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Abstract

Bacterial communities are immensely diverse and drive many fundamental ecosystem processes. However, the role of
bacterial community composition (BCC) for functioning is still unclear. Here we evaluate the relative importance of BCC
(from 454-sequencing), functional traits (from Biolog Ecoplates) and environmental conditions for per cell biomass
production (BPC; 3H-leucine incorporation) in six data sets of natural freshwater bacterial communities. BCC explained
significant variation of BPC in all six data sets and most variation in four. BCC measures based on 16S rRNA (active bacteria)
did not consistently explain more variation in BPC than measures based on the 16S rRNA-gene (total community), and
adding phylogenetic information did not, in general, increase the explanatory power of BCC. In contrast to our hypothesis,
the importance of BCC for BPC was not related to the anticipated dispersal rates in and out of communities. Functional
traits, most notably the ability to use cyclic and aromatic compounds, as well as local environmental conditions, i.e.
stoichiometric relationships of nutrients, explained some variation in all six data sets. In general there were weak
associations between variation in BCC and variation in the functional traits contributing to productivity. This indicates that
additional traits may be important for productivity as well. By comparing several data sets obtained in a similar way we
conclude that no single measure of BCC was obviously better than another in explaining BPC. We identified some key
functional traits for productivity, but although there was a coupling between BCC, functional traits and productivity, the
strength of the coupling seems context dependent. However, the exact context is still unresolved.
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Introduction

Lakes and reservoirs are central compartments in the global

carbon cycle [1], through the processing of organic matter by

microorganisms, making resources available for higher trophic

levels of the grazer chain [2] or contributing to the outgassing of

carbon dioxide to the atmosphere [3,4]. It is well known that local

environmental conditions such as temperature and availability of

nutrients are related to bacterial production [5]; the question is,

however, if also bacterial community composition (BCC) plays a

role. Results obtained so far are rather inconclusive, both in field

[6,7] and experimental studies [8–12].

Disparate results may rise from methodological differences, for

instance due to the fact that in natural bacterial communities a

substantial proportion of the cells may be inactive or dormant

[13], and BCC measures including such cells may obscure BCC-

function relationships. Further, results could be affected by the

choice of method to classify operational taxonomic units (OTUs),

i.e. whether sequence similarities alone or also phylogenetic

distances between taxa [14,15] are taken into account. Using a

phylogenetic diversity measure may result in a tighter observed

coupling between BCC and functioning if closer related taxa are

functionally more similar. However, carbon processing traits tend

to be dispersed in the 16S rRNA phylogeny [16], i.e. they are

shared in phylogenetically shallow clusters all across the bacterial

realm. Therefore, any BCC measure may have a limited

explanatory power for productivity compared to measurements

of key functional traits. For instance, in a previous study [12], we

showed that the community productivity of heterotrophic bacteria

is dependent on the community’s ability to use certain carbon

substrates in habitats where these substrates are abundant. Thus,
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functional trait composition may have a better explanatory power

for functioning than BCC.

In addition to the methodological issues, the strength of BCC-

functioning relationships can differ due to ecological reasons,

depending for instance on the proportion of generalists and

specialists in a community, since a great proportion of generalists

should result in weaker BCC-functioning relationships [17]. The

degree of generalism may in turn depend on community assembly

mechanism and environmental heterogeneity. Dispersal may, for

example, favor resource generalists [18], and BCC and function-

ing should therefore be uncoupled if the dispersal rate is high. In

contrast, large differences in environmental conditions and low

(but not limiting) dispersal among communities could favor

resource specialist taxa via species sorting processes and, thus,

stronger BCC-functioning relationships are expected [7,19].

For a better understanding of the importance of BCC for

community functioning we need a conceptual framework and

systematic studies including both methodological awareness and

ecological considerations. Here we used six different data sets of

aquatic bacteria, from 7–15 communities each, to explore the

relative importance of the local environment, carbon processing

trait composition and BCC for the productivity of bacterial

communities depending on dispersal rates and environmental

heterogeneity among communities. Two of the data sets originate

from lake sediment communities, two from the epilimnion

communities of lakes and two from stream communities. The

ecosystem function of interest in this study is bulk bacterial

community production (leucine incorporation) and the different

functional traits under consideration are the communities’ ability

to use different carbon substrates (assessed from Biolog-plates).

Bacterial taxonomic community composition (BCCt) and phylo-

genetic community composition (BCCp) were determined by high-

throughput DNA sequencing, hypothesizing that BCCp would

explain more variation in productivity than BCCt. Further, our

BCC measures were based on the 16S rRNA (rBCC) as well as the

16S rRNA gene (dBCC). Assuming that rBCC would better reflect

the active part of the community [20] we hypothesize that rBCC

will be more closely linked to productivity than measures based on

the total community (dBCC). Finally, we hypothesize that BCC

(incorporating all aspects of BCC) would explain less variation in

productivity with increasing dispersal rates and/or lower environ-

mental heterogeneity among communities in a data set because

these conditions are assumed to favor habitat generalism. In

contrast, functional trait composition would not be affected by the

degree of generalism and should therefore explain relatively more

of the variation in productivity with increasing dispersal rates and/

or higher environmental heterogeneity.

