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Abstract

The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length.
Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the
folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the
relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the
variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the
normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and
produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple
modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer
than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA
families showing that most of them present an average MFE density more negative than expected for a typical genomic
sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family,
suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and
functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role
of thermodynamic stability demands in determining RNA size.
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Introduction

The cell synthesizes various types of RNAs that play distinctive

and essential roles in living systems, including coding (mRNA),

decoding (tRNA), catalytic (ribozymes), regulatory (e.g., micro-

RNA), and structural (e.g., rRNA) functions. The cellular activity

of each RNA is normally dependent on the specific structural

features of its functional category. This critical role of structure in

the function of RNA molecules, together with its difficulty in being

determined experimentally [1], have favoured the development of

a number of software packages that predict RNA secondary

structure. These include computer programs based on minimum

free energy (MFE) algorithms. The MFE of an RNA molecule is

affected by three properties of nucleotides in the sequence: their

number, composition, and arrangement. In fact, longer sequences

are on average more stable because they can form more stacking

and hydrogen bond interactions, guanine-cytosine (GC)-rich

RNAs are typically more stable than adenine-uracil (AU)-rich

sequences, and nucleotide order influences the folding structure

stability because it determines the number and the extension of

loops and double-helix conformations. It has been found that

mRNAs and microRNA precursors, unlike other non-coding

RNAs, have greater negative MFE than expected given their

nucleotide numbers and compositions [2,3]. This led to the

observation that free energy can be employed as a criterion for the

identification of functional RNAs. However, when the folding

energies of different classes of RNA are compared, the dependence

of MFE to sequence length can represent a disturbing element. To

overcome this obstacle, a new class of free energy indices

normalized by sequence length has been proposed. These indices

can be conceived as free energy density indicators and were

obtained simply by dividing MFE by the number of nucleotides in

the sequence [4–9]. A widely used normalized index is the so-

called adjusted MFE (AMFE) [9]. AMFE is calculated by dividing

MFE by the sequence length and then multiplying the result by

100 to relate the index to a segment of 100 nucleotides. Based on

their supposed weak relationship with sequence length, normalized

MFEs have been used in a number of published works to compare

the free energy among different classes of RNAs. In fact, it has

been reported that, after this adjustment, the MFEs of all

nucleotide sequences are comparable [9]. Furthermore, it was

also reported that length-normalization renders the MFE of

hairpins of different lengths comparable [6] and provides an

estimate of stability that is not influenced by differences in RNA

sequence length [10]. However, even if the length-normalized

MFEs have been used in a number of studies, to our knowledge,

their relationship with sequence size has not been thoroughly

tested and lacks quantitative substantiation. Using simulated

sequences, we searched for possible residual components of

AMFE associated with length. We found that the suggested

procedure for normalizing MFE by length produces unacceptable
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results. AMFE is significantly affected by sequence length, leading

to substantial errors if the index is used directly to compare the

stability of RNA sequences of various lengths. We show that the

error is generated by the combined effects of a poor mathematical

normalization procedure and a non-perfect linear relationship

between MFE and sequence length. To allow the direct

comparison of the MFE of differently sized RNAs, here we

propose a correction in the normalization procedure that removes

the AMFE bias extending its applicability to all RNAs longer than

40 nt. Using the new normalized index, termed MFE density

(MFEden), we report the analysis of a set of human coding and

functional RNA families.

Results

Comparative software analysis
The most common software programs, employed to predict the

secondary RNA structures by MFE algorithms, make use of the so-

called nearest-neighbor energy model. This model uses free energy

rules based on empirical thermodynamic parameters [11,12] and

computes the overall stability of an RNA structure by adding

independent contributions of local free energy interactions due to

adjacent base pairs and loop regions. In sequences with

homogeneous nucleotide arrangements and compositions, the

additive and independent nature of the local free energy

contributions suggests a linear relationship between computed

MFE and sequence length. Normalization by length, obtained by

dividing MFE by the number of nucleotides, was introduced to

exploit this linear relationship to directly compare the minimum

free energies of RNAs of various lengths. To investigate on the

relationship of MFE and length-normalized MFE with sequence

size, we computed MFE by two of the most common software

programs used to predict RNA secondary structure through the

free energy minimization approach: Quikfold application, which is

incorporated in the Mfold webserver for multiple molecule

processing [13,14], and RNAfold, which is included in the

ViennaRNA software package [15,16]. The results obtained from

the two programs were very similar, and the differences were

irrelevant to the objective of this study. For this reason, we omitted

the data from both software programs for each result.

