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Abstract

Previous studies have investigated the associations between exposure to ambient

air pollution and biomarkers of physiological pathways, yet little has been done on

the comparison across biomarkers of different pathways to establish the temporal

pattern of biological response. In the current study, we aim to compare the relative

temporal patterns in responses of candidate pathways to different pollutants. Four

biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of

systemic inflammation and oxidative stress, ten parameters of autonomic function,

and three biomarkers of hemostasis were repeatedly measured in 125 young

adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC,

and sulfate, before, during, and after the Beijing Olympics. We used a two-stage
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modeling approach, including Stage I models to estimate the association between

each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models

to describe temporal patterns in the associations when grouping the biomarkers

into the four physiological pathways. Our results show that candidate pathway

groupings of biomarkers explained a significant amount of variation in the

associations for each pollutant, and the temporal patterns of the biomarker-

pollutant-lag associations varied across candidate pathways (p,0.0001) and were

not linear (from lag 0 to lag 3: p50.0629, from lag 3 to lag 6: p50.0005). These

findings suggest that, among this healthy young adult population, the pulmonary

inflammation and oxidative stress pathway is the first to respond to ambient air

pollution exposure (within 24 hours) and the hemostasis pathway responds

gradually over a 2–3 day period. The initial pulmonary response may contribute to

the more gradual systemic changes that likely ultimately involve the cardiovascular

system.

Introduction

Over the last decade there have been substantial inroads into understanding

mechanisms involved in the cardiovascular effects of air pollution exposure [1, 2].

Epidemiological and animal studies indicate that exposure to air pollutants are

linked to biomarkers of endothelial dysfunction, increased blood pressure,

prothrombotic and coagulation changes, systemic inflammation and oxidative

stress, autonomic imbalance, and arrhythmias [1, 3]. However, the mechanisms by

which air pollutants exert their adverse effects on the cardiovascular system

remain unclear. Currently, prominent hypotheses are that inhaled air pollutants

can (1) initiate inflammatory response in the alveoli, which in turn trigger

systemic inflammatory cascades resulting in cardiovascular effects; (2) be detected

by afferent receptors within the respiratory tract which disrupt the balance of the

autonomic system resulting in alterations in vascular tone and heart rate; (3) cross

the blood-alveolar barrier and enter the systemic circulation where they directly

affect the vasculature and alter hemostasis [1, 4].

The majority of existing studies investigated only a small number of biomarkers

of specific physiological pathways. However, individual biomarkers in a specific

pathway are under constant feedback regulation from bioactive molecules of other

pathways; thus examining biomarkers in a specific physiological pathway might

provide an incomplete snapshot of the underlying biology. In addition, studies of

individual biomarkers are susceptible to overgeneralization to the whole pathway

and publication bias, which makes it harder to determine the comparative effects

of air pollutants on the different pathways involved in cardiovascular pathology.

Consequently, the relative importance of the different pathways involved in the

effects of air pollution on cardiovascular disease remains unclear.
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In the present study, we utilize data on air pollution exposure and an extensive

set of biomarkers collected in a panel study of healthy young adults followed

through the 2008 Beijing Olympics, during which air pollution levels were

drastically reduced [5], to quantify temporal patterns in the associations between

pollutants and biomarkers of four candidate physiological pathways. Based on our

previous findings from analyzing individual biomarkers, we hypothesized that

biomarkers in the same candidate pathway would have similar temporal pattern in

their responses to pollutant exposure [5, 6].

Methods

Study design and study population

A series of air pollution control measures were implemented from July 20 to

September 17, 2008, encompassing the Olympic Games (August 8–24) through

the end of the Paralympic Games (September 6–17). These control measures

created the opportunity for a study design with ‘high-low-high’ pollution levels.

Our study included three periods: (1) the pre-Olympic period (June 2–July 20)

when light air pollution control measures were implemented, (2) the during-

Olympic period (July 21–September 20) when industrial and commercial

combustion facility operation and vehicle use were strictly controlled, and (3) the

post-Olympic period (September 21–October 30) when the pollution control

measures were relaxed [6, 7]. This panel study of air pollution and biomarkers of

cardio-respiratory pathology was performed on the campus of Peking University

First Hospital, Beijing (Latitude: 39.9272, Longitude: 116.3722).