Material and Methods

All abbreviations are given as an overview in Table S1.

Ethics Statement
No permits were required to sample any of the water bodies in

this study. The authors also confirm that the sampling did not

affect endangered or protected species.

Sampling
Three freshwater systems in two geographic regions in Sweden

were sampled in summer and autumn 2010; pelagic lake water

(epilimnion), lake sediments (upper 1 cm) and stream waters. One

of the lake systems is situated in the province of Jämtland

(approximately 63uN and 13uE) where all the 14 sampled lakes are

connected to the river Indalsälven either by an inlet and/or an

outlet. Samples were obtained in June from all pelagic lake waters

(Jw) and 7 sediments (Js) (due to harsh weather conditions the

sediments in the remaining seven lakes could not be sampled). The

other lake-system is situated in Uppland (approximately 60uN and

17uE), where water (Uw) and sediments (Us) were sampled in 15

hydrologically unconnected lakes in June. Stream samples were

obtained from 15 sites in River Fibyån, Uppland, in July (S I) and

September (S II). We assumed that 1) dispersal of bacterial cells

among communities was lowest in sediments since it requires both

sediment resuspension within lakes and dispersal among lakes; 2)

dispersal rates among stream water communities was highest due

to shorter water retention time in streams in relation to lakes, but

that dispersal was greater in S II compared to S I since water levels

indicated a higher water flow in September; 3) among the lakes,

dispersal was higher among the Jämtland lakes since they are all

part of the same river system while the Uppland lakes were not.

Based on these assumptions the data sets were ranked from 1–6

where 6 denotes the highest dispersal rate (S II) and 1 the lowest

(Us).

Environmental data
Non-purgeable total organic carbon (hereafter termed TC) in

water samples was determined by measuring organic carbon after

acidification with HCl (TOC-5000, Shimadzu, Kyoto, Japan).

Total nitrogen (TN) in water samples was measured spectropho-

tometrically (Hitachi U-2000, Hitachi, Ltd., Tokyo, Japan) as

nitrate after oxidation at high temperature. Total phosphorus (TP)

in water and sediment samples was also measured spectrophoto-

metrically after oxidative hydrolysis of organically bound phos-

phorus. Total carbon (TC) and total nitrogen (TN) in sediment

samples was determined in freeze-dried and ash-free sediments by

combustion with oxygen (elemental combustion system, Costech

Analytical Technologies, Inc., Valencia, CA, USA).

The Jämtland lakes are generally more oligotrophic with low

levels of total organic carbon compared to all Uppland sites

(Table 1). However, the environmental variability, measured as

coefficient of variation (CV) among sites, was not consistently

higher in any data set but differed between environmental

variables (Table 1).

Bacterial abundance
Cell abundances were determined flow-cytometrically [21]

(CyFlow space, Partec GmbH, Münster, Germany) for water

samples and microscopically (Nikon Eclipse E600 fluorescence

microscope, Nikon Corporation, Tokyo, Japan) for sediment

samples. Following the protocol by [21] water samples were fixed

with filtered formaldehyde (3.7% final concentration) and stored at

4uC for a maximum of two days. The cells were stained with

SYTO 13 (Invitrogen, Life Technologies Ltd, Paisley, UK). The

sediment samples were diluted 106 with filtered lake water

(0.2 mm filters, Supor-200 Membrane Disc Filters, 47 mm; Pall

Corporation, East Hills, NY, USA) and fixed with filtered

formaldehyde (3.7% final concentration). This sediment slurry

was then diluted 5006 with an 50/50 mix of tap water and

deionized water and sonicated at 100 W for 1 min on ice. After

settlement of the particles, the cells in the supernatant were stained

with DAPI (49,6-Diamidino-2-Phenylindole, Dihydrochloride,

Invitrogen, Life Technologies Ltd, Paisley, UK) for 15 min and

filtered onto 0.2 mm black polycarbonate filters (Sorbent AB,

Västra Frölunda, Sweden). At least 10 fields with at least 200 cells

in total were counted for each filter.

Context for BCC - Functioning Relationships
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Bacterial production
The incorporation of 3H-labelled leucine into bacterial protein

in water samples was determined using the modified method from

[22]. In short, for each sample two parallels and a blank

(immediate addition of a final concentration of 5% TCA) were

incubated in a final concentration of 100 nM 3H-leucine for one

hour in the dark at close to ambient temperatures (the same

temperature for all samples within a data set). The incubation was

stopped by adding a final concentration of 5% TCA to the water

samples. After washing with 5% TCA and 80% Ethanol, 0.5 ml of

the scintillation cocktail (Optiphase Hisafe 2, PerkinElmer, Inc.,

Waltham, MA, USA) were added and the samples were kept for at

least 24 hours before measurement of the incorporated 3H-leucine

(Packard Tri-Carb 2100TR Liquid Scintillation Analyzer, GMI,

Inc, Ramsey, MN, USA). For sediment samples, homogenized

sediment was diluted 10006with sterile-filtered (0.2 mm-filter) lake

water from the same location. This sediment slurry was incubated

with a final concentration of 10 mM 3H-leucine for one hour.