The relationship of length with MFE and normalized-MFE
in randomly shuffled sequences containing equal
frequencies of A, C, G, and U

The length-normalized index AMFE is computed by using the

formula AMFE = 100* MFE/L, where L is the number of

nucleotides of the RNA sequence [9]. To determine whether

sequence length affects AMFE, as an initial analysis, we generated

random sequences of various lengths and equal frequencies of A,

C, G, and U. Starting with a set of sequences containing one copy

for each different length (from 12 to 600 nt with steps of 12 nt) and

exact equal frequencies of the four bases, we generated 1000 sets of

randomly shuffled sequences. Then, for each simulated length,

represented by 1000 randomized sequences, we computed the

mean and standard deviation (SD) values of MFE and AMFE.

As shown by open circles in the graph in Figure 1, the increase

of sequence length from 12 to 600 nt causes an apparent linear

decrease of the MFE of about 2180 kcal/mol at the average rate

of 232 kcal/mol every 100 nucleotides. In contrast, indicated by

closed circles in the graph in Figure 1, AMFE decreases, by almost

30 kcal/mol, as a hyperbolic function of length, demonstrating

that a significant portion of AMFE is correlated with the sequence

size.Using the RNA 3.0 (Quickfold) free energy rules [13], we

computed the portion of the total minimum free energy associated

with the differently classified structural elements. The upper panel

in Figure 2 shows the graph of the free energy contributions of the

various structural elements versus the sequence length of simulated

sequences. As illustrated in the figure, base pair stacking is the

most stabilizing element in our simulated sequences by a free

energy contribution negatively correlated with length. Loops tend

to destabilize minimum folding energy structures by quantities

that, distinct from stacking energies, correlate positively with

sequence length. Structural elements classified as external loops,

which comprise single-stranded nucleotides and base pairs at the

end of helices that are not in a loop, are weakly stabilizing and

their free energy contribution decreases with length (from 21 to 2

1.7 kcal/mole).

The normalization by length of the individual MFE contribu-

tion from each structural element indicates that stacking and

hairpin loop interactions are responsible for almost all AMFE

variability associated with sequence length (Figure 2, lower panel).

Comparison of the free energy variability associated with

sequence length, nucleotide composition and nucleotide orderTo

evaluate the impact of length to the overall variation of

normalized-MFE, we should compare its effects with those

generated by varying the order and the composition of nucleotides

in the sequences. To this end, we generated 100 sets of randomly

shuffled sequences from a set with increasing lengths and GC-

contents. The length of shuffled sequences ranged between 20 and

600 nt, with steps of 20 nt. For each length, GC-contents were

20%, 40%, 50%, 60%, and 80%. The results are summarized in

Figure 3, where the mean MFEs and the mean AMFEs of each

randomly shuffled sequence are plotted versus length and GC-

content. As illustrated in Figures 3A and 3B, the average stability

of shuffled sequences increases with both length and GC-content.

Increasing GC-content at constant length causes a nonlinear

decrease of MFE that is more prominent for longer sequences

(Figure 3B). From 20% to 80% of GC-content, the folding stability

of 20 nt-long RNA increases by 25.4 kcal/mol, whereas that of

600 nt-long sequences increases by -277.0 kcal/mol.

Figure 1. MFE and AMFE versus sequence length. For each
sequence length, containing an exact equal frequency of the four
nucleotides, 1000 randomly shuffled sequences were simulated. The
mean values of the MFE (open circles) and AMFE (closed circles) of the
shuffled sequences are plotted versus the sequence length. Vertical
bars indicate standard deviations (N = 1000). MFE was computed by
RNAfold using default parameters.
doi:10.1371/journal.pone.0113380.g001
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The variation of MFE with length, at constant GC-content, is

plotted in Figure 3A. The relationship between MFE and length is

apparently linear, and the MFE change rate increases with GC-

content. For lengths varying from 20 to 600 nt, MFE changes by

about 295.5 kcal/mol in sequences with 20% of GC-content and

by 2367.2 kcal/mol in sequences with 80% of GC-content.

