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Abstract

Introduction

Cholera, an infectious diarrheal disease, has been shown to be associated with large scale
hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is
linked with high mortality rates, in part, due to uncertainty in timing and location of out-
breaks. Improved understanding of the relationship between pathogenic abundance and cli-
matic processes allows prediction of disease outbreak to be an achievable goal. In this
study, we show association of large scale hydroclimatic processes with the cholera epi-
demic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East
province, in August, 2008.

Principal Findings

Climatic factors in the region were found to be associated with triggering cholera outbreak
and are shown to be related to anomalies of temperature and precipitation, validating the
hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and fol-
lowed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of pre-
cipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions
that permitted identification of the location in the region where the disease outbreak began.

Discussion

Satellite derived hydroclimatic processes can be used to capture environmental conditions
related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning
system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae,
is autochthonous to the aquatic environment, prediction of conditions favorable for its
growth and estimation of risks of triggering the disease in a given population can be used to
alert responders, potentially decreasing infection and saving lives.
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Introduction

Cholera, a life-threatening diarrheal disease, has been shown to be transmitted by drinking
water contaminated with the causative agent, Vibrio cholerae, and the disease remains a global
public health threat. Recent studies have established that cholera occurs in three forms: epi-
demic (a sudden outbreak in a previously relatively disease-free region and primarily inland),
endemic (recurring essentially annually and predominantly along coastal regions) [1], and
mixed-mode (a combination of epidemic and endemic disease occurrence). Epidemic and
endemic cholera show significantly different mortality rates, with epidemic cholera having
higher mortality, over 6% in some cases. The mortality rates reported for recent epidemics
include Haiti 6.4% in 2010, Madagascar 6% in 2000, Zimbabwe 4.3% in 2008-09, and Nigeria
3.8% in 2010 [2]. Current methods are effective in treating cholera, e.g., oral rehydration, intra-
venous saline solution, and vaccines; but providing safe water access remains the most effective
method to prevent outbreaks. V. cholerae exists naturally in the aquatic environment. Hence
growth of the bacterium is strongly influenced by environmental conditions. Furthermore, V.
cholerae is reemerging in many areas in the form of newly virulent serotypes, such as V. cho-
lerae 0139, complicating traditional treatments. Because it is not realistic or feasible to consider
eradication of the pathogen from the aquatic environment, a fundamentally transformational
approach is needed to design mitigation strategies to protect against the disease. If prediction
of a probable cholera epidemic using large scale hydroclimatic data is possible, appropriate
resources and treatment can be dedicated to a given location in advance.

The majority of cholera research over the last several decades has focused on endemic chol-
era regions, primarily Bangladesh, where temporal disease surveillance data have been accumu-
lated. Research on V. cholerae, the agent itself, also is extensive, both on its micro-environment
(biological processes associated with the bacteria) and macro-environment (large scale hydro-
logical, ecological, and climatological processes related to outbreaks of the disease). Both sets of
information are crucial to understand how the disease is triggered in a specific geographic
region and how it can spread in that population.