We enrolled 125 young adult never-smokers who were free of cardio-

respiratory, liver, kidney, neurologic, and other chronic diseases. Most study

participants were medical residents working at the hospital and all participants

lived within 9 km of the hospital. Participants were invited for clinical visits

(between 8AM to 10AM) twice in each of the pre-, during-, and post-Olympic

periods, in which the two visits were designed to be two weeks apart and at the

same day of week. Participants were required to fast overnight before the clinical

visits, refrained from taking any medications, working nightshifts or travelling,

and were free of symptoms of respiratory infection or allergies within seven days

prior to each clinical visit. The study population and data collection methods have

been described in detail in previous publications [5–8].

This study was approved by the University of Medicine and Dentistry of New

Jersey institutional review board and the joint Ethics Committee of the Peking

University Health Sciences Center and the Peking University First Hospital. All

participants provided written informed consent before participating in the study.

Air pollution measurement

Air pollutants were monitored throughout all the three Olympic period (June 2-

October 30, 2008). During these periods, we measured ambient concentrations of
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sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide

(CO), fine particulate matter (PM2.5), and its constituents, elemental carbon (EC),

organic carbon (OC), and sulfate (SO4
22); temperature and relative humidity

(RH) were also recorded. Measurements were conducted on the roof of a seven-

story building (,20 meters above the ground) in the center of the hospital

campus. We calculated average pollutant concentrations over seven-day periods

before the time point where biological samples were collected according to the

number of hours away from the sample collection (0–23 hours 5 lag 0, etc.). We

excluded O3 from these analyses due to the strong negative correlation with other

pollutants noted in our prior publications [5, 6, 8]. Additional description is

provided in Supporting Information (S1 Appendix).

Biomarker Measurements

We grouped the assessed biomarkers into 4 a priori candidate physiological

pathways, including pulmonary inflammation and oxidative stress, autonomic

function, hemostasis, and systemic inflammation and oxidative stress, based on

biological activity and previous literature [5, 7]. We grouped inflammatory and

oxidative stress biomarkers together because oxidative stress is often induced by

and elicits inflammatory processes [1].

Pulmonary inflammation and oxidative stress were assessed using fractional

exhaled nitric oxide (FeNO) and exhaled breath condensate (EBC) biomarkers,

including pH value, nitrite, and malondialdehyde (MDA).

Autonomic function was assessed by systolic blood pressure (SBP), diastolic

blood pressure (DBP), heart rate and heart rate variability (HRV), including

standard deviation of normal R-R intervals (SDNN), root mean square of

successive differences between adjacent normal cycles (rMSSD), low frequency

(LF) power, high-frequency (HF) power, very low frequency (VLF) power, ratio of

LF to HF, and total power.

Hemostasis markers included soluble P-selectin (sCD62P), CD40 Ligand

(sCD40L), and von Willebrand Factor (VWF).

Systemic inflammation and oxidative stress markers included fibrinogen, red

blood cells (RBC), white blood cells (WBC), and C-reactive protein (CRP) in

plasma, as well as MDA and 8-Hydroxy-29-deoxyguanosine (8-OHdG) in urine.

CRP was excluded for these analyses due to a large number of non-detects

(,53%). Urinary concentrations of 8-OHdG and MDA were normalized by

creatinine concentrations.

Additional description is provided in Supporting Information (S2 Appendix).

Statistical analysis

Exploratory univariate and bivariate analyses were conducted to identify outliers

and potential confounders of the relationships between biomarkers and

pollutants. Values of EBC pH were multiplied by -1 so that higher levels would be

considered a worse health condition for all biomarkers. Each biomarker and air
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pollutant level was internally standardized by [(xi-meanx)/SDx], where Xi is each

individual observation of a biomarker or pollutant, meanx and SDx are grand

mean and grand standard deviation of this biomarker or pollutant. We then

developed and applied a two-stage statistical analysis (Fig. 1).