The MFE variability associated with the nucleotide arrange-

ment in the sequence was quantified by the SD of MFE in

randomly shuffled sequences (N = 100) at fixed GC-content and

length. In the range analyzed (20%#GC#80% and 20 nt#

length#600 nt), SD of MFE varied from 0.45 kcal/mol

(GC = 20%, length = 20 nt) to 7.2 kcal/mol (GC = 80%,

length = 600 nt).

The above MFE data were also used to compare the effect of

length, nucleotide order, and GC-content on AMFE. Figure 3

illustrates the variations of the mean AMFE with lengths at constant

GC-contents (panel C) and with GC-content at constant lengths

(panel D). As shown, increasing the sequence length from 20 to

600 nt, at constant GC-content, causes an AMFE change varying

from -15.1 kcal/mol – measured in sequences with the lowest GC-

content (20%) – to 234.37 kcal/mol for sequences with the highest

GC content (80%). The variation of AMFE with GC-content is 2

26.9 kcal/mol for the shortest sequences (20 nt) and 246.2 kcal/

mol for the longest ones (600 nt). Moreover, the SD of AMFE for

shuffled sequences at fixed lengths and GC-contents ranges from

0.83 kcal/mol (GC-content = 20%, length = 480 nt) to 11.93 kcal/

mol (GC-content = 80%, length = 20 nt).

Therefore, the results show that sequence length contributes to

AMFE of our simulated sequences by an amount (215.1#

DAMFE#234.4 kcal/mol) that is comparable to that associated

with the variation of nucleotide composition (226.9#DAMFE#2

46.2 kcal/mol) and with the variability of AMFE produced by a

random arrangement of nucleotides in the sequences (0.83 kcal/

mol#SD#11.93 kcal/mol). This indicates that AMFE, and

generally, normalized MFEs, are biased measures of the minimum

free energy, tending to decrease significantly with sequence size.

These length-dependent differences in AMFE measures raise

serious doubts about the validity of the normalization procedure

and the reliability of the results obtained using length-normalized

MFEs.

Why normalized MFE is not independent of length
We computed the MFE by software tools that apply the nearest-

neighbor energy rules to simulate the minimum free energy

secondary structure of RNA molecules. According to this model,

the free energy of a structure is the result of the sum of

independent contributions from various structural elements. All

folded structures contain at least one destabilizing loop with a

minimum length of three unpaired bases (The Nearest Neighbor

Database, NNDB, http://rna.urmc.rochester.edu/NNDB) [17]

and at least one base pair. Therefore, regardless of the set of

energy parameters used to estimate MFE, negative free energies

are not possible for sequences shorter than 5 nt. Accordingly,

based on the results of the two different software programs used,

the linear fitting of the MFE data versus the sequence size, at

constant GC-content, intersects 0 energy axis at lengths higher

than 15 nt, depending on base composition. In general, higher

fitted lengths at 0 energy are associated with lower GC content.

For this reason, in the case of a perfect linear relationship between

MFE and length, dividing MFE by the number of nucleotides

should result in a new free energy index with a hyperbolic decrease

with length: if MFE = a+bNlength, then MFE/length = a/length+b.

Although this reason can justify the strong hyperbolic decrease of

AMFE with length, this is not the only source of variability of

AMFE by length. In fact, as shown by the graph in Figure 4, the

residuals from a least-squared linear regression analysis of MFE

versus length showed a clear pattern with length, indicating that

the assumption of perfect linearity between MFE and length is not

valid. In particular, the monotone concave-down curve of the

residual plot in Figure 4 indicates that longer sequences tend to be

more stable than expected by a linear relationship between MFE

and sequence size. Consistent with this, if we translate all the MFE

data by a constant amount that shifts its regression line to the

origin of the graph, the ratio of the new MFE to length remains

significantly dependent on sequence size (data not shown).

A simple correction of the normalization procedure can
substantially remove any intrinsic dependence of the
MFE on sequence length in RNAs longer than 40
nucleotides

Our results show that the AMFE bias is generated by the

combined effect of two causes: the non-perfect linearity of the

MFE with sequence length and an inaccurate mathematical

procedure that does not take into account that the regression line

of the MFE versus the length does not intersect the axes’ origin.

