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Abstract

De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In
this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy
distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from
wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is
based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of
de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this.
Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-
noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet
choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when
using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series’
deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising
result cannot be obtained by the proposed method or WTD, but the series would show pure random but not
autocorrelation characters, so de-noising is no longer needed.
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Introduction

Hydrologic process in nature shows complex variability due to

the influence of many, often interrelated, physical factors [1] – [2],

especially those random and uncertain factors [3] – [4].

Hydrologic time series are the comprehensive reaction of

hydrologic process. Therefore, hydrologic time series analysis is

always the central topic in stochastic hydrology [5] – [6]. It is to

reveal the variability of hydrologic processes, and provide useful

information for water activities. In the theory of stochastic

hydrology [7], noise is an inevitable component of observed

hydrologic data, and it will cause many difficulties in hydrologic

series analysis [8] – [9]. Also because of the influence of noise,

hydrologic forecasting usually has uncertainty [10] – [11], based

on which many hydrologic designs and water resources planning

will have risks [12] – [13]. Therefore, de-noising is a required task

in hydrologic time series analysis. However, it is a difficult task in

practice due to complex composition of hydrologic data and

methods’ disadvantages.

Presently, there have been a great number of de-noising

methods with various theoretical bases. Among them, traditional

de-noising methods are mainly based on model simulation or

spectral analysis. They are suitable for stationary and linear

systems, and depend on the establishment of state space functions

[14] – [15], by which accurate de-noising result usually cannot be

obtained. Comparatively, wavelet threshold de-noising (WTD)

method performs better [16], because it can reveal the localized

characteristics of a series both in temporal and frequency domains

[17] – [18]. Details of the mathematical fundament of WTD can

be found in the literature [19]. Present studies and applications of

WTD were reviewed in the literature [9]. However, many key

factors influence the efficiency of WTD, including wavelet and

decomposition level choice, threshold estimation and coefficient

thresholding [20]. De-noising process by WTD is onerous and

time-consuming sometimes. Thereby, more effective and easy-to-

operate de-noising methods are needed.

By exploiting the advantage of wavelet analysis, the main

objective of this paper is to propose an energy-based wavelet de-

noising method. A series can be decomposed into a set of sub-

signals by discrete wavelet transform (DWT). The variation of

energy (i.e., variance) of sub-signal with decomposition level is

called ‘‘energy distribution’’ of series in this paper. Energy

distributions of hydrologic series and noise were compared by

considering uncertainty, based on which an energy-based wavelet

de-noising method was proposed. Analyses of many examples

indicate the superiority and simplicity of the proposed method

compared with WTD. The rest content is organized as follows.

Section 2 briefly describes wavelet method. Section 3 estimates
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Figure 1. Energy distributions of the gauss (G) (a), 2-parameter lognormal (LN2) (b), and Pearson-III (P) (c) distributed noise with
95% confidence interval.
doi:10.1371/journal.pone.0110733.g001
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energy distribution of noise by operating Monte-Carlo test, based

on which Section 4 proposes an energy-based wavelet de-noising

method. Section 5 investigates the influences of three key factors

on the efficiency of the proposed method. Section 6 discusses the

results, and gives several suggestions for improving wavelet de-

noising. The study is summarized in the final section.

Wavelet Transform

Given proper mother wavelet y(t), continuous wavelet trans-

form (CWT) of a series f(t) can be conducted as [18]:

Wf (a,b)~

ðz?

{?
f (t)y�a,b(t)dt with

ya,b(t)~
1ffiffiffi
a
p y(

t{b

a
)a, b[R, a=0

ð1Þ

in which y*(t) is the complex conjugate; ya,b(t) is gained by

translating and expanding y(t); a is temporal scale factor and b is

time position factor; Wf(a,b) is continuous wavelet coefficient.

Observed hydrology series are more often discrete series, and they

can be analyzed by DWT:

Wf (j,k)~

ðz?

{?
f (t)y�j,k(t)dt with

yj,k(t)~a
{j=2
0 y(a

{j
0 t{kb0)

ð2Þ

where a0 (a0.1) and b0 are constants; integer j is decomposition

level, and k is time position factor. The dyadic DWT is used

commonly by assigning a0 = 2 and b0 = 1. It consists of log2n levels

at most given the analyzed series has the length of n:

Wf (j,k)~

ðz?