In Stage I, we used the mixed-effect models (Eq. 1) to estimate the association

coefficients (bbpl) of a specific biomarker (b) with a specific pollutant (p) at a

specific lag day (l).

Stage I : Yibt~abtzbbplXp t{lð Þz . . . zUiz"ibt ðEq:1Þ

where Yibt denotes the standardized value of biomarker b for participant i at visit t,

abt is the grand mean of biomarker b at visit t, bbpl denotes the association

coefficient of biomarker b with pollutant p at lag l at visit t, Xp t{lð Þ is the

standardized concentration of pollutant p at lag l of visit t, and "ibt denotes the

random error of the standardized concentration of biomarker b for participant i at

visit t.

In these models, we adjusted for the following potential confounders

(represented by ‘…’ in Eq. 1): sex, indicators of day of week, and smooth

functions of temperature and relative humidity and included participant-level

random intercepts (Ui) to account for repeated measurements on participants.

Stage I model selection has been explained in detail previously [5, 6, 8]. Since the

biomarkers and lagged pollutants were standardized, the Stage I, bbpl have similar

interpretations, which facilitates comparison in Stage II. For any biomarker-

pollutant-lag combination, bbpl represents the difference in biomarker b associated

with one standard deviation (SD) increase in pollutant p at lag l.

Stage II models were developed to explain variation in the temporally resolved

biomarker-specific effects of each pollutant. Our statistical approach is an

extension of repeated measures ANOVA. Specifically, Stage II consisted of a single

linear mixed-effects model for bbpl estimates (b̂bpl) with inverse variance weighting

to account for the wide range of standard errors (0.013 to 0.093) of bbpl:

b̂bpl~ m0zv0wb
zp0pzh0wbpzu0b

� �

StageII : z m1zv1wb
zp1pzu1b

� �
l

z m2zv2wb
zp2pzu2b

� �
l{3ð Þzz"bpl

ðEq:2Þ

In Eq. 2, differences in mean b̂bpl at lag 0 across pollutants are quantified by p0p

and differences in mean b̂bpl at lag 0 across pathways are quantified by v0wb where

wb denotes the pathway to which biomarker b is assigned. For identifiability, for a

reference pollutant (here PM2.5, denoted pollutant p51) and a reference pathway

(here, systemic inflammation/oxidative stress, denoted pathway w51), p01 and

v01 are both set to zero so that m0 quantifies mean b̂bpl at lag 0 in the reference

pathway and reference pollutant. Additional differences in mean b̂bpl at lag 0 due
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to interactions between pathways and pollutants are quantified by h0wp, with

similar identifiability constraints for the reference pathway and pollutant.

Biomarker-level random effects are represented by u0b, u1b, and u2b. We specified

an unstructured covariance matrix for the random effects and an autoregressive

covariance matrix (AR-1) for the residuals as a function of lag to account for

possible autocorrelation of b̂bpl from the same biomarker-pollutant combination,

across different lags.

Rather than assume a linear effect of lag on b̂bpl, we used a piecewise linear

spline with a change point (knot) in the middle of the 7 day period, at lag 3. This

was a natural, not data-driven choice for the change point, and this approach

offered a simple and reasonable representation of the patterns of association

observed in Fig. 2. The spline is represented using two sets of terms, where the

variable l takes values 0, 1, 2, 3, 4, 5, 6 and l{3ð Þz takes values 0, 0, 0, 0, 1, 2, 3.

This relatively simple structure allowed us to investigate general patterns in the

associations of biomarkers with each pollutant over 7 days, borrowing strength

across biomarkers in the same pathway. For example, for ‘average’ biomarkers

(where u0b~0, u1b~0, and u2b~0) in the reference pathway (systemic

inflammation/oxidative stress), the mean b̂bpl at lag 0 for the reference pollutant

(PM2.5) is m0, the daily rate of change in mean b̂bpl from lag 0 to lag 3 is m1 and the

daily rate of change in mean b̂bpl from lag 3 to lag 6 is m1zm2 so that m2 quantifies

the difference in slopes between lags 0–3 and lags 3–6. As in a sensitivity analysis,

we compared the AIC of our final model to that of otherwise identical models that

used change points of l~2 and l~4(1 and 5 were considered too close to the

endpoints to be meaningful) and found that l~3minimized AIC for the final

model.