Here, we introduce a new length-normalized MFE index, termed

MFEden, which is computed to reduce the effects of the two

causes of AMFE bias:

MFEden~100 � (MFE{MFEL
ref )=(L{L0),

where L is the length (number of nucleotides) of the analyzed

sequence, MFEref
L is the precalculated average MFE computed

for a shuffled sample containing L nucleotides and an equimolar

ratio of the four nucleotides, and L0 is a predefined optimal

Figure 2. Free energy contributions of RNA structural ele-
ments. The free energy contributions of the different structural
elements calculated by Quickfold are plotted versus sequence length:
external loop (closed diamonds), hairpin loop (open circles), helix
(closed circles), bulged loop (X), multi-loop (open squares), and interior
loop (plus). The upper panel shows the contributions of structural
elements to MFE and the lower panel the contributions to AMFE.
doi:10.1371/journal.pone.0113380.g002
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constant amount that shifts the MFE-versus-length regression line

to the origin of the graph. Figure 5 shows the plot of the mean

MFEden versus length for shuffled sequences with GC-content of

20%, 40%, 50%, 60% and 80% and for sequence lengths ranging

between 40 and 600 nt. The large decrease of AMFE bias in the

corrected index MFEden is evident in Figure 6 where the two

indices are directly compared. As shown, in the critical range of

length, where the bias makes AMFE impractical (between

approximately 40 and 300 nt), the MFEden is unaffected by

length.

The information content of the MFEden
The MFE of an RNA sequence is determined by the combined

contributions of its length, nucleotide content and nucleotide

order. MFEden excludes the component of free energy associated

with sequence length but includes those related to nucleotide order

and composition, also indirectly giving an estimate of their relative

contributions. To illustrate the information content of MFEden,

here we report an analysis using high confidence sets of two

human RNA families: coding sequences (CDSs) and micro RNA

precursors (pre-miRNAs) (see Materials and Methods). The panels

A and B in Figure 7 show the scatterplot of the MFEden of the

CDSs (red circles) and pre-miRNAs (blue circles) versus the

sequence length and the GC-content, respectively. As shown in

Figure 7, in agreement with the results previously reported [3],

pre-miRNAs are characterized by an MFEden lower than

expected according to their nucleotide content. The MFEden of

the coding sequences is approximately that expected for our

shuffled sequences with a comparable GC-content. Moreover, the

MFEden of the coding sequences appears to be scarcely affected

by sequence length (Figure 7A), indicating that free energy

density, on average, changes little from short to long (,600 nt)

CDSs. From the human genomic GC-content, which is approx-

imately 40.9% [18], we estimated the MFEden expected for a

typical genomic sequence equal to about 6.2 kcal/mol. This

estimated MFEden level is very close to 5.3 kcal/mol, which is the

average MFEden that we computed for a sample of 100 genomic

sequences, 100 nt-long, randomly chosen inside each human

chromosome (2400 sequences in all). In Figure 7B, the estimated

level of MFEden for a typical genomic sequence is indicated by an

horizontal broken line showing the different nature of the MFE

density in CDSs and pre-miRNAs. CDSs on average exhibit more

negative MFEden than expected for the genomic GC-content.

The folding stability of the CDSs is very close to that expected for

Figure 3. Minimum folding energy of randomly shuffled sequences. MFE (panel A) and AMFE (panel C) versus length at different GC-content:
20%, 40%, 50%, 60%, and 80%. MFE (panel B) and AMFE (panel D) versus GC-content for different sequence lengths: 20 nt, 100 nt, 200 nt, 300 nt,
400 nt, 500 nt, and 600 nt. Vertical bars indicate standard deviations (N = 100).
doi:10.1371/journal.pone.0113380.g003
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their own GC-content, suggesting a very weak role of nucleotide

order in determining their low free energy density. In contrast with

CDSs, Figure 7B shows that, although the GC-content also

contributes significantly to the high folding stability of pre-

miRNAs, for this functional RNA family the nucleotide order

plays a dominant role in determining its large stability with respect

to a typical genomic sequence.