Association of climate variables with cholera in Africa is relatively unexplored and only a
few studies have attempted to understand quantitatively the disease dynamics to predict chol-
era outbreaks. Africa, in general, is considered to be a new homeland of cholera [3]. In 2006,
Africa reported 234,349 cases of cholera to the World Health Organization (WHO), account-
ing for 99% of the officially notified global cholera [3]. Two years of cholera outbreak data
from KwaZulu-Natal in South Africa were shown to be statistically associated with sea surface
temperature (SST), precipitation, and coastal phytoplankton, the latter being the surrogate
indicator of zooplankton, the natural host of the cholera vibrio [4], as had been demonstrated
earlier for the Bay of Bengal [5]. However, the studies were carried out where cholera is
endemic. The impact of temperature and rainfall, both associated with climate change, on chol-
era was studied in Tanzania and the conclusion was that temperature is significantly associated
with cholera, i.e., a one degree Celsius increase in air temperature increases relative risk of chol-
era by 15-29% [6]. A positive correlation of historical precipitation and temperature data with
hospital records of disease for children under the age of thirteen was observed in South Africa
[7]. Diarrhea (although not specifically attributed to cholera) was one of the diseases consid-
ered, comprising 42.4% of the reported hospital cases. Regression analysis showed the com-
bined effect of temperature and rainfall explained approximately 38% of disease occurrence,
including other diseases as well as diarrhea [7]. A predictive cholera study in Africa examined
diarrheal incidence in Botswana over a 30-year period, in relation to several climatic variables,
including rainfall, minimum temperature, and vapor pressure [8]. In that study, diarrheal dis-
eases showed annual bimodal occurrence, predictable by a one-month lag in the climatic
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variables [8]. Other studies, although not predictive in design, linked climatic variables, e.g.,
precipitation, temperature, and humidity, to outbreaks of cholera, based on historical data [9-
11]. Most of the studies were strictly correlational, lacking a physical hypothesis with respect to
cholera and large scale geophysical variables. Relevant is an observation made in a review [12],
where it was qualitatively concluded that precipitation may be a key variable for understanding
modalities of seasonal varijability in the occurrence of disease in human populations. Recently,
a hypothesis was proposed by Jutla et al., [1] concerning large scale hydroclimatic control of
cholera outbreaks occurring inland away from the coasts and in epidemic form, concluding
that elevated temperatures create environmental conditions favorable for growth of the cholera
bacteria. When followed by above average rainfall and appropriate transmission mechanisms
(i.e. ineffective or catastrophic destruction of sanitation infrastructure resulting in open flow of
domestic wastewater), a cholera epidemic can be expected [1]. The hypothesis was developed
from historical data on cholera in South Asia.

The first cases of cholera in Zimbabwe were reported to the World Health Organization in
August, 2008 [13]. Between August, 2008, and June, 2009, a total of 98,522 cholera cases and
4,282 deaths were reported [14]. The case fatality ratio (CFR), i.e., the ratio of deaths to total
cases reported, peaked in January, 2009 [14]. CFRs for the entire Zimbabwe epidemic were
much higher than in those areas of the country where appropriate treatment was available,
being highest in the rural areas of Zimbabwe, away from the treatment centers [14]. Based on
the information available, the cholera outbreak originated in Chitungwiza, a subsection of the
capital city of Harare, in the province of Mashonaland East [15]. There are no published results
documenting the role of environmental factors associated with cholera outbreaks in Zimbabwe.
Large-scale hydroclimatic processes can be estimated using remote sensing and linked with
epidemiological data to assess risk of disease occurrence [16]. These technologies provide mea-
surements for geophysical variables at varying spatial and temporal scales [17]. Employing the
epidemic cholera hypothesis, we established the objective of this study to underscore sensitivity
in satellite derived precipitation and air temperature data and to determine their association
with timing and spatial variability of disease outbreaks in Zimbabwe, thereby establishing
hydroclimatic predictability of the occurrence of cholera.

Our previous study [1] developed the theoretical aspects (Fig 1) of the working hypothesis-
that warm temperatures, followed by heavy precipitation and in combination with societal fac-
tors related to water insecurity (such as natural disasters, political instability) will lead to condi-
tions where interaction of a population with unsafe water will increase, and result in an
epidemic of cholera. Within this context, temperature and precipitation serve as the large scale
climatic processes that aid in growth and proliferation of cholera bacteria in the aquatic envi-
ronment [18,19]. In the absence of adverse societal conditions, the chance of occurrence of
cholera diminishes. However, bacteria in the environment remain viable agents of disease. The
present study tests this hypothesis using data from Zimbabwe where a major cholera epidemic
was reported in 2008. To provide supportive evidence, the hypothesis was validated using data
for five additional regions of Africa where cholera was reported during the past few years. The
challenge of epidemic cholera is that it occurs sporadically. Hence detailed time series are gen-
erally not available, limiting determination of the role of hydroclimatic processes in disease
outbreaks. In this study, historical time series data on diarrhea prevalence collected from the
Indus River basin (details in Materials and Methods section) were used to support (refute) the
hypothesis. A compartmental mechanistic model was calibrated and validated to understand
the dynamics of interaction between cholera and climatic processes for Zimbabwe. Key innova-
tive aspects of this study are spatial estimation of precipitation by satellite and global gridded
air temperature, capturing sensitivities in hydroclimatic conditions that permitted identifica-
tion of the location in the region where the disease outbreak began.
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Fig 1. Theoretical hypothesis linking hydroclimatic conditions with sociological aspects and epidemic cholera.