Samples and blanks were then treated as described for the water

samples.

Average per cell productivity (BPC) was inferred as bacterial

production (BP)/bacterial abundance (BA). This was done in order

to obtain a measure of bulk community productivity independent

of abundance.

Functional trait composition
Functional trait composition of communities was assessed as the

capacity of the communities to use different carbon sources. 150 ml

of either water or a 10006dilution of the sediment were incubated

on Biolog EcoPlates (Biolog, Inc., Hayward, CA, USA). These 96-

well plates contain 3 sets of 31 carbon substrates and a water

blank. The use of these substrates was followed by absorbance

measurement of the colorless tetrazolium dye which is reduced to a

violet formazan during oxidation of the substrates by bacterial

metabolism. Changes in color development were measured using a

microplate reader (TECAN ULTRA 384, Tecan Group Ltd.,

Männedorf, Switzerland) at 595 nm. Immediately after inocula-

tion, the zero time-point was measured and measurements were

repeated daily. The color development was followed until the

maximum color development was reached (no further increase in

absorbance). The overall color development of each plate was

expressed as average well color development (AWCD, [23]) and

the absorbance profiles corresponding to the time at which the

AWCD was 1.5 AWCD were used. In the analysis substrates were

grouped according to their molecular structure into polymers

(tween 40 and 80, a-cyclodextrin and glycogen), aromatic

compounds (2-hydroxy benzoic acid, 4-hydroxy benzoic acid, L-

phenylalanine, phenyletylamine), non-aromatic amino acids (L-

arginine, L-asparagine, L-serine, L-threonine, glycyl L-glutamic

acid), cyclic compounds other than aromatics (D-cellobiose, a-D-

lactose, b-methyl-D-glucoside, D-xylose, N-acetyl-D-glucosamine,

glucose-1-phosphate, D-galactonic acid c-lactone, D-galaturonic

acid), and simpler compounds (the rest). The average AWCD-

normalized absorbance scores of the substrates in each group were

calculated for the PLS analyses (see below).

Nucleic acid extraction
100 ml of the lake and stream water were filtered onto a 0.2 mm

filter (Supor-200 Membrane Disc Filters, 47 mm; Pall Corpora-

tion, East Hills, NY, USA). The filters were stored in liquid

nitrogen in the field and later at 280uC until further processing.

Approximately 0.5 ml of the undiluted sediment was frozen

directly. Nucleic acids (DNA and RNA) were extracted using the

Easy-DNA kit from Invitrogen (Life Technologies Ltd, Paisley,
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UK) according to protocol #3. For the extraction of nucleic acids

form the filters, glass beads (0.1 mm zirconia/silica, BioSpec

Products, Inc., Bartlesville, OK, USA) were added at the

beginning of the extraction procedure. The tubes were then

shaken in a vortex for 15 min to break filters and cells. No such

step was included for the sediment samples. Extracts were quality-

checked on a 1% agarose gel. After completion of the protocol,

half of the nucleic acid extract was subjected to DNase treatment

(DNase I, Invitrogen, Life Technologies Ltd, Paisley, UK) and

reverse transcription (RevertAid HMinus First Strand cDNA

Synthesis kit, Fermentas Sweden AB, Helsingborg, Sweden)

according to the manufacturers’ instructions using random

hexamer primers. The resulting cDNA as well as the DNA

extracts were stored at 280uC until further processing.

PCR amplification and Template Preparation
The bacterial hypervariable regions V3 and V4 of the 16S

rRNA (cDNA) as well as its gene (DNA) were PCR amplified using

forward primer 341 59- CCTACGGGNGGCWGCAG-39 and

individually bar-coded reverse primers 805 59- GAC-

TACHVGGGTATCTAATCC-39 [24]. Each 20 mL PCR reac-

tion contained 0.4 U Phusion high-fidelity DNA polymerase

(Finnzymes, Espoo, Finland), 16 Phusion HF reaction buffer

(Finnzymes), 200 mM of each dNTP (Life Technologies Ltd,

Paisley, UK), 250 nM of each primer (Eurofins MWG, Ebersberg,

Germany), 0.4 mg mL21 BSA (New England Biolabs, Ipswich,

UK) and 5–10 ng of extracted nucleic acid. Thermocycling was

conducted with an initial denaturation step at 98uC for 30 sec,

followed by 25 cycles of denaturation at 98uC for 10 sec,

annealing at 50uC for 30 sec and extension at 72uC for 30 sec,

and finalised with a 7-min extension step at 72uC. Three to four

technical replicates were run per sample, pooled after PCR

amplification and quality-checked on a 1% agarose gel. Purifica-

tion was carried out using the AMPure XP purification kit

(Beckman Coulter Inc., Brea, CA, USA). Nucleic acid yields were

then checked on a fluorescence microplate reader (Ultra 384;

Tecan Group Ltd., Männedorf, Switzerland) applying the Quant-

iT PicoGreen dsDNA quantification kit (Invitrogen, Life Tech-

nologies Ltd, Paisley, UK). Finally, PCR amplicons were

combined equimolarly, i.e. in equal proportions, to obtain a

similar number of 454 pyrosequencing reads per sample.