MFEden analysis of human functional RNAs
Along with CDSs and pre-miRNAs, we analyzed the MFEden

of functional RNA sequences ranging between 40 and 600 nt. The

datasets used in this study contain the most frequent families of

human functional RNAs stored in the Rfam.fasta file of the Rfam

database [19] and the sequences of small nucleolar RNAs

(snoRNA) H/ACA and C/D box downloaded from the

snoRNABase [20].

We found that the average length of each RNA family is not

significantly correlated with its average MFEden (Pearson

correlation coefficient (Rp) = 20.1531, N = 13, p = 0.6176),

indicating that sequence length does not appear to be significantly

constrained by folding free energy demands. We roughly estimated

the contribution of nucleotide composition to the MFEden of each

RNA by the mean MFEden of our shuffled sequences with the

corresponding GC-content. The contribution of sequence order

was valued by subtracting the estimated contribution of nucleotide

composition from the computed MFEden. The average contribu-

tions to MFEden of the two sequence properties are, in each RNA

family, positively correlated (Rp = 0.6689, N = 13, p,0.02),

suggesting that sequence composition and nucleotide order, in

contrast with sequence length, concur to determine the level of the

thermodynamic stability that characterizes a functional RNA

family.

The results of our analysis also show that each RNA family is

characterized by a restricted and well-defined combination of

MFEden, length and GC-content. As an example, Figure 8

reports the MFEden of signal recognition particle RNAs (SRP

RNAs), U6 spliceosomal RNAs (U6 snRNAs), Rous sarcoma virus

RNAs (RSV RNAs), and H/ACA box RNAs plotted versus the

sequence length (panel A) and the GC-content (panel B). In

general, most of the RNA families examined here exhibit an

average free energy density more negative than expected for a

typical genomic sequence (Figure 9). In particular, SRP and H/

ACA box RNAs and pre-miRNAs, exhibit the most negative

average free energy density. Only small nuclear ribonucleic acids

(snRNA) U4 and U6 and Rous sarcoma virus (RSV) RNAs have

an average free energy density equal or slightly more positive than

that expected for the genomic sequences. The case of the SRP

family sequences stored in the Rfam database is interesting. The

MFEden (and MFE) distribution of the SRP RNAs is bimodal,

defining two distinct ranges of MFE density that are characterized

by a similar range of GC-content (Figure 8). Moreover, surpris-

ingly, the 17 human SRP seed sequences (orange points in

Figure 8), which are used as high-quality reference RNAs for

predicting SRP sequences stored in the Rfam database, exhibit a

GC-content higher than that of the 99% of the SRP sequences in

the database (Figure 8).

Discussion

MFE divided by the number of nucleotides is usually defined as

length-normalized MFE [2,6–8,21–24]. Strictly speaking, it should

mean that, using the normalized MFE indices, the differences in

the minimum free energies of RNA molecules can be almost

exclusively attributed to their nucleotide order and composition,

regardless of their lengths. In fact, the length-normalized index

AMFE was introduced by specifying that, after the MFE is

Figure 4. Residual plot from the linear fit of MFE versus length.
Residual plot of the linear regression analysis of MFE versus sequence
length. The MFE assigned to each length corresponds to the mean
value of 1000 shuffled sequences with exact equimolar ratios of A, C, G,
and U. Residuals are the differences between the computed MFEs and
the corresponding values that are predicted by a linear regression
analysis of MFEs with length.
doi:10.1371/journal.pone.0113380.g004 Figure 5. MFEden versus length. Plot of the mean MFEden versus

length for shuffled sequences with GC-content of 20%, 40%, 50%, 60%
and 80%, and for sequence lengths ranging between 40 and 600 nt
with steps of 20 nt. Each point corresponds to the mean value of 100
shufflings. The lines connect MFEden values with the same GC-content.
Vertical lines indicate standard deviation (N = 100).
doi:10.1371/journal.pone.0113380.g005

RNA Minimum Free Energy and Sequence Length

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e113380



adjusted, sequences with lengths ranging from 60 to 400 nt are

comparable based on their MFEs [9]. Accordingly, normalized

MFE has been used because MFE values are strongly correlated

with length [21], and because it serves as a comparable measure

without excessively penalizing the shorter precursor microRNAs

or favouring the longer mRNAs [24]. Similarly, it has been

reported that normalization renders the MFE of hairpins of

different lengths comparable [6], and normalized MFE was used

to analyze the relationship between folding free energy and GC-

content in mRNA sequences with different lengths [2].