Overall, the grouping of biomarkers into physiological pathways allowed us to

quantify and evaluate: (a) differences in associations at lag 0 across pathways

(v0w) and across pollutants (p0p), (b) whether pathway-level associations at lag 0

varied by pollutant (h0wp), and (c) pollutant-specific, pathway-level temporal

Fig. 1. Conceptual framework of the hierarchical modeling approach.

doi:10.1371/journal.pone.0114913.g001
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patterns of association (m1and m2, for the reference pathway and pollutant). For

model selection, we evaluated evidence for a more complex model versus a more

parsimonious model using likelihood ratio tests. We obtained predictions of b̂bpl

from the Stage II model using empirical Bayes predictions of the biomarker-level

random effects.

Stage I statistical analyses were performed using the R Programming Language

(Version 2.12.2; R Development Core Team) and Stage II analyses were

performed using SAS (Version 9.3).

Results

Participant characteristics

The age of the 125 study participants were between 19 and 33 years old (mean:

24¡2 years) with 63 male and 62 female subjects, as described in detail in

previous publications [5, 6]. Among the enrolled participants, 119 (95.2%)

finished all 6 visits and the other 6 (4.8%) completed 5 visits.

Ambient air pollution levels

Air pollution concentrations in the three Olympic periods were reported

previously [5, 7], and we included the period-specific mean and standard

Fig. 2. Associations (b̂bpl) between standardized 24 hour average ambient PM2.5 concentrations and standardized biomarkers in each pathway,
from Stage I models. Error bars represent 95% confidence intervals. Effect sizes are scaled to a 1 standard deviation change in PM2.5 (51.9 mg/m3).

doi:10.1371/journal.pone.0114913.g002
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deviation of the seven pollutant concentrations in Supporting Information

(S1 Table). Pollution levels declined substantially (13% to 60%) from the pre- to

during-Olympic periods and increased substantially (21% to 197%) from the

during- to post-Olympic periods, except for SO4
22 (declined 47%). At lag 0, the

mean¡SD for the 24 hour averaged pollutants were: 85.2¡51.9 mg/m3 for PM2.5,

21.8¡17.0 mg/m3 for SO4
22, 2.3¡1.3 mg/m3 for EC, 10.2¡6.6 mg/m3 for OC,

6.07¡4.01 ppb for SO2, 0.91¡0.5 ppm for CO, and 26.95¡15.26 ppb for NO2.

Stage I results

Fig. 2 displays b̂bpl for PM2.5 (the estimated change in standardized biomarkers

associated with a 1-SD increase in PM2.5 at each lag day, adjusting for sex, day of

week, temperature, and RH. All biomarkers in the hemostasis and pulmonary

pathways were positively associated with PM2.5 for at least one lag. The hemostasis

biomarker associations generally increased and then decreased in magnitude over

the 7 lag days. The pulmonary biomarkers had strong associations from lag 0.

There appeared to be little association of biomarkers in the other pathways with

PM2.5. The b̂bpl for all pollutants are summarized in Supporting Information

(S2 Table).

Selecting a parsimonious Stage II model

Fig. 3 shows predicted temporal patterns in b̂bpl for the average biomarker in each

of the four pathways, separately for each pollutant. These predictions were from

the model that allowed temporal patterns to vary across both pathways and

pollutants (Eq. 2). Variation in temporal patterns was evident across pathways but

not across pollutants, except for sulfate. The most marked difference was that the

pulmonary pathway associations with sulfate increased slightly until lag 3, whereas