doi:10.1371/journal.pone.0137828.g001

Materials and Methods
Epidemiological data

The climate of Zimbabwe, located in sub-Saharan Africa, is tropical and its rainy season occurs
from October through March. Cholera data for Zimbabwe were obtained from the Zimbabwe
Ministry of Health and Child Welfare (weekly scales from November 13, 2008 to July 31,
2009), for the Mashonaland East region (details of the data are available from Mukandavire

et al. [20]). Historical hydroclimatological data for the Indus River basin were assembled by
collecting and processing historical climatological data in the annual reports of the
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Deviation

Meteorological Reporter to the Government of India, covering1875 to 1900. Cholera mortality
data for the Indus River basin were obtained from statistical statements appended to the
Annual Reports of the Sanitary Commissioner to the Government of Punjab, 1875-1900 (Jutla
etal. [1]).

Climate data

Daily precipitation data collected by satellite (Tropical Rainfall Measuring Mission (TRMM)
included monthly data product 3B43 at 0.25x0.25 degree resolution) obtained for 1998 to 2013.
Air temperature data were obtained from the Global Historical Climatology Network version 2
Climate Anomaly Monitoring System (GCHN CAMS-0.5x0.5 degree resolution) for the same
time period(bounding coordinates 15°S to 23°S latitude and 25°E to 33.5°E longitude). Precipi-
tation and air temperature were linked with the cholera epidemics that occurred during the
time period of this study.

Spatial data analysis

The study was designed to determine hydroclimatic conditions triggering the 2008 cholera out-
break in Zimbabwe. To apply the epidemic cholera hypothesis of Jutla et al. [1], calculation of
monthly anomalies (subtraction of month value from the average of 15 years of monthly data)
for precipitation and temperature was done. These were calculated for each pixel in both data-
sets, e.g., daily precipitation data obtained from TRMM sensors were converted to monthly
scales for fourteen years for all pixels covering Zimbabwe. An average for 15 years was calcu-
lated and then subtracted from each month, resulting in a positive or negative value (thereafter
referred to as anomaly). A positive anomaly implied that month received greater precipitation
from average over the given pixel in a fifteen year period. An additional step of analysis was
determination of percent deviation each month from the average for that month, using the fol-
lowing equation:

Month value Precipitation/ Temperature Avemge value Precipitation/ Temperature

%) = x 100

month,year (
Avemge Vﬂlue Precipitation/ Temperature

For example, % Deviation for July, 2008 was calculated by subtracting precipitation during
the month from the 15 year average precipitation for July and dividing by the 15 year average
precipitation for July. Air temperature data were similarly processed, with the exception that
monthly temperature data were employed. Student t-test (two tail) was used to determine if a
probability value of less than 0.05 (95% confidence level) rejected the null hypothesis of zero.
In order to overcome limitation of data availability, analysis of recent outbreaks of cholera in
five other parts of Africa was done. Table 1 provides a summary for the five regions, including
months in which cholera outbreaks [21-31] had been reported.