454 Pyrosequencing
The final, pooled amplicon was 454 pyrosequenced with a 454

GS FLX system (454 Life Sciences) at the Norwegian High-

Throughput Sequencing Centre, University of Oslo (NSC; Oslo,

Norway; http://www.sequencing.uio.no), using Titanium chemis-

try. Sequences were, prior to analyses, quality-checked and

truncated to 400 bases. Each data set was individually processed

with AmpliconNoise to reduce the number of PCR and 454

sequencing artifacts and chimeras [25]. 454 pyrosequencing reads

have been deposited in the National Center for Biotechnology

Information Sequence Read Archive (NCBI-SRA) under acces-

sion number SRP016145. For further analysis, singletons as well as

sequences belonging to Archaea and chloroplasts were removed

from the data set. Operational taxonomic units (OTUs) were

defined using complete linkage clustering at a level of 99%

sequence identity. Computations were performed on resources

provided by SNIC through the Uppsala Multidisciplinary Center

for Advanced Computational Science (UPPMAX). Taxonomic

affiliation (phylum-level) of OTUs was determined by aligning

representative sequences to the Greengenes imputed core refer-

ence alignment [26] (http://greengenes.lbl.gov) using PyNAST

[27] in Qiime [28].

After processing an average of 1450 (median = 774) and 450

(median = 347) reads per sample of the total community (DNA)

and active bacterial community (cDNA), respectively, were

obtained. Because of the risk of large sampling errors with few

numbers of reads per sample we omitted samples with ,200 reads

(1 sample in S I and 4 samples in S II for the total commuinity

(DNA), and 1 sample in Js, 4 samples in Us and 2 each in the

stream samples for the active community (cDNA)). The range in

number of reads between cDNA samples was 200–2445 and for

DNA 200–4719.

Phylogenetic tree
Due to the limited length of the sequenced region (approx.

400 bp) and the large amount of different taxa (over 30 000) we

could only construct a robust phylogenetic tree for a subset of the

total community. Otherwise the phylogeny would be a random

tree without sufficient node support. Therefore we constructed

phylogenetic trees for the most abundant and, hence, likely

functionally most important taxa. For the 142 taxa of the cDNA

data set and the 153 taxa of the DNA data set that had an average

relative abundance of 0.1% across all samples or 0.3% in a single

data set (18% and 25% of all reads in total and active community,

respectively) we constructed 10 000 single phylogenetic trees and

the consensus tree from the 16S RNA sequence using a

generalized time reversible (GTR) evolutionary model with

gamma-distributed rate variation across variable sites in mrBayes

3.2 [29]. The branch length prior was set to a uniform clock. The

standard deviations of splits after 10 000 000 generations was ,

0.005 indicating most nodes were well supported. A tree was

sampled every 1000th time step and the last 5 000 trees from the

two runs were saved and used for calculating the consensus trees.

From the consensus trees we caluculated phylogentic similarities of

communities using the Phylogenetic Community Dissimilarity [30]

in the picante-package for R. It calculates the pairwise phyloge-

netic distance among nonshared taxa between two communities,

i.e this measure is based only on the occurrence of different taxa

and their phylogenetic distance, not the relative abundance of

taxa.

Bacterial community composition
We calculated four different estimates of bacterial community

composition for each of the six data sets, i.e. all BCC measures

were only calculated for communities within a data set and do not

account for between data set compositional differences (which was

much larger than within data set differences). For each DNA and

cDNA data set we calculated one measure of taxonomic

composition without accounting for phylogenetic distance between

taxa (dBCCt and rBCCt for total and active community,

respectively), and one measure of phylogenetic community

composition accounting for phylogenetic distances (dBCCp and

rBCCp for total and active community respectively). To extract

one measure of rBCCt and dBCCt for each community we used

the site scores from the first axis of a Principal Coordinate Analysis

(PCoA) of the Morisita-Horn distance matrix (see ‘statistical

analyses’ below) for each data set. In this case the first axis

explained 12–42% of the variation in rBCCt and 33–70% in

dBCCt, being highest in the Js data set, and lowest in the S II data

set (Table S2). Similarly, using the phylogentic distance matrix (see

above) sites scores were obtained from the first axis of PCoA both

of the active (rBCCp) and total bacterial communities (dBCCp).

Communities with similar PCoA site scores have thus closely

related non-shared taxa whereas non-shared taxa are more

distantly related between communities with different site scores.

The first axis explained similar amounts of variation in community

Context for BCC - Functioning Relationships
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composition in all data sets, 19–40% in rBCCp and 22–38% in

dBCCp (Table S2), again being highest in the Js data set in both

cases.