there was a consistent decrease in the pulmonary pathway associations with other

pollutants across all lags. S1 Figure displays raw b̂bpl and biomarker-level

predicted temporal patterns for associations with SO2, for the hemostasis

pathway. To determine whether it was necessary to allow for differences in

temporal patterns by pollutant, we conducted a likelihood ratio test comparing a

model that excluded the 12 pollutant by lag interaction terms (terms with

regression coefficients p1p and p2p in Eq. 2) to the model that included these

terms. We found evidence that at least one of the 12 regression coefficients was

different from zero (p50.033 for the 12 df test). Since the pathway-specific

temporal patterns appeared most different for sulfate, we created an indicator for

sulfate (vs. all other pollutants) and compared the model with two pollutants by

lag interactions (interactions between the sulfate indicator and each of the two lag

variables) to the model with 12 pollutant by lag interaction terms (Eq. 2). The

models were not significantly different (p50.27). Henceforth, we present results

from this more parsimonious model. In this model, the estimated standard

deviations of the biomarker-level random effects were largest for the random

Mechanistic Pathways Analysis of Air Pollution Effects
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intercept (0.062 foru0b) and smaller for the random slopes (0.0056 for u1band

0.011 for u2b).

Results at lag 0

Candidate pathway groupings of biomarkers explained a significant amount of

variation in b̂bpl for each pollutant at lag 0 (p-values from likelihood ratio test

with 3 df comparing models with and without the main effects of systems for:

SO2: ,0.0001, EC: 0.0002, CO: 0.0003, NO2: 0.0008, SO4
22: 0.0012, PM2.5:

0.0067, and OC: 0.044). Table 1 displays the mean b̂bpl at lag 0 for the average

biomarker in each pathway, by pollutant. For example, a 1-SD increase in SO2 at

lag 0 (3.6 ppb) was associated with 0.166 (95% CI: 0.089, 0.244), 0.242 (95% CI:

0.173, 0.311), 0.053 (95% CI: 20.005, 0.110), and 0.006 (95% CI: 20.036, 0.048)

SD unit changes in the average biomarker in the hemostasis, pulmonary, systemic,

and autonomic pathways, respectively. At lag 0, there were strong increasing

associations between the average biomarker in the pulmonary pathway and all

seven pollutants and between the average biomarker in the hemostasis pathway

and five pollutants (SO2, CO, EC, PM2.5, and SO4
22), while the confidence

intervals of the associations with average biomarkers in the other two pathways

included zero for all pollutants.

Temporal patterns

Under the parsimonious model, the temporal patterns of the biomarker-

pollutant-lag associations varied across candidate pathways (p,0.0001) and were

not linear (from lag 0 to lag 3: p50.0629, from lag 3 to lag 6: p50.0005). Table 2

and Table 3 summarize pathway-specific temporal patterns for sulfate and for all

other pollutants. For example, over a 7-day period the magnitude of the

association between standardized pollutants and the average biomarker in the

hemostasis pathway initially increased and later decreased. For sulfate, mean b̂bpl

for the average biomarker in the hemostasis pathway increased by 0.028 (95% CI:

0.014, 0.041) SD units per day before lag 3 and decreased by 0.050 (95% CI: 0.028,

0.072) SD units per day after lag 3. Non-sulfate pollutants had a less steep initial

rate of increase (mean b̂bpl increased by 0.015 (95% CI: 0.004, 0.026) SD units per

day before lag 3) and a similar rate of later decline by 20.048 (95% CI: 20.069,

20.026) SD units per day.

Fig. 3. Mean association (b̂bpl) between standardized 24-hour average ambient air pollutant
concentrations and the average (i.e., biomarker-level random effects are 0), standardized biomarker in
each pathway from the Stage II model in Equation 2. Effect sizes are scaled to a 1 standard deviation
change in each pollutant. The circle symbols represent the mean association coefficients and the black error
bars represent their 95% confident intervals.

doi:10.1371/journal.pone.0114913.g003
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Grouping biomarkers into candidate pathways

The parsimonious Stage II model included biomarker-level random effects (u0b,

u1b, u2b) and fixed effects for the candidate pathways (v0w, h0wp, v1w, v2wp) into

which we had a priori grouped the biomarkers. By including the fixed-effects for

pathways, we reduced the standard deviations of: (a) the biomarker-level random

intercept (u0b) from 0.087 to 0.062, (b) the biomarker-level random slope on lag

(u1b) from 0.0078 to 0.0056, and (c) the biomarker-level random slope on lag 3

(u2b) from 0.021 to 0.011, as compared to a model with no fixed-effects for

pathways. As mentioned earlier, there was strong evidence for differences across

pathways in b̂bpl at lag 0 (p,0.05 for each pollutant) and over time (p,0.0001).