{?
f (t)y�j,k(t)dt with

yj,k(t)~2{j=2y(2{j t{k)

ð3Þ

More details of DWT were thoroughly described in [21] – [22].

The wavelet that satisfies regularity condition can be used to

reconstruct series f(t) [23]:

f (t)~
X
j,k

Wf (j,k)y�(a0
{j t{kb0) ð4Þ

Wavelet threshold de-noising is based on discrete wavelet result

of series. It is to adjust detail wavelet coefficients:

Wf
0(j,k)~r(Wf (j,k),Tj) ð5Þ

where r() is the thresholding rule, such as hard-, soft- and mid-

thresholding rule, Tj is the threshold under level j, and Wf’(j,k) is

the adjusted value of Wf(j,k). De-noised series can be reconstruct-

ed by substituting Wf’ (j,k) for Wf(j,k) in Eq. (4), and the residue is

noise [19]. Wavelet threshold de-noising is influenced by four key

factors [24]. The first two are wavelet and decomposition level

choice, both determine the accuracy of DWT result in Eq. (2). The

other two are threshold estimation and coefficient thresholding,

both determine the accuracy of adjusted wavelet coefficients result

in Eq. (5).

Energy Distribution of Noise

In order to establish a reliable basis for wavelet de-noising,

Monte-Carlo test is operated to estimate energy distribution of

noise. Because probability distribution of noise in hydrologic data

is generally unknown, the types of noise following Gauss, 2-

parameter lognormal and Pearson-III distributions, G, LN2 and P

for short, are analyzed for comparison. The following steps are

used for Monte-Carlo test:

(1) Generate noise data with the length of n, and the biggest

decomposition level equals log2n;

(2) Choose proper wavelet, apply dyadic DWT to the noise data

using Eq. (3), and obtain detail wavelet coefficients under each

decomposition level j;

(3) Reconstruct sub-signal fj(t) of noise data under each level j by

Eq. (4), and calculate its energy (i.e., variance) E(j):

E(j)~
1

n

Xn

t~1

(fj(t))
2 ð6Þ

(4) Repeat the steps 1–3 to obtain stable sampling result of

Monte-Carlo test. Calculate arithmetic mean of energy of

noise’s sub-signal under each level j, and estimate proper

Figure 2. De-noising process of hydrologic time series by the
energy-based wavelet de-noising method proposed.
doi:10.1371/journal.pone.0110733.g002
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confidence interval (e.g., 95%). The result is taken as energy

distribution of noise.

The above steps are applied to three noise types, and the results

are presented in Fig. 1. According to the study in the literature

[25], ‘‘db5’’ wavelet is used to analyze these noise data with the

same length of 1000. The sampling number of Monte-Carlo test is

50,000 to obtain stable sampling result. The results indicate that

arithmetic mean of energy of noise’s sub-signal exponentially

decreases with level, with the base of 2, and it is due to the grid of

dyadic DWT [26] – [27]. Uncertainty can be estimated by

determining 95% confidence interval. Arithmetic mean and mode

values of energy of sub-signal under each level are the same, so the

upper and lower limits of 95% confidence interval are symmetrical

to arithmetic mean value. Consequently, energy distributions of

three noise types (G, LN2 and P) are similar to each other. They

strictly follow the exponentially decreasing rule with the base of 2.

Therefore, it is thought that the shape of energy distribution of

noise has no relation with noise type.

Energy-Based Wavelet De-Noising Method
Proposed

According to the theory of stochastic hydrology, hydrologic

series data is basically composed of deterministic components and

noise [7]. The former, mainly including periodicities and trend,

are generated by certain physical deterministic mechanisms.

Noise, whose existence contaminates true hydrologic data, is

generated by many random and uncertain factors. When applying

DWT to hydrologic data, energy distributions of the two

components are different [28]. Energies of deterministic compo-

nents concentrate on several decomposition levels, but energy of

noise scatters in the whole temporal scales and rapidly decays with

level, as displayed in Fig. 1.