Normalized MFEs have been employed for various purposes.

For example, normalization was used to improve structure

prediction by discarding segments whose normalized equilibrium

free energies were smaller than a threshold value [7]. Normalized

minimum free energy was also used to compare evolutionary

relationships between micro-RNA genes and their functions [8],

and its usefulness in identifying new non-coding RNAs was

compared with other measures [4]. AMFE helped to find

thermodynamics differences between nuclear-encoded micro-

RNAs localized principally in mitochondria and cytosol [25].

Normalized MFE was also used in the search for distinctive criteria

to predicting authentic precursors of microRNAs [22,24], for

comparing thermodynamic stability [26], and to improve

algorithms for RNA folding predictions [23,27,28].

Despite the significant number of works using normalized MFE,

to our knowledge, the linearity of the relationship between MFE

and sequence length, as well as the dependence of normalized

MFEs on RNA size, has not been thoroughly tested and lacks

quantitative substantiation. Here, we show that MFE does not

decrease linearly with sequence length, especially in the range of

sequences shorter than 100 nt. This deviation from a perfect linear

relationship, along with the bias introduced by dividing the MFE

by the length of the sequence, makes the normalized MFE of

differently sized RNA sequences not directly comparable. In fact,

we found that the magnitude of AMFE bias associated with length

is comparable to the AMFE variation associated with the GC-

content and with the variability produced by the random

arrangement of nucleotides in the sequence. We also found that

stacking and hairpin loop interactions are responsible for almost all

the AMFE bias. The AMFE bias is higher in shorter RNAs and

makes the AMFE index unsuitable for sequences shorter than

approximately 300 nt. To extend the applicability of normalized

MFEs to sequences shorter than 300 nt, we introduce a new index,

called MFEden, obtained by a simple correction of the AMFE

formula. The new MFEden index extends the applicability of

AMFE to RNA longer than 40 nt. This is a big improvement if we

Figure 7. MFEden of human CDSs and pre-miRNA. MFEden of CDSs (red circles) and pre-miRNA (blue circles) are plotted versus sequence
length (panel A) and GC-content (panel B). Black symbols indicate the mean MFEden values computed from shuffled sequences: GC-content: 20%
(circle), 40% (plus), 50% (square), 60% (6), and 80% (triangle). A horizontal broken line indicates the MFEden level expected for the genomic GC-
content.
doi:10.1371/journal.pone.0113380.g007

Figure 6. MFEden and AMFE versus length. Comparison of
MFEden (black points) and AMFE (grey open circles) for shuffled
sequences with GC-content of 20%, 40%, 50%, 60% and 80%, and for
sequence lengths ranging between 40 and 600 nt with steps of 20 nt.
Each point corresponds to the mean value of 100 shufflings. The lines
connect values with the same GC-content.
doi:10.1371/journal.pone.0113380.g006
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consider that, of the 2208 functional RNA families stored in the

Rfam database, 2023 (92%) have an average length ranging

between 40 and 300 nt, and overall, 2104 families (95%) have an

average length longer than 40 nt.

The stability of an RNA sequence is determined by the

combined contributions of its length, nucleotide content and

nucleotide order. In other words, if the local or the overall folding

thermodynamic stability is important for the correct functionality

of an RNA, it can be reached by acting on these three structural

elements. Depending on the specific RNA function, these three

elements could be differently constrained, and the evaluation of

their respective contributions to the overall free energy can be

useful for their assignment to a functional class. From the

perspective of free energy components associated with the three

structural elements, the MFE, Z-score [29] and MFEden represent

very different indices. The MFE of an RNA includes the free

energy components of all three structural elements: sequence

length, nucleotide content and nucleotide order. The Z-score

represents a different method for quantifying the RNA secondary

structure stability [29]. This index measures the distance between

the MFE of the analyzed RNA sequence and the average MFE of

a number of sequences generated by the random permutation of

its nucleotides. The distance is measured in terms of the SD of the

permutated sequences and, since the Z-score is a dimensionless

index, lacks a direct relationship with the absolute amount of the

free energy involved in folding stability. Because the shuffled

sequences used as reference contain the same composition and the

same number of nucleotides of the analyzed sequence, the Z-score

index measures only the component of folding energy associated

with the order of nucleotides in the sequence. This important point

should be considered when the Z-score of two sequences is

compared. In fact, for example, two RNAs with the same length

and Z-score can differ significantly in their thermodynamic

stability due to different GC-content. In addition, calculating the

Z-score, especially for analyzing large RNA families, is laborious

and time-consuming because of the sequence randomization

procedures and the MFE computation of all simulated sequences.