Hence our a priori grouping of biomarkers into candidate pathways succeeded in

explaining biomarker-level variation in b̂bpl. Since biomarkers such as fibrinogen

and VWF could be categorized into the hemostasis and/or systemic inflammation

and oxidative stress pathways, we conducted a sensitivity analysis (S2 Figure) in

which we evaluated the impact of: (a) removing VWF from the hemostasis

Table 1. Mean association (b̂bpl) between standardized 24 hour average ambient air pollutant concentrations and the average (i.e., biomarker-level random
effects are 0), standardized biomarker in each pathway, on the day of assessment (lag 0). Effect sizes are scaled to a 1 standard deviation change in each
pollutant.

Hemostasis
Pulmonary Inflammation &
oxidative stress

Systemic Inflammation &
oxidative stress Autonomic function

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

CO 0.125 (0.047, 0.202) 0.185 (0.114, 0.257) 0.037 (20.020, 0.094) 20.003 (20.045, 0.039)

EC 0.1 (0.022, 0.179) 0.193 (0.121, 0.265) 0.032 (20.025, 0.090) 20.011 (20.053, 0.031)

NO2 0.071 (20.009,
0.151)

0.176 (0.101, 0.251) 0.022 (20.035, 0.080) 20.011 (20.053, 0.032)

OC 0.026 (20.052,
0.104)

0.105 (0.034, 0.176) 0.03 (20.027, 0.088) 20.016 (20.058, 0.026)

SO2 0.166 (0.089, 0.244) 0.242 (0.173, 0.311) 0.053 (20.005, 0.110) 0.006 (20.036, 0.048)

Sulfate 0.089 (0.010, 0.167) 0.145 (0.074, 0.217) 0.027 (20.032, 0.086) 20.022 (20.066, 0.022)

PM2.5 0.082 (0.005, 0.158) 0.141 (0.072, 0.211) 0.039 (20.018, 0.096) 20.003 (20.045, 0.038)

doi:10.1371/journal.pone.0114913.t001

Table 2. For sulfate, rate of change per lag day in the mean association (b̂bpl) between standardized 24 hour average ambient sulfate concentrations and the
average, standardized biomarker in each pathway.

Before lag 3 After lag 3

Estimates* (95% CI) Estimates** (95% CI) P value***

Autonomic 0.019 (0.010, 0.028) 20.007 (20.019, 0.005) 0.004

Hemostasis 0.028 (0.014, 0.041) 20.050 (20.072, 20.028) ,0.0001

Pulmonary 0.005 (20.008, 0.018) 20.020 (20.038, 20.001) 0.052

Systemic 0.01 (0.0002, 0.020) 20.014 (20.030, 0.002) 0.021

*Slope on first lag term, when the biomarker-level random effects are 0: m1zv1wb zp1p.
**Slope on lag terms after lag 3, when the biomarker-level random effects are 0: m1zv1wb zp1pzm2zv2wb zp2p

***p-value for a test of a difference in slope before and after lag 3.

doi:10.1371/journal.pone.0114913.t002
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pathway and (b) moving fibrinogen from the systemic to the hemostasis pathway.

Neither change altered the final interpretations of our analysis.

Discussion

To the best of our knowledge this is the first study to systematically evaluate

temporal patterns of associations between ambient air pollutants and candidate

physiological pathways, using simultaneously collected biomarkers in an

epidemiologic study. We confirmed that biomarkers grouped into candidate

physiological pathways had some similarities in their associations with 7

pollutants over a 7 day period (Fig. 2). It appeared that the pulmonary

inflammation and oxidative stress pathway was an early responder while the

hemostasis pathway was a gradual responder. There was no consistent evidence in

this study population for associations of the pollutants with the systemic or

autonomic pathways. An explanation could be that we studied young adults

without predisposing conditions thought to increase susceptibility to the

autonomic effects of air pollution and considered only short exposure intervals

[1].

