral, and turning angu-
lar velocities.

Generally, slippage usually happens between wheels and ground when a WMR is traveling
in an outdoor environment. The kinematic differential equation of the WMR with respect to
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the world frame can be written by:

_q ¼
_xc

_yc

_θ

2
64

3
75 ¼

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

2
64

3
75

vx

vy

ω

2
64

3
75þ

δvx

δvy

δω

2
64

3
75

8><
>:

9>=
>; ð25Þ

or

_q ¼ SðyÞðuþ duÞ ð26Þ

where u = [vx vy ω]
T is the input vector of the kinematics model, which expresses a commanded

component of velocity including the longitudinal, lateral, and turning angular velocities of
WMR. Moreover, δu = [δvx(αx) δvy(αy) δω(αθ)]

T is the deviation of input vector, which
expresses an error component of velocity including the forward slip ratio, δvx, the lateral slip
ratio, δvy, and the angular slip ratio δω. Let α = [αx αy αθ]

T denote the uncertain slip
parameters.

It is important to express the slip model in terms of control inputs rather than measure-
ment, because the model will be used to predict the motion before traversing the terrain. Since
the wheeled robot is influenced by the slippery terrain, the key calibration is how best to

Fig 2. A six-wheel nonholonomicWMR.

doi:10.1371/journal.pone.0158492.g002
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establish the slip model. Generally, the slip model can be expressed as a nonlinear function:

_q ¼ hðq; u; duðαÞÞ ð27Þ

The real trajectory of wheeled robot is obtained by integrating the Eq (27):

q ¼
Z

hðqðtÞ; uðtÞ; duðαÞÞdt

¼ Hðq; u;α; tÞ
ð28Þ

Any wheeled robot will depend on the terrain characteristics that are various over space and
time due to some factors. Only real-time systems can adaptively change as fast as the local ter-
rain, as a vehicle moves from one place to another. While the trajectory is followed, there is no
clear method to show when the terrain will be changed. Therefore, the dynamic system must
be able to be calibrated on any arbitrary trajectory.

It is obvious that the slip velocity is directly related to the input velocities vx, vy, and ω. The
input lateral velocity is zero, vy = 0, due to the nonholonomic character of the WMR. The num-
ber of inputs to the NN is p = 2. And clearly, the number of outputs ism = 3; here, we choose
the number of the hidden layer neurons as h = 3. Therefore, the number of slip parameters is
N = 15.

In order to obtain the accurate slip model (28), the NN model given in (2) can be recast by:

du ¼ 1

1þ expð�xwIÞ � w
o ð29Þ

where the state vectors are defined as x = u, w = α. Each output of the NN can be expressed by
the function of slip parameters as following:

dvx ¼
X3

l¼1

sð
X2

i¼1

xiw
I
ilÞwo

l1 ð30Þ

dvy ¼
X3

l¼1

sð
X2

i¼1

xiw
I
ilÞwo

l2 ð31Þ

do ¼
X3

l¼1

sð
X2

i¼1

xiw
I
ilÞwo

l3 ð32Þ

where x1 = vx, x2 = ω; the slip parameters α = w can be expressed by three slip vectors as follow-
ing:

wx ¼ ½wI
11;w

I
12;w

I
13;w

I
21;w

I
22;w

I
23;w

o
11;w

o
21;w

o
31� ð33Þ

wy ¼ ½wI
11;w

I
12;w

I
13;w

I
21;w

I
22;w

I
23;w

o
12;w

o
22;w

o
32� ð34Þ

wo ¼ ½wI
11;w

I
12;w

I
13;w

I
21;w

I
22;w

I
23;w

o
13;w

o
23;w

o
33� ð35Þ

In this paper, slip parameters are assumed to be constant over a short segment once the ter-
rain and the inputs are known. The process noise is considered as Gaussian distribution in
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Fig 3. Comparison of tracking errors between slip prediction and no slip prediction. (a) Posture
tracking error in X-axis. (b) Posture tracking error in Y-axis. (c) Tracking error of yaw angle.

doi:10.1371/journal.pone.0158492.g003
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states observation. Therefore, the transition model (4) can be adequately obtained by:

wkþ1 ¼ wk þ εk: ð36Þ

According to the nonlinear integrated function (28), the observation model (5) can be
obtained by:

yk ¼ Hðyk�1; uk;wkÞ þ σk: ð37Þ

Fig 4. Slip parameters variation during UKF iterations. (a) NN weightswI. (b) NN weightswO.

doi:10.1371/journal.pone.0158492.g004
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Fig 5. Slip Surfaces learned by UKF-based NNmodel training. (a) Longitudinal slip surface. (b) Lateral slip
surface. (c) Angle slip surface.

doi:10.1371/journal.pone.0158492.g005
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Simulation and Analysis of WMR Trajectory Tracking
The slip parameters of the WMR are the important state variables of tracking control, since
wheel-ground slip will change the current velocity of the WMR and influence the tracking pre-
cision. We performed the numerical simulation to demonstrate the capabilities of the proposed
method by collecting data on a six-wheeled skid-steered mobile robot. This simulation is used
to imitate the actual environment, which includes wheel–ground interaction and wheel slip.
For such a simulation, the execution of trajectory will create wheel slip, which causes the diffi-
culty of tracking control based on the dynamics model. The predicted slip parameters can be
used to estimate the error in trajectory prediction for planning purposes.