Statistical analyses
Average beta-diversity of bacterial communities (OTUs of 99%

16S rRNA similarity) within each data set (rBCCt and dBCCt) was

calculated as Morisita-Horn dissimilarities. Morisita-Horn dissim-

ilarities close to zero indicate very similar communnities, whereas

values close to 1 indicate completely different communities.

Bray-Curtis dissimilarites of carbon substrate use (AWCD scores

of all 31 substrates) were obtained as an estimate of between site

variation in trait composition. Bray-Curtis dissimilarities close to

zero indicate communities that have a very similar relative use of

different carbon substrates, whereas values close to 1 indicate a

completely different use of carbon substrates. Non-metric multi-

dimensional scaling (nMDS) was performed using PAST version

2.17 [31] to show differences in carbon substrate use and bacterial

community composition (BCCt) among data sets.

To study associations between community BPC and local

environmental factors, functional trait composition of communities

and the different aspects of BCC within data sets, we did partial

least square regressions (PLS) with SIMCA 12.0 (Simca 12.0.1.,

Umetrics AB, Umeå, Sweden). BPC was the dependent variable

and TC, TP, TN, TN/TC, TP/TC and average use of the

different substrate groups and PCoA sites scores of the first axes of

BCC (all BCC measures) were used as explanatory variables

(Table 2). PLS has the advantages that it can handle co-variation

among variables and is not sensitive to the number of explanatory

variables relative sample size as explanatory variables are

transformed into one or several latent variables that explain the

maximum variance of the dependent variable [32]. From the PLS

we extracted Variable Importance for the Projection (VIP-scores)

that describe the relative importance of a variable for the

Table 2. Average Bray-Curtis (BC) and Morisita-Horn (MH) dissimilarities.

Data set BC Biolog MH rBCCt MH dBCCt MH r/dBCCt

Us 0.32 (0.13) 0.82 (0.11) 0.71 (0.06) 0.78 (0.12)

Js 0.22 (0.03) 0.86 (0.17) 0.70 (0.13) 0.84 (0.14)

Uw 0.22 (0.06) 0.71 (0.11) 0.60 (0.12) 0.52 (0.15)

Jw 0.20 (0.08) 0.63 (0.11) 0.45 (0.09) 0.56 (0.07)

S I 0.13 (0.02) 0.71 (0.09) 0.71 (0.09) 0.62 (0.07)

S II 0.13 (0.03) 0.63 (0.07) 0.72 (0.05) 0.70 (0.09)

Average 0.20 (0.06) 0.72 (0.09) 0.66 (0.10) 0.68 (0.12)

Values are calculated between the sampling sites within each data set for carbon substrate use (Biolog, functional trait composition) and BCC, respectively. Standard
deviations (SD) are given in parenthesis. MH r/dBCCt is the average of the within sample Morisita-Horn dissimilarity between rBCCt and dBCCt.
doi:10.1371/journal.pone.0112409.t002

Figure 1. Bar diagrams representing the relative proportion of 16S sequences (rRNA and gene) belonging to the most abundant
phyla. ‘Others’ contain OTUs with a relative abundance below 0.5% in the entire data set. ‘Unidentified’ denotes OTUs whose taxonomic affiliation is
unknown.
doi:10.1371/journal.pone.0112409.g001
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correlation between the latent explanatory variables and the

dependent variable. VIP-scores.1 indicate important variables,

and the higher the value the more important is a variable for the

correlation between the latent and dependent variable. We used

the scaled and centered coefficients between the explanatory

variables and the dependent variable to show the direction of the

relationship (positive or negative). To infer covariation between

different explanatory variables and BPC we plotted the loadings

from the PLS. Explanatory variables with high loadings (positively

or negatively) explain most of the variation in the latent variables,

and explanatory variables close together show high covariation. In

the loading plot, explanatory variables close to BPC are positively

correlated with BPC whereas explanatory variables distant from

BPC are negatively correlated with BPC. However, to get actual

values of correlations between explanatory variables we also

calculated Pearson correlation coefficients, r. BPC and environ-

mental data was log-transformed prior to the analysis for the data

to better fit a normal distribution. We did paired t-tests to compare

the explanatory power of active (rBCC) and total (dBCC),

respectively phylogenetic based (BCCp) or taxonomic based

(BCCt) measures of BCC on BPC.

To study whether dispersal rates and environmental heteroge-

neity between communities in a data set may contribute to the

relative importance of BCC, functional traits and the environment

on productivity we did Pearson correlation between the VIP-

scores of explanatory variables in a data set and dispersal level or

degree of environmental heterogeneity (CV of environmental

variables) in each data set. For functional trait composition and

environmental variables VIP values could be used directly. For

rBCC (active part) and dBCC (total community) we used the

highest VIP-value of BCCt and BCCp, respectively.