Logistical regression analysis

Binomial logistical regression models were developed to estimate the probabilistic likelihood of
cholera in the Indus River Basin. Output from the statistical software package MINITAB was
compared, using the Goodman-Kruskal Gamma measure of association [32] and the Hosmer-
Lemeshow test for goodness of fit [33]. The Hosmer-Lemeshow test was conducted by sub-
grouping probabilities as deciles of fitted values obtained on monthly scales. The measure of
association establishes relationships between predicted probabilities of response variable
(above average cholera incidence) and predictors (air temperature and precipitation).
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Table 1. Recent cholera epidemics in the African continent.

Country

South Sudan
Central African

Republic (CAR)
Rwanda

Cameroon

Mozambique

Region(Case
Fatality Ratio)

Juba (5%)
Mongoumba(13%)

Rutsiro(50%)
Nord Region

(13%)
Delgado(1%)

Outbreak Coordinates for Tprob?(Two Pprob®(One Societal Source
Month data month lead) month lead) disturbance

April 2014 4°-5°N; 31°-32°E  0.021(Feb 14) 0.005(March 14) Civil unrest [21,22]

September2011  4°-5°N; 18°-19°E ~ <0.001(July 11)  0.101(August 11)  Natural Hazard  [23,24]
(Floods)

November2012 2°-1°S;29.5°- <0.001(Sept 12) <0.001(October Natural Hazard  [25,26]
30.5°E 12) (Floods)

September2009  9.5°-10.5°N; 14°- 0.012(July 09) 0.023(August 09)  Natural Hazard  [27-29]
15°E (Floods)

February2013 12.5°S- <0.001(Dec 12)  0.002(January 13)  Natural Hazard  [30,31]
11.5°S;39°-40°E (Floods)

&Tprob, for temperature, is the probability (according to two tail t-test) that value in the month is equal to zero (difference between value for that month and
the long term average should be zero). For example, a probability value of less than 0.05 (95% confidence level) rejects the null hypothesis that the value

is equal to zero.

prrob is calculated similarly to Tprob, but for precipitation. Coordinates indicate regions where TRMM data were obtained

doi:10.1371/journal.pone.0137828.t001

Goodness of fit using Goodman-Kruskal Gamma is a non-parametric rank correlation and
ranges between -1 to 1 with 1, representing perfect association.

Mechanistic disease model

Since epidemic cholera is sporadic by definition [1], therefore the long-term time series was
not available for Zimbabwe. A mechanistic population based compartmental model, Suscepti-
ble-Exposed-Infected-Recovered (SEIR), was developed to analyze and supplement the empiri-
cal observations. Details of model development (Fig A and Table A in S1 File), calibration and
parameters (Table B in S1 File) are appended in the supplementary information (S1 File).

Results and Discussion
Spatial data analysis for Zimbabwe

The cholera outbreak in Zimbabwe began in Chitungwiza, a city in the Mashonaland East
province in August, 2008. Hydroclimatic processes for the months of June through August are
critical, since departure from normal for the Mashonaland East province can provide condi-
tions favorable for growth of cholera bacteria in the aquatic environment. It must be noted that
the precise location of the region of a disease outbreak cannot be determined because of limita-
tions in the resolution of satellite data. However, provincial analysis (average of all pixels in a
particular province) showed air temperature in Mashonaland (East and Central), as well as in
Manicaland, were ca. 2.0 to 12.0% higher than average (Fig 2). If anomalous temperatures in a
region are followed by heavy precipitation, the risk of a cholera outbreak increases. Fig 3 shows
precipitation in Mashonaland East had a positive anomaly during the month of July, 2008,
whereas the rest of Zimbabwe experienced less than normal precipitation during July and
August, 2008. Precipitation was lower than the climatic average, based on the data available for
two months before the outbreak, except in the province of Mashonaland East, where rainfall
was ca. 25% higher than average. Results are not shown, but data for the preceding months
indicate it was also below the 15-year average. Elevated temperature, followed by heavy precipi-
tation have been found to be indicators of conditions optimum for cholera, notably where the
drinking water source and sanitation infrastructure are poorly maintained or unavailable.