In this simulation, a slippery flat terrain is considered for the WMR to travel, and three lin-
ear velocities of 0.1 m/s, 0.4 m/s, and 0.8 m/s, and three turning angular velocities of 0.1 rad/s,
0.2 rad/s, and 0.4 rad/s are commanded to drive on nine different curves. According to the col-
lected data during the nine trajectories, the UKF is used to optimize the slip parameters of the
kinematics model. As the UKF was run on the observed states, a following trajectory segment
is predicted by estimating the current slip model from the current posture. The comparison of
tracking errors between slip prediction and no slip prediction based on proportional derivative
(PD) control scheme to track the same trajectories have presented in (Fig 3). According to the

Fig 6. Tracking a sinusoidal with slip prediction compared to the desired trajectory and ideal trajectory without slip prediction. (a) Trajectory
tracking without slip prediction and the desired trajectory. (b) Trajectory tracking with slip prediction and the desired trajectory. (c) Tracking errors with slip
prediction and no slip prediction in vx-axis. (d) Tracking errors with slip prediction and no slip prediction in vy-axis.

doi:10.1371/journal.pone.0158492.g006
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comparison, it is clear that the slip prediction is important for tracking control, which can
reduce the posture errors of trajectory tracking. Therefore, the proposed method for slip
parameters estimation and slip model prediction has the advantage of improving the accuracy
of tracking control.

It is significant that the slip surface parameters are all initialized to zero, and making no
assumptions about the wheel-ground interaction. There is a rapid on-line adaptation to the dif-
ferent terrains. The slip parameters variation over the UKF run is shown in (Fig 4) versus the
algorithm iteration index. When new operation terrains with different slip features are first
encountered, the slip parameters can be clearly adjusted to obtain new knowledge.

The final slip surfaces “δvx,δvy, and δω” for the six-wheel mobile robot can be obtained on
this terrain as shown in (Fig 5). These surfaces are the final predicted slip rates over the
observed command forward and rotational velocities. The slip surfaces show that the changing
range of lateral slip rate is very small due to the nonholonomic character of the WMR and trav-
eling on the flat terrain; the rotational and forward slip, however, have the dominant effect due
to the longitudinal wheels slip.

Fig 7. Tracking a parabola with slip prediction compared to the desired trajectory and ideal trajectory without slip prediction. (a) Trajectory
tracking without slip prediction and the desired trajectory. (b) Trajectory tracking with slip prediction and the desired trajectory. (c) Tracking errors with slip
prediction and no slip prediction in vx-axis. (d) Tracking errors with slip prediction and no slip prediction in vy-axis.

doi:10.1371/journal.pone.0158492.g007

Slip Model Prediction

PLOS ONE | DOI:10.1371/journal.pone.0158492 July 28, 2016 12 / 16



In order to validate the importance of the predictive slip model and test its generalizability,
WMR is applied to track four different trajectories, where the white noises at different levels are
added into the states observation. Since lateral velocity input can not be commanded due toWMR’s
nonholonomic feature. Therefore, in order to realize the trajectory tracking control in a high accu-
racy, and ensure the longitudinal and lateral position errors minimization, the error of yaw angle
has to be sacrificed. In the following, four different trajectories tracking control will be performed.

Firstly, a low level white noise in the interval [-0.4, 0.6] is added into the states observation.
A sinusoidal (Fig 6, S1 Table) and a parabola (Fig 7, S2 Table) trajectories are tracked under
the white noise. According to the comparison of trajectories tracking between no slip predic-
tion and slip prediction, and the comparison of tracking errors in the local coordinate of
WMR, it is obvious that the actual trajectories with slip prediction are closer the desired ones
than trajectories without slip prediction. Clearly the predictive slip model for this robot plays
an important role for tracking a trajectory on the slippery terrain.