Based on their difference of energy distribution, we use the

energy distribution of noise to establish a reliable background

energy distribution (as defined afterward), and de-noising can be

done by comparing energy distribution of series with the

background energy distribution. It is the basic idea of the wavelet

de-noising method proposed here. Furthermore, we used the

confidence interval, which can be estimated from the sampling

result of Monte-Carlo test, to evaluate uncertainty in the

comparison process.

De-noising steps by the proposed method are explained as

follows:

(1) Choose proper wavelet, calculate the biggest decomposition

level, and apply dyadic DWT to the analyzed series X using

Eq. (3);

(2) Determine the energy distribution of series X using Eq. (6);

(3) Use proper probability density function to generate noise data

N, whose length is the same as that of series X, then determine

the energy distribution of noise data, and estimate proper

confidence interval by operating Monte-Carlo test;

(4) Set the sub-signal of series X under the first level as noise, and

use its energy to adjust the energy distribution of noise data

and estimated confidence interval. The result is defined as

‘‘background energy distribution’’ in this paper;

(5) Compare the energy distribution of series X with the

background energy distribution. Two cases would be

encountered: (a) energy of sub-signal under certain level

oversteps the confidence interval. The sub-signal should be a

deterministic component; (b) energy of sub-signal under

certain level falls within the confidence interval and is close

to that of noise. In this case, the sub-signal more likely is

composed of noise and should be removed from series X;

(6) Add up all those deterministic components and obtain the de-

noised series, and take the residue as noise.

The above de-noising steps by the proposed method are also

depicted in Fig. 2.

Case Study

Both synthetic and observed series are used to verify the

performance of the energy-based wavelet de-noising method

proposed, and further to investigate the influences of three key

factors on wavelet de-noising, including wavelet choice, decom-

position level choice and noise content.

Considering that the superiority of WTD method compared

with other conventional de-noising methods has been expounded

in the literature [9], the latter are omitted here for brevity reason.

Table 1. Data used in this paper*.

Type Data Length True components

Synthetic series Type-I SS1 1500 The same damped period

SS12 1500

SS13 1500

SS14 1500

Type-II SS2 500 The same two periods of 50 and 200

SS22

500 The same exponentially upward trend

SS23 500

SS24 500

Observed series Daily temperature (1980–2001) RS1 8036 Annual period

Monthly runoff (1972–2001) RS2 360 12 months

*: Four series in Type-I have no trend, but four series in Type-II have the same exponentially upward trend with the base of 1.005. These synthetic series include different
contents of normally distributed noise (i.e., different true SNR values). The RS1 data were gained from the China Meteorological Data Sharing Service System (http://cdc.
cma.gov.cn/). The RS2 data were gained from the Center for Water Resources Research, Chinese Academy of Sciences (http://www.cwrr.cn/).
doi:10.1371/journal.pone.0110733.t001
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Figure 3. Energy distributions of SS1 (a) and SS2 (b) series obtained by different wavelets.
doi:10.1371/journal.pone.0110733.g003

Table 2. Evaluation of the de-noising results of SS1 and SS2 series obtained by different wavelets*.

Series Index** Wavelet used

db2 db16 sym4 coif5 bior3.9

SNR (20.096) 20.097 20.068 20.071 20.099 20.097

SS1 MSE 0.286 0.272 0.127 0.238 0.161

Rxy 0.927 0.935 0.964 0.938 0.959

SNR (1.116) 1.035 1.130 1.108 1.128 1.129

SS2 MSE 0.353 0.085 0.134 0.093 0.109

Rxy 0.987 0.997 0.995 0.996 0.996

*: In Table 2–3, the true SNR values of SS1 and SS2 series are 20.096 and 1.116, respectively.
**: In all Tables, ‘‘SNR’’ means signal-to-noise ratio, ‘‘MSE’’ means mean square error, and ‘‘Rxy’’ means the cross-correlation coefficient between series x and y.
doi:10.1371/journal.pone.0110733.t002
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The energy-based wavelet de-noising method is just compared

with WTD. Three indexes, namely SNR (signal-to-noise ratio),

MSE (mean square error) and Rxy (zero-order cross-correlation

coefficient) in Eq. (7), are used to evaluate the de-noising results:

SNR~10| log (var(S*)=var(N))

MSE~var(S*{S)

Rxy~

P
n

(S{S)(S*{S*)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(S{S)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(S*{S*)

p
ð7Þ

in which S and S* are the mean of true series S and de-noised

series S,, respectively, N is the removed noise; var() means

calculating variance. SNR value reflects noise content of a series.