PLOS ONE | DOI:10.1371/journal.pone.0137828 September 29, 2015
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Fig 2. Change in air temperature for June, July and August 2008. A positive value represents temperature higher than the 15-year average; a negative
value represents temperature lower than the 15-year average.

doi:10.1371/journal.pone.0137828.9002

Supportive evidence was obtained when spatial anomaly maps of temperature and precipi-
tation were plotted, with expectation that if conclusions from the provincial analysis were
valid, then differentiation in the patterns of hydroclimatic variability would be observed at spa-
tial scales. Fig 4 shows interpolated air temperature anomaly maps for the entire country of
Zimbabwe for June, July, and August, 2008. It can be observed that Mashonaland (East, Cen-
tral), as well as Manicaland, had temperature anomalies between +1 to +3% (changes greater
than 2% were statistically significant at 95% confidence interval using two tail t-tests) during
June, 2008, and a positive departure from the average during July, 2008. That is, warm condi-
tions were present that were suitable for growth of the cholera bacteria in the environmental
water system, mainly the Nyatsime and Manyame rivers. Following the period of elevated
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Fig 3. Change in precipitation for July and August 2008. A positive value represents rainfall higher than the 15-year average; a negative value represents
rainfall lower than the 15-year average.

doi:10.1371/journal.pone.0137828.9003

temperature, Mashonaland East had heavier than average precipitation, up to 10% (Fig 5a)
during July, 2008.

Parts of Matabeleland South and Masvingo provinces (Fig 4) also experienced anomalous
temperatures and greater precipitation during August, 2008. Therefore, these regions should
have experienced cholera in September, but disease outbreak occur if favorable environmental
conditions are accompanied by impaired water and sanitation infrastructure. While the
Mashonaland East region experienced mixing of sewage contaminated river water with drink-
ing water in both Chitungwiza and Harare cities [34], none of the regions in Matabeleland
South and Masvingo provinces reported such incidents, but the disease subsequently spread
throughout the country via secondary (human to environmental) transmission.
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Fig 4. Spatial temperature change from 15-year Average for (a) June and (b) July 2008.

doi:10.1371/journal.pone.0137828.9g004

If empirical observations for the 2008 Zimbabwe cholera are valid, similar trends should be
observed in other regions. Table 1 provides a summary for five regions that includes those
months for which first cholera cases were reported. Fig 5 was constructed similarly as for Fig 2,
but includes all of the five other regions. The data show that anomalous above average air tem-
peratures, followed by above average precipitation, occurred at all sites, and at least one month
in advance. Fig 6 shows the month when cholera was first reported for that region, and the cor-
responding analysis presented in Table 1 indicates that the observed anomalies of precipitation
and temperature were statistically significant at 90% confidence intervals (using two-tail t-test),
corroborating the hypothesis for cholera in Zimbabwe in 2008.

Analysis of historical epidemic cholera for the Indus River Basin

To validate the findings and determine whether the pattern of air temperature and precipita-
tion would be observed elsewhere, we employed the binomial logistical regression models to
analyze 25 years of historical cholera data for the Indus River basin region (Table C in S1 File).
The model estimates probability of occurrence of cholera for nine locations in the Indus River

I <
[ -0t-10
] -1o00
[ Jow1wo
[ 10020
N -0

Fig 5. Spatial precipitation change from 15-year Average for (a) July and (b) August 2008.

doi:10.1371/journal.pone.0137828.9005
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doi:10.1371/journal.pone.0137828.9006
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doi:10.1371/journal.pone.0137828.g007