Results and Discussion

In this field study we investigated the potential importance of

bacterial community composition (BCC), functional trait compo-

sition (Biolog substrate use), and local environment for functioning

(bacterial production per cell, BPC) of freshwater bacterial

communities. We hypothesized that these relationships may differ

depending on environmental heterogeneity and rates of dispersal

among communities. Further, we tested the idea that depending

on how BCC was determined, the strength of the relationship to

functioning would differ. To enable such an evaluation we

obtained six different data sets, each consisting of 7–15 freshwater

bacterial communities (water and sediments, lakes and streams), in

an identical manner, and statistically evaluated the steering factors

for functioning.

The bacterial communities were analyzed by 454 sequencing

and their compositions were found to be rather typical for

freshwaters [33], e.g., dominated by Proteobacteria and Bacter-

oidetes (Fig. 1) but there were clear differences in bacterial

community composition based both on the 16S rRNA and the

16SrRNA gene (Fig. 2A and B).

The average MH dissimilarity among sites was similar for those

two BCC measures, i.e. on average 0.72 among all sites and

ranging between 0.63 and 0.86 for rBCCt (Table 2, Fig. 2A) and

0.66 on average and ranging between 0.45 and 0.72 for dBCCt

Figure 2. Results from a non-metric multi-dimensional scaling
(nMDS) analysis. Depicted are the differences in bacterial community
composition between all stations for rBCCt (A) and dBCCt (B), based on
Morisita-Horn dissimilarities. The difference in carbon use is based on
Bray-Curtis dissimilarities of the Biolog data (C). Stress values are given
in the lower right corner.
doi:10.1371/journal.pone.0112409.g002
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(Table 2, Fig 2B). In contrast, the dissimilarity of functional trait

composition (Bray Curtis distance of Biolog substrate use) was

much lower, the average being only 0.20 (Table 2). The functional

trait composition did also not differ among habitat types in an

obvious way (Fig. 2C). This may indicate a redundancy of taxa for

processing carbon substrates, i.e. that different taxa can perform

similarly on the same carbon substrate.

Assuming that rBCCt should reflect the active community and

dBCCt the total community [20] the proportion of active taxa

appeared to have been low since the average MH dissimilarity

between rBCCt and dBCCt of a given community was 0.68

(Table 2). Especially in sediments, many bacterial cells could have

been inactive since MH-distances were on average 0.84 and 0.78

for Jämtland and Uppland respectively, while the lake water

communities may have shown a greater proportion of active cells,

however still showing MH-distances above 0.5 (Table 2). There-

fore it may be expected that rBCCt and dBCCt would be

differently related to our functional measure BPC. Our hypothesis

was that the active community (rBCC) would be better related to

functioning than the total community (dBCC). In our analysis we

also included two BCC measures based on phylogenetic distances

(rBCCp and dBCCp), hypothesizing that a phylogenetic distance

measure would show a stronger coupling between BCC and BCP

than the rigid OTU definition used to calculate MH dissimilarities.

The potential influential factors on BCP were investigated using

PLS which is a statistical method suitable for handling many

variables with co-variation among them [32].

The latent variable(s) generated from BCC, carbon substrate

use and nutrient levels in the PLS explained most variation in BPC

in the Jw data set (94%; R2Y in Table 3) and least variation in S I

(27%), and more than 50% in all other data sets. Thus, the latent

variables explained a major part of variation in BPC in most data

sets. In all data sets the PLS identified BCC to explain an

important part of the variation in BPC, since one or several

measures of BCC had VIP.1, but other factors contributed as

well (Table 3). In four of the data sets (both lake water data sets, Js

and S I) a measure of BCC had the highest VIP value, i.e.

explained most of the variation in BCP (Table 3, Fig. S1). In the

remaining two data sets (Us and S II) functional trait composition

of communities and the local environmental conditions, respec-

tively, were better explanatory variables. Since the most important

factor thus varied among data sets this result highlights the

importance of not relying on a single set of data to draw general

conclusions regarding drivers of bacterial functioning in nature. In

line with these results are several previous studies showing variable

relationships between BCC and functioning [6,7,8,9,34,35].

A methodological consideration arising from these data is that if

we had used only one BCC measure instead of four to infer the

general importance of BCC for functioning we would have

perceived it to be smaller, since ‘‘best’’ BCC measure varied

among data sets. However, contrary to our expectations we did

not find rBCC (active community) to be more closely coupled to

functioning than dBCC (total community) because rBCC did not

have higher VIP-values than dBCC (paired t-test: t10 = 0.3,

p = 0.8). Further, phylogenetic measures of beta-diversity (BCCp)

did not explain more variation than those based on the distance of

OTUs (BCCt) (paired t-test: t(10) = 0.1, P = 0.9). In fact, the BCC

measure taking into account the phylogenetic relatedness of the

active compartment of the community (rBCCp) performed

‘‘worst’’ with only oneVIP-value.1 (Uppland sediment

VIP = 1.02). Methodological reasons for these unexpected results

may be that rRNA based methods are poor measures of actual

Table 3. VIP values from PLS analysis between BPC and the explanatory variables for the data sets.