Differently from the MFE and the Z-score, the MFEden excludes

the free energy contribution associated with the sequence length

but includes the components related to nucleotide order and

composition, also, indirectly, providing a rough estimate of their

relative contributions. Moreover, the MFEden is measured in free

energy units, its computation is not laborious and time-consuming,

and it is suitable for large datasets. The MFEden analysis of the

human RNA families examined in this work suggests that the GC-

content and the nucleotide arrangement generally concur to

determine the level of the thermodynamic stability that charac-

terizes a functional RNA family, whereas the sequence length does

not appear to be significantly constrained by folding free energy

demands. This lack of correlation between the MFEden and the

Figure 8. MFEden of human RNA families. The MFEden of the functional RNA families SRP RNAs (black points), U6 snRNAs (blue squares), RSV
RNAs (red Xs), and H/ACA box RNAs (green triangles) plotted versus the sequence length (panel A) and the GC-content (panel B). Orange points
indicate the 17 human SRP seed sequences of Rfam database.
doi:10.1371/journal.pone.0113380.g008

Figure 9. MFEden of 14 human functional RNA families. Bar plot
showing the mean MFEden of 14 human functional RNA families (grey
bars) compared with the mean MFEden of shuffled sequences with GC-
content equal to 20%, 40%, 50%, 60% and 80% (white bars), the mean
MFEden of 2400, 100 nt-long, genomic sequences taken at random and
the MFEden expected for the genomic GC-content (black bars). The
vertical bars indicate the standard errors of the means.
doi:10.1371/journal.pone.0113380.g009
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RNA size suggests that sequence length is scarcely informative

about the folding stability demands of an RNA family, and

therefore represents a confusing variable when the MFE of

different RNA families is compared. For this reason, MFE density

appears more informative than MFE about the thermodynamic

stability requirements of an RNA family. Accordingly, for

example, U6 spliceosomal RNA family is characterized by a

significantly high MFEden (Figures 8 and 9) that is consistent with

its biological function. Such a low structure stability should

facilitate the large conformational changes that U6 RNAs

experience during the assembly of the spliceosome [30].

Conversely, pre-miRNA family is characterized by a significantly

low MFEden (Figures 7 and 9). This high global structural stability

is compatible with the necessity of pre-miRNA to maintain the

stem-loop structure that is recognized and cleaved by double-

stranded specific nucleases (Dicer family) by a process that is

critical for the miRNA biogenesis [31]. The lack of correlation

between the MFEden and the RNA size also suggests that the

intrinsic higher stability of longer sequences is generally not

compensated by a low level of GC-content or a decreased amount

of stacking interactions, suggesting that there is not a general

optimal level of thermodynamic stability at which every RNA

tends. We also found that each RNA family is characterized by a

restricted and well-defined combination of MFEden, length and

GC-content. Furthermore, pre-miRNA, SRP and ACA_box

RNAs exhibit significant negative MFE densities than the other

RNAs and the typical genomic sequences. These differences in the

MFE density of the RNA families can be exploited to improve the

accuracy of sequence filtering for predicting non-coding RNAs.

In conclusion, this work demonstrates that length-normalized

indices of MFE are biased measures of folding free energy density

and proposes a new index with improved applicability for short

RNA sequences. Unlike the Z-score, the new index, termed the

MFEden, is simple and not time-consuming to compute, suitable

for large datasets, and includes the folding free energy component

associated with GC-content. An analysis of the MFEden of real

sequences shows the different roles of length, GC-content and

nucleotide order in the folding stability of RNA families and

suggests the possible use of the MFEden to improve algorithms for

predicting new RNAs or for their assignment to a functional class.