Basin (Delhi, Lahore, Ludhiana, Sialkot, Rawalpindi, Peshawar, Dera Ismail Khan, Multan, and
Sirsa). Additional details for these locations have been published (Jutla et al., 2013). Fig 7 shows
results of performance of the model with respect to metrics for the association between predic-
tor (cholera) and predictand (two month lead in air temperature and one month lead in precipi-
tation). If the hypothesis for Zimbabwe cholera is valid, statistically significant values for model
performance indicators should be observed for Indus River historical cholera. If p-values for the
Hosmer-Lemeshow calculations are 0.52 to 0.85, the indication is insufficient evidence to claim
the model does not fit the data. The p-values for Hosmer-lemeshow tests calculated in this
instance were greater than 0.05 (statistical confidence at 95%), hence does not reject the null
hypothesis that the model does not adequately fit the data. Similarly, the measure of association
ranged between 0.35 to 0.70, suggesting a limited predictive capability of the model. The results
statistically support the hypothesis of role for hydroclimatic conditions in epidemic cholera,
with the caveat that only limited information is available concerning conditions of water and
sanitation infrastructure during the study time period in the Indus River Basin.

Mechanistic model results

Mathematical models, such as compartmental representation of population [20], are often use-
ful in understanding role of different environmental processes and associated variables that
lead to disease outbreak. Therefore, after development of a SEIR model (details in supplemen-
tary information), calibration (Fig 8; fitted R* = 0.88) using weekly cholera case data for
Mashonaland East, three scenarios were used to determine the role, and possible association, of
hydroclimatic processes as a trigger of epidemic cholera.

PLOS ONE | DOI:10.1371/journal.pone.0137828 September 29, 2015 11/17
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Fig 8. Calibration of the model using Mashonaland East cholera data. (Starting week 46 represent November 13, 2008).

doi:10.1371/journal.pone.0137828.9008

Case 1: Control (equilibrium scenario). The model for this case scenario was calibrated
using the assumptions that the susceptible population was greater than 1 and that there were
no infected individuals (or carriers) present in the population. If our hypothesis that cholera
outbreaks in Zimbabwe are related to hydroclimatic processes is valid, then environmental bac-
teria in the aquatic medium should have increased in number (presence) at a higher rate than
the number of cases occurring via secondary route of infection, primarily shedding of cholera
bacteria from infected humans to the environment. Environmental and human contributions
to the overall pathogen pool is shown in Fig 9. The data suggest that environmental bacteria
numbers peaked at least one month in advance compared to human transmission (secondary
transmission).

Case 2: No external hydroclimatic forcing with presence of infected individuals. In this
scenario, it was assumed that there were no external hydroclimatic forcings and no buildup of
cholera bacteria populations in the aquatic system. The assumption was that infected individu-
als were present and were simulated for each sub-scenario. Fig 10 shows that none of the sub-
scenarios was able to replicate the observed infected (I = calibrated) results, indicating that, in
absence of appropriate hydroclimatic conditions, a cholera epidemic would not have occurred
in the region.

Case 3: External hydroclimatic forcing and presence of infected individuals. This sce-
nario is based on the assumption that external hydroclimatic conditions, such as above average
temperature followed by above average precipitation, occurred without an enhanced environ-
mental population of cholera bacteria. Similar to case 2 above, sub-scenarios were computed to
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determine if introduction of infected individuals, with subsequent shedding of cholera vibrios
to the aquatic environment, was sufficient to trigger an epidemic. Fig 10 shows that none of the
sub-scenarios, until introduction of 90 infected individuals was postulated, simulated condi-
tions of the calibrated model (I = calibrated). However, when 10 to 20 infected individuals
were introduced, a small increase in the number of cholera cases was predicted. However, with-
out temperature and precipitation affecting the environmental reservoir, cholera epidemics
were not indicated in any of the model simulations, giving credence to synergism between the
environmental reservoir and external hydroclimatic forcings.
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Fig 10. (a) Cholera cases with no external hydroclimatic forcing and environmental bacteria reservoir; (b) Cholera cases with external hydroclimatic forcing
but with no environmental bacteria reservoir. (I =0, 10...90 indicates infected introduced in the population and | = calibrated is the simulated infected cholera

cases after calibration of model).

doi:10.1371/journal.pone.0137828.9g010
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Summary and Conclusion