Data set

Model fit Us Js Uw Jw S I S II

R2X 23 23 28 56 26 25

R2Y 46 79 54 94 27 51

Explanatory variable

rBCCt 1.11 (2) 0.46 (+) 1.88 (+) 1.76 (2) 1.50 (+) 1.38 (2)

rBCCp 1.02 (2) 0.36 (+) 0.31 (+) 0.75 (2) 0.11 (2) 0.60 (+)

dBCCt 0.28 (+) 0.56 (+) 0.19 (2) 0.51 (+) 1.73 (2) 0.25 (2)

dBCCp 0.95 (2) 2.25 (2) 0.45 (2) 0.73 (2) 2.06 (+) 1.13 (2)

amino acids 0.47 (+) 1.28 (+) 0.56 (2) 0.86 (2) 1.18 (2) 0.38 (2)

aromatic 0.43 (2) 1.21 (2) 1.11 (+) 1.10 (+) 1.24 (+) 0.94 (2)

simple 1.13 (2) 1.31 (2) 0.4 (2) 1.06 (2) 0.26 (2) 0.28 (+)

polymer 0.33 (+) 0.15 (+) 0.5 (+) 0.63 (2) 0.09 (2) 0.31 (2)

cyclic 1.92 (+) 1.53 (+) 0.33 (2) 0.62 (+) 0.06 (2) 1.21 (+)

TN 1.10 (2) 0.43 (2) 1.22 (+) 0.87 (+) 0.22 (2) 1.51 (2)

TN/TC 0.89 (+) 0.09 (+) 0.67 (+) 1.25 (+) 0.80 (+) 0.53 (+)

TC 1.28 (2) 0.04 (2) 0.1 (+) 0.64 (2) 0.41 (2) 1.56 (2)

TP 0.61 (2) 0.24 (+) 1.83 (+) 1.22 (+) 0.30 (+) 1.54 (2)

TP/TC 1.13 (+) 0.92 (+) 1.65 (+) 1.20 (+) 0.73 (+) 0.58 (2)

VIP.1, identifying variables most relevant for explaining BPC, are shown in bold. The direction of the association between BPC and the explanatory variables is deduced
from scaled and centered coefficients (CoeffCS) and given in parenthesis. R2X is the proportion of variation in the explanatory data set explained by the latent factor(s),
and R2Y is the proportion of variation in BPC explained by the latent factor(s) from the explanatory data set.
doi:10.1371/journal.pone.0112409.t003
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activity [36], for instance overestimating the proportion of active

cells [37]. Thus, it is unclear what exactly our rBCC measure

represents. Moreover, there are limitations in using phylogeny-

based estimates of BCC for communities for which the evolution-

ary history of its constituents is unknown [38]. A problem when

assessing phylogenetic diversity of bacterial communities can be

that the large number of taxa requires a huge number of variable

sites in the gene or genome to get accurate phylogenetic trees to

obtain a well-represented estimate of phylogenetic similarity

between communities. In our case we could only estimate

phylogenetic similarity from less than 25% of total numbers of

read (including more taxa would have generated uninformative

phylogenetic trees) so our estimates may differ from ‘true’

phylogenetic similarities between communities. Moreover, the

phylogenetic distance estimate we used (PCD) does not account for

differences in relative abundance which may be important for

community functioning. Thus, we can conclude that methods

development is a necessity, both when it comes to accurately

define the active proportion of the community, as well as to how

phylogenetic diversity should be determined.

At least one of the functional trait groups (i.e. the ability to use

certain organic compounds in Biolog plates) showed VIP.1 in

each data set (Table 3, Fig. S1). The strongest positive association

to any of the functional trait groups was either to aromatic

compounds or cyclic compounds (at least three cases with VIP.1

each). This is in line with a previous experimental study where the
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Figure 3. VIP-values of dBCC measures on BPC in relation to
dispersal rate (A) and environmental heterogeneity (B).
Environmental heterogeneity was measured as coefficient of variation
(CV) of total carbon (TC).
doi:10.1371/journal.pone.0112409.g003
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communities’ potential to use aromatic compounds was a key

functional trait contributing to variation in bacterial functioning

[12]. In contrast, polymers and simple substrates never showed a

strong positive association to BPC. Functional traits with high VIP

were relatively weakly correlated with BCC measures in both the

Uppland and both stream data sets (r,0.31), but showed

considerably stronger correlations in the two Jämtland data sets

(r.0.45, Table 4). Weak correlations between functional traits

important for BPC (high VIP) and BCC in addition to a large

variation in BCC among sites compared to the variation in

functional traits strongly imply a functional redundancy of the

different bacterial communities. However, in most cases BCC

explained more variation in productivity than trait composition.

This indicates that there are other taxa specific traits than those

measured in Biolog plates that also contribute to productivity, e.g.,

the use of other resources or a very specific resource. Considering

that the aquatic dissolved organic carbon pool is complex and

poorly characterized [39] it is not an easy task to pinpoint which

organic carbon processing traits should be of interest for a

mechanistic understanding of bacterial growth, but should be a

subject of future research.

BPC in the second stream sampling was best explained by a

negative association with TC, TP, and TN (Table 3, Fig. S1).