In the following paragraphs, we present highlights of the relevant literature for

each of our candidate physiological pathways. Many studies reported air pollution

associations only with individual biomarkers, so in the discussion below we

emphasize pathway-oriented studies and reviews.

Pulmonary inflammation and oxidative stress

Ambient air pollution has been consistently associated with pulmonary markers of

inflammation and oxidative stress, for example in Delfino et al. (2010) [9] and

Laumbach and Kipen (2010) [10], but a recent review and meta-analysis reported

significant heterogeneity across oxidative stress markers in blood, urine and

airways and across studies [11].

Table 3. For pollutants other than sulfate, rate of change per lag day in the mean association (b̂bpl) between standardized 24 hour average pollutant
concentrations and the average, standardized biomarker in each pathway.

Before lag 3 After lag 3

Estimates* (95% CI) Estimates** (95% CI) P value***

Autonomic 0.006 (0.001, 0.012) 20.005 (20.016, 0.007) 0.0568

Hemostasis 0.015 (0.004, 0.026) 20.048 (20.069, 20.026) ,0.0001

Pulmonary 20.008 (20.019, 0.004) 20.017 (20.035, 0.001) 0.3877

Systemic 20.003 (20.009, 0.004) 20.012 (20.027, 0.003) 0.1741

*Slope on first lag term, when the biomarker-level random effects are 0: m1zv1wb

**Slope on lag terms after lag 3, when the biomarker-level random effects are 0: m1zv1wb zm2zv2wb .
***p-value for a test of a difference in slope before and after lag 3.

doi:10.1371/journal.pone.0114913.t003
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Autonomic function

A meta-analysis of 29 epidemiological studies indicates that PM2.5 was the only

pollutant consistently associated with a decrease in HRV, with this association

observed over several time-scales [12]. In the Normative Aging Study (NAS),

PM2.5 and O3 were associated with decreased HRV over 4, 24 and 48 hour moving

averages, but no associations were seen with NO2, SO2 and CO [13]. The time

course of the effect of air pollution on HRV remains unclear. Studies have found

associations within minutes [14], ,2 hours [15], 4–6 hours [16], 1–2 days[13], as

well as over a year [17].

Hemostasis

In a previous study of 3256 people, plasma viscosity increased markedly during a

13 day air pollution exacerbation [18]. Similarly, fibrinogen has been positively

associated with air pollution in several studies, though the time course of the

response is not consistent [19, 20]. Global tests of coagulation, such as

prothrombin time (PT), activated PT, and other coagulation proteins demon-

strated less consistent associations. For example, in a large study (N51218) from

the Lombardia Region in Italy, air pollution levels (PM10, CO, and NO2) in the

hours preceding blood sampling were associated with shortened PT, but the

relationship with activated PT, fibrinogen and the natural anticoagulant proteins

was either null or protective [21]. Internal inconsistency amongst different

biomarkers of hemostasis has been found elsewhere [22] and across the literature

with VWF, fibrinogen, and platelet concentrations 26-Nov.

Further, the role of air pollution on venous thromboembolism (VTE) remains

inconsistent, with some studies indicating an increased risk among those who had

higher air pollution exposure [29, 30]. However recent prospective studies do not

support this association [31, 32].

Systemic inflammation and oxidative stress

Studies report that PM is associated with increases in systemic inflammation as

measured by CRP among elderly [33]. However, changes in CRP were not seen

among the elderly in the NAS over multiple time frames of PM exposure, but

changes in other inflammatory markers such as fibrinogen, ICAM and VCAM

were observed. Other pollutants such as NO2, SO4
22 and O3 had different time

patterns of associations with these markers [19].