Cholera is likely to occur in epidemic regions, namely those with nearby rivers or water bodies
and insufficient safe water and sanitation systems, during times when warm air temperatures
are followed by heavy precipitation, conditions that are optimum for growth of the cholera bac-
teria. Heavy rainfall and subsequent flooding accelerate interaction between a contaminated
water source and human exposure. Hydroclimatic predictability of a lead time for occurrence
of cholera is possible when temperature and rainfall are higher than the long-term average and
conditions are favorable for growth of cholera bacteria in the aquatic environment. Satellite
data were successfully used to capture hydroclimatic sensitivities of satellite (TRMM) based
precipitation and gridded air temperature data to predict cholera outbreaks atleast one month
in advance.

Interest in the extremes of the variables of temperature and rainfall has heightened with cli-
mate change. Cholera epidemics are likely to occur with high probability if hydroclimatological
risk [defined as a combination of large scale geophysical processes and environmental condi-
tions conducive to bacterial growth] and societal risk [defined as reduced or lack of availability
of safe drinking water and sanitation] occur in a community or region. The challenge in devel-
oping a cholera prediction model for epidemic regions is to identify environmental conditions
and enabling transmission mechanisms. When a major natural disaster strikes a region (town/
province) or civil disorder damages living conditions of a population center, a hydroclimate
driven cholera tracking mechanism can be made operational by satellite remote sensing, moni-
tor water and sanitation infrastructure, and the displaced population. Convergence of these fac-
tors with environmental conditions optimum for growth of the cholera bacteria and
knowledge of transmission pathways, can provide a reliable prediction and early warning of
cholera epidemics for public health action. In most affected regions, preventive responses are
tied to the timing of the outbreaks. Such responses typically depend on the emergence of the
index cases in a vulnerable region, where local health departments, in conjunction with public
health personnel on the ground, monitor and evaluate the spread of cases. Once an outbreak in
confirmed, measures to avoid or reduce infection—mostly in the form of providing safe water
access, mobile sanitation facilities, water and sanitation awareness, medication for the infected
(such as antibiotics or intravenous fluids), and oral rehydration therapy (ORT) is mobilized.
However, due to the lack of long lead predictions, current warnings and responses typically
operate with a lead-time of only a few days since the emergence of the index case. Thus, while
these preparations are able to save lives and reduce infections, they become effective only after
the outbreaks are well under way and thus the disease burden remains high in many regions.

Although, the timing can be anticipated fairly well in endemic regions, the potential magni-
tude or the location of the outbreak remain unknown—and prepositioning and maintaining
the appropriate level of human and material resources in anticipation of an outbreaks remains
a difficult task. Predictions can add significant ‘actionable knowledge’ to preemptive prepara-
tions. Especially in epidemic regions, predictions can be valuable by adding the potential tim-
ing of outbreaks. Thus, armed with the knowledge of imminent outbreaks with a few weeks to
months lead-time, vulnerable population groups (such as children and elders) can be preemp-
tively vaccinated, at-risk areas (such as low level areas prone to flooding, areas with water scar-
city and quality issues, areas next to bad drainage or effluent discharges, slums, etc) can be
targeted with water and sanitation facilities, awareness, and rules enforcement, and public
health groups can be prepositioned with ORT, antibiotics, and vaccines [35].

In addition, coupled with advances at the local scale of diarrheal treatment, innovative solu-
tions such as simple filtration measures during extreme weather conditions, and vaccines as
proven by improved survival rates, a prediction-based surveillance mechanism would help
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monitoring vulnerable regions and strengthen ability of the public health community to halt
outbreaks early and reduce the disease burden [36]. The challenge to predict and mitigate out-
breaks becomes more challenging, when societal change and factors such as civil unrest and
natural disasters occur. However, the risks is compounded with environmental factors condu-
cive to cholera outbreaks (due to temperature increase, heavy precipitation patters, or drought/
flood risk and proliferation of the cholera bacteria), and a robust early warning can contribute
to mitigation of cholera outbreaks by enhancing the response capacity and resilience of
regional institutions.
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