These changes in the environment were not evidently strongly

associated with changes in BCC (Table 4). Also in both the lake

water data sets BPC was positively correlated with nutrient levels

or ratios between different nutrients and rBCC was well correlated

with these environmental changes (Table 4). The influence of local

environmental variables on bacterial production was strongly

reduced by using BPC, and not gross community production as a

response variable in the PLS (results not shown). However, local

environmental conditions still showed associations with produc-

tivity in all data sets except two (Js and S I). Since a limitation of

BPC by C or P alone or the combination of C and P or N is often

found in Swedish lakes [40,41], it is not surprising that it was the

inorganic nutrient availability and its relation to carbon that

explained most variation in productivity. This would indicate that

the stoichiometry of nutrients is more important for BPC than

nutrient levels per se. In the lake water data sets there was a

relatively high covariation between environmental variables and

BCC variables contributing to variation in BPC, indicating that

the environment partly drives changes in BCC that affect BPC.

The negative relation between productivity and nutrient levels in

the second stream sampling was surprising and could be a case of

negative density dependent interactions, e.g., other nutrients (not

considered here) become constraining or there are antagonistic

interactions between cells.

Since the strength of the association between BCC and BPC

differed between data sets, it seems to be context dependent. A

previous modeling study linking diversity and functioning suggest-

ed this strength to depend on environmental heterogeneity and

species specific traits in relation to the environment [42]. We

hypothesized that the dispersal rate among communities would

determine the degree of species sorting and in turn the strength of

the coupling between BCC and functioning. However, the

explanatory power of BCC (rBCC or dBCC) for BPC (VIP-

scores) showed no consistent association with the anticipated

dispersal rates among the datasets (Fig. 3A). There was a stronger

coupling between BCC and BPC in data sets with high

environmental heterogeneity in organic carbon but it was not

significant (r = 0.79; P = 0.06; Fig. 3B), maybe partly due to too

low sample size. Thus, we could not show a link between different

community assembly processes and strength of BCC-functioning

relationships. One explanation to this result could be that the

range in relative importance of different community assembly

processes was not very large in our study. For instance none of the

communities were truly isolated and, thus, probably did not

experience dispersal limitation. It can also be questioned if

dispersal rates were high enough to cause mass effects [10]. Thus,

the communities investigated here may all have been formed by

local species sorting processes to a similar extent. Future studies

aiming to explore the effect of community assembly for the

connection between community composition and functioning

may, thus, aim for greater gradients in dispersal as well as

environmental heterogeneity, also including more disturbed

environments than we did, thereby including communities being

more likely assembled in different ways. For instance isolated sites

such as ground water pockets and environmental gradients of

greater range and intensity, such as low pH and high salinity could

be included.

In summary, BCC was associated with per cell productivity in

all six data sets, but which measure of BCC was best associated

differed between data sets. We could not find any consistent

difference in BCC-functioning relationship using phylogenetic or

non-phylogenetic measures of BCC, nor using BCC from active

bacteria or the total bacterial community, highlighting the

problem of choosing the best method for BCC measurements in

such highly diverse communities. Neither could we find any clear

pattern in the relative importance of BCC for functioning between

data sets. Thus, the coupling between BCC and functioning in

aquatic bacteria seemed context-dependent, but here we could not

dissect what the context was. We therefore expect that future

research in the area will require methodological considerations on

how to measure the active compartment of communities as well as

which beta-diversity measures to use. The importance of

functional carbon processing traits for productivity was to some

extent supported by the compounds tested here, suggesting an

importance of the capacity to use especially aromatic and cyclic

compounds. However, the results also suggest that important traits

still remain to be identified.

Supporting Information

Figure S1 Loading (w*c) bi-plots (of the first and second
latent factor) between explanatory variables and per cell
bacterial productivity (BPC, filled square) from the PLS
for each data set. Explanatory (X) variables are split into

functional traits of the community (open circle), environment

conditions (open triangle) BCC (cross). Us = Uppland sediment,

Js = Jämtland sediment, Uw = Uppland lake waters, Jw =

Jämtland lake waters, S I = First stream sampling, and S II =

Second stream sampling. For Us, Js and Uw the loadings at the

second axis are only shown for illustration purposes as only one

latent variable was calculated.
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Table S2 Eigenvalues and variation explained by the
first Principal Coordinate Axis (PcoA) of the different
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7. Lindström ES, Feng XM, Granéli W Kritzberg ES (2010) The interplay between

bacterial community composition and the environment determining the function

of inland water bacteria. Limnol Oceanogr 55: 2052–2060.

8. Langenheder S, Lindström ES, Tranvik LJ (2005) Weak coupling between

community composition and functioning of aquatic bacteria. Limnol Pceanogr

50: 957–967.

9. Leflaive J, Danger M, Lacroix G, Lyautey E, Oumarou C, et al. (2008) Nutrient

effects on the genetic and functional diversity of aquatic bacterial communities.

FEMS Microbio Ecol 66: 379–390.
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