In order to further confirm the model's predictive power, a high-level white noise in the
interval [-3, 3] is added into the states observation. An ellipse (Fig 8, S3 Table) and an 8-curve
(Fig 9, S4 Table) trajectories are tracked under the high-level white noise. According to the

Fig 8. Tracking an ellipse with slip prediction compared to the desired trajectory and ideal trajectory without slip prediction. (a) Trajectory tracking
without slip prediction and the desired trajectory. (b) Trajectory tracking with slip prediction and the desired trajectory. (c) Tracking errors with slip prediction
and no slip prediction in vx-axis. (d) Tracking errors with slip prediction and no slip prediction in vy-axis.

doi:10.1371/journal.pone.0158492.g008
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comparison of trajectories tracking between no slip prediction and slip prediction, and the
comparison of tracking errors in the local coordinate of WMR, it is obvious that the actual tra-
jectories with slip prediction are closer the desired ones than trajectories without slip predic-
tion. Clearly, though the high level noise is considered, the slip prediction can still perform the
trajectory tracking with high accuracy on the slippery terrain.

Conclusions
In this paper, an effective method of parameters estimation is developed to predict WMR’s slip
model rapidly. The UKF-based NN model learning is applied to predict slip parameters online.
The weights of the NN are applied in the state model of the UKF and the output of the NN
presents the deviation model, and the observation model of the UKF is the integrating form of
the kinematics model. The method applies the slip model to express the phenomenon of slip-
page, and slip velocities are related to arbitrary input signals of the model. We have demon-
strated nine circle trajectories with different velocities for tracking on the slippery terrain, and
presented the posture residuals based on the predictive slip parameters. The method is clearly
successful over all the input space for our six-wheel mobile robot and is suitable to apply in

Fig 9. Tracking an 8-curve with slip prediction compared to the desired trajectory and ideal trajectory without slip prediction. (a) Trajectory
tracking without slip prediction and the desired trajectory. (b) Trajectory tracking with slip prediction and the desired trajectory. (c) Tracking errors with slip
prediction and no slip prediction in vx-axis. (d) Tracking errors with slip prediction and no slip prediction in vy-axis.

doi:10.1371/journal.pone.0158492.g009
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different slippery terrains. Furthermore, the simulations of tracking four different trajectories
are performed with white noises at different levels. The results have shown that the proposed
method for slip prediction can improve the tracking accuracy for the desired trajectories and
adapting the slippery terrains rapidly.

Supporting Information
S1 Table. List of positions and tracking errors under traveling a sinusoidal without slip pre-
diction and with slip prediction. Column description: Xr, Yr: the desired positions in X-axis
and Y-axis. X no SP: the actual position without slip prediction in X-axis. Y no SP: the actual
position without slip prediction in Y-axis. xe no SP: the position error without slip prediction
in vx-axis. ye no SP: the position error without slip prediction in vy-axis. Noise: the white noise
with low level. X with SP: the actual position with slip prediction in X-axis. Y with SP: the
actual position with slip prediction in Y-axis. xe with SP: the position error with slip prediction
in vx-axis. ye with SP: the position error with slip prediction in vy-axis.
(XLS)

S2 Table. List of positions and tracking errors under traveling a parabola without slip pre-
diction and with slip prediction. Column description: Xr, Yr: the desired positions in X-axis
and Y-axis. X no SP: the actual position without slip prediction in X-axis. Y no SP: the actual
position without slip prediction in Y-axis. xe no SP: the position error without slip prediction
in vx-axis. ye no SP: the position error without slip prediction in vy-axis. X with SP: the actual
position with slip prediction in X-axis. Y with SP: the actual position with slip prediction in Y-
axis. xe with SP: the position error with slip prediction in vx-axis. ye with SP: the position error
with slip prediction in vy-axis.
(XLS)

S3 Table. List of positions and tracking errors under traveling an ellipse without slip pre-
diction and with slip prediction. Column description: Xr, Yr: the desired positions in X-axis
and Y-axis. X no SP: the actual position without slip prediction in X-axis. Y no SP: the actual
position without slip prediction in Y-axis. xe no SP: the position error without slip prediction
in vx-axis. ye no SP: the position error without slip prediction in vy-axis. Noise: the white noise
with high level. X with SP: the actual position with slip prediction in X-axis. Y with SP: the
actual position with slip prediction in Y-axis. xe with SP: the position error with slip prediction
in vx-axis. ye with SP: the position error with slip prediction in vy-axis.
(XLS)

S4 Table. List of positions and tracking errors under traveling an 8-curve without slip pre-
diction and with slip prediction. Column description: Xr, Yr: the desired positions in X-axis
and Y-axis. X no SP: the actual position without slip prediction in X-axis. Y no SP: the actual
position without slip prediction in Y-axis. xe no SP: the position error without slip prediction
in vx-axis. ye no SP: the position error without slip prediction in vy-axis. X with SP: the actual
position with slip prediction in X-axis. Y with SP: the actual position with slip prediction in Y-
axis. xe with SP: the position error with slip prediction in vx-axis. ye with SP: the position error
with slip prediction in vy-axis.
(XLS)
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