Materials and Methods

Data processing and analysis
All data were processed using software programs developed in

our laboratory in the C# language that were tested by

independent computational tools and manual calculations. Our

software also includes programs to randomly shuffle the nucleo-

tides of RNA sequences using the Fisher-Yates algorithm [32] and

to read genomic sequences in a random position in the

chromosomes. Statistical analysis was performed using STATIS-

TICA (version 8.0, Statsoft, Inc.).

Computation of MFE, AMFE and MFEden
MFE was computed using two programs: RNAfold, included in

the ViennaRNA software package version 2.1.5 [15,16]; and

Quickfold, from the Mfold web server (http://mfold.rna.albany.

edu/?q=DINAMelt/Quickfold) [13,14]. For very short sequences,

we found that the MFEs computed by Quickfold (Mfold) were

sometimes positive. In these cases, global free energy were set to

0 kcal/mol.

AMFE was calculated by dividing MFE by the sequence length

and then multiplying the result by 100 to relate the index to a 100-

nucleotides segment: AMFE = 100NMFE/length [9].

MFEden was computed using the formula MFEden =

100*(MFE-MFEref
L)/(L-L0), where MFEref

L is the expected MFE

for a sequence with L nucleotides and equimolar ratios of A, C, G

and U nucleotides. The expected MFEs were estimated by the

mean MFE of 2000 random shufflings of sequences from a set with

increasing lengths: from 40 to 600 nt, in steps of 4 nt. The

estimated MFE of intermediate lengths were linearly interpolated

(see Dataset S1 for MFEs computed by RNAfold). The optimal L0

value for MFEs computed by RNAfold was determined empiri-

cally equal to 8 nt.

In all simulated sequences, including those with various GC-

content, Watson and Crick complementary bases were present at

the same frequency: number of As equal to number of Us, and

number of Cs equal to number of Gs.

Human RNA sequences
All native sequences analyzed in this work were included in the

taxonomic category of Homo Sapiens. RNA coding sequences

were downloaded from the consensus CDS database (CCDS)

(release 15) (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/) [33], which

provides high-quality human CDS data. Of the 29064 high-quality

sequences downloaded from the CCDS database, we used the

4379 sequences with length included between 40 and 600 nt.

From the miRBase database (ftp://mirbase.org/pub/mirbase)

(release 20) we downloaded the set of high-confidence microRNAs

[34] which includes 278 human sequences.

The human most frequent families in the Rfam.fasta file stored

in the Rfam database [19] (release 11.0) (ftp://ftp.ebi.ac.uk/pub/

databases/Rfam/) were used in this study: 5S ribosomal RNAs

(ID: RF00001), U1 spliceosomal RNAs (ID: RF00003), U2

spliceosomal RNAs (ID: RF00004), Transfer RNAs (ID:

RF00005), U4 spliceosomal RNAs (ID: RF00015), Signal recog-

nition particle RNAs (ID: RF00017), Y RNAs (ID: RF00019), U6

spliceosomal RNAs (ID: RF00026), 7SK RNAs (ID: RF00100)

and Rous sarcoma virus RNAs (ID: RF01417).

The sequences of human H/ACA and C/D box small nucleolar

RNAs were downloaded from the snoRNABase [20].

Estimate of the MFE density components associated with
GC-content and nucleotide order

The expected values of MFEden for a specific GC-content was

estimated by a polynomial interpolation of MFEden reference data

computed for shuffled sequences with varying levels of GC-content

(20%, 40%, 50%, 60% and 80%). The approximate MFEden

component associated with GC-content was estimated by

subtracting the MFEden expected for the genomic GC-content

from the MFEden expected for the GC-content of the sequence

analyzed. The estimate of the MFEden associated with nucleotide

order was performed by subtracting the MFEden expected for the

GC-content from the overall computed MFEden of the analyzed

RNA.

Supporting Information

Dataset S1 RNAfold precalculated estimate of MFE
expected for RNA sequences with L nucleotides and
equimolar ratios of A, C, G and U. The expected MFEs were

estimated by the mean MFE of 2000 random shufflings of

sequences from a set with increasing lengths: from 40 to 600 nt, in

steps of 4 nt. The estimated MFE of intermediate lengths were

linearly interpolated.

(TXT)
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