This literature demonstrates the difficulties of drawing conclusions regarding

the time course of air pollutant effects on candidate pathways using studies of

individual biomarkers. Alternative approaches include a recent analysis of NAS

data used structural equation modeling to estimate the mean effect of traffic-

related air pollution on inflammation in the elderly by estimating a latent variable

for inflammation from 3 biomarkers of inflammation and a latent variable for

traffic-related air pollution [34, 35]. Our approach differs because we used fixed

effects for multiple pathways rather than a latent variable for a single pathway,
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considered multiple measured ambient air pollutants, and investigated pathway-

specific temporal patterns of association.

Strengths of this study include the unique design of ‘‘high-low-high’’ pollutant

levels which led to large exposure contrasts among the pre-, the during-, and the

post-Olympic periods (S1 Table) [36], repeated measurements on the same

participants, simultaneous collection of a large number of biomarkers, and

consideration of multiple lags of exposure. General limitations of this study have

been discussed in detail previously [5, 6, 8]. In brief, there is possible non-

differential exposure misclassification due to utilization of ambient air pollution

levels rather than personal exposure assessment. There could be residual

confounding in Stage I models, but the study protocol was designed to limit this

possibility and several sensitivity analyses were performed.

Two assumptions of our approach merit discussion. First, in Stage I we fit 7 sets

of single pollutant models rather than a single multi-pollutant model due to

multi-collinearity of the 7 pollutants, and likewise fitted separate models for each

lag rather than attempting a distributed-lag model in the first stage. Previous

publications from our study have found that multi-pollutant models including 2

pollutants have similar, but attenuated associations as compared to single

pollutant models [6, 7]. Our approach does not overcome the standard issues with

correlated exposure metrics. We may have observed similar patterns in b̂bpl across

pollutants at lag 0 (e.g. for the pulmonary pathway, all pollutants had relatively

large positive b̂bpl) and over time (e.g. similar trajectories across all pollutants

except SO2) due simply to the correlation of pollutants or due to the measured

pollutant values being different surrogates for a latent true exposure. However,

our mixed effects model aims to allow for these correlations by including random

effects for pollutants and for biomarkers within pathways, and by the AR-1

correlation structure for lags. Also, we may have failed to find differences in

trajectories across pollutants due to decreased power to detect higher-ordered

interactions.

Second, the concept of ‘‘average biomarker’’ arises from the mixed effects

model framework, with biomarker-random effects. This sort of interpretation

allows for parsimonious way to describe the pathway-level effects. However, a

limitation of this type of interpretation is that there may be no actual biomarker

in the pathway with these effects. We grouped biomarkers into candidate

pathways based on previous work [7]. Pathway-specific interpretations of our

results assume that we have included biomarkers representative of the pathway.

Selection of the biomarkers for this analysis was not based on the direction and

statistical significance of the pollutant-biomarker association, which makes the

interpretation of our results less subject to publication bias that often affects meta-

analyses or literature reviews. Stage II results on pathway-level associations are

essentially pathway-level averages of biomarker-specific associations. Biomarker-

specific associations may vary within a pathway due to measurement error and

sampling variation as well as from inherent differences in underlying biology. The

Stage II mixed model accounts for biomarker-level variation within pathways
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using biomarker-level random effects and the variance of these random effects is

assumed to be the same for each pathway. The Stage II model also assumes

independence of the pathways. However, pathways could be physiologically

interrelated or could overlap. Sensitivity analyses indicated that regrouping VWF

or Fibrinogen did not alter our final conclusions.

Overall, our results suggest that among this healthy young adult population, the

pulmonary inflammation and oxidative stress pathway is the first to respond to

ambient air pollution exposure (within 24 hours) and the hemostasis pathway

responds gradually over a 2–3 day period. The initial pulmonary response may

contribute to the more gradual systemic changes that likely ultimately involve the

cardiovascular system, such as hemostatic procoagulant responses and low grade

systemic inflammation and oxidative stress pathways, or these responses may be

independent. This sequence of events is consistent with other literature suggesting

that pulmonary inflammation may drive systemic inflammatory response

resulting in higher myocardial infarctions among COPD patients [37].
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