The difference between calculated and true SNR values can reflect

the accuracy of de-noising result; MSE value can reflect the similar

degree of two series at statistical view, and Rxy value can reflect the

similar degree of two series at correlation view. Smaller difference

between calculated and true SNR, smaller MSE value and bigger

Rxy value indicate more similarity of two series. Since energy

distributions of various noise types are just the same, the Gauss

distributed noise is used here, and 95% confidence interval is

estimated for uncertainty evaluation.

Synthetic series analysis
Eight synthetic series in two types are analyzed (Table 1). Four

series in type-I have the same length of 1500, and include the same

damped period. Four series in type-II have the same length of 500,

and include two same true periods of 50 and 200, and the same

exponentially upward trend with the base of 1.005. These series

include different noise content, and have different true SNR value.

All series are analyzed by the proposed method and WTD using

various wavelets and decomposition levels. De-noising results are

discussed from four perspectives.

Results by different wavelets. The decomposition level 10

(log21500) is used, and five wavelets (‘‘db2’’, ‘‘db16’’, ‘‘sym5’’,

‘‘coif4’’ and ‘‘bior3.9’’) are used to remove noise in SS1 series by

the proposed method. Energy distributions of SS1 series obtained

by five wavelets are depicted in Fig. 3(a), in which sub-signals

under ten levels (Ls) are reconstructed by detail wavelet

coefficients. When applying different wavelets to SS1 series,

energies of those sub-signals after L6 overstep 95% confidence

interval, although their values vary with the wavelet used.

Therefore, these sub-signals are regarded as deterministic compo-

nents, and their sum is the de-noised SS1 series. The same analyses

are conducted to SS2 series using the decomposition level 8

(log2500) and five wavelets. As shown in Fig. 3(b), sub-signals of

SS2 series after L5 obtained by any wavelet have the energies

overstepping 95% confidence interval, so they are regarded as

deterministic components, and their sum is the de-noised SS2

series.

The de-noised SS1 and SS2 series are compared with true series

(Table 2). It clearly indicates that de-noising results of each series

vary with the wavelet used. Comparatively, de-noising result of

SS1 series by ‘‘bior3.9’’ is the best, because the calculated SNR

value 20.097 is very close to the true SNR value 20.096.

Although de-noising results of SS1 series by ‘‘db16’’ and ‘‘bior3.9’’

wavelets are similar to each other, the calculated SNR value

20.068 by the latter has big difference with the true SNR value

20.096. Therefore, ‘‘bior3.9’’ is chosen as the best wavelet for de-

noising SS1 series. For SS2 series, ‘‘db16’’ is chosen as the most

suitable wavelet, by which the calculated SNR value 1.123 is very

close to the true SNR value 1.116, the MSE value is as little as

0.082, and the Rxy value is as big as 0.997.

Results by different decomposition levels. The ‘‘bior3.9’’

and ‘‘db16’’ wavelets are chosen, and different decomposition

levels are used for de-noising SS1 and SS2 series (Table 3). Along

with the increase of decomposition level, more noise in original

series is removed, and de-noising results are gradually close to true

results. For SS1 series, when the decomposition level equals 5 or

bigger values, its de-noising results do not change. For SS2 series,

its de-noising results obtained by level 4 or bigger levels are also

the same. To sum up, the suitable decomposition level for de-

noising does not equal the theoretically biggest level of log2n, but

just is the one which can identify series’ deterministic sub-signal

under the smallest temporal scale.

Table 5. De-noising results of synthetic series by the energy-based wavelet de-noising method proposed and the wavelet
threshold de-noising (WTD) method.

Series Method used* SNR MSE Rxy

true value Calculated value

SS1 WTD 20.096 20.086 0.147 0.972

New method 20.096 20.097 0.161 0.959

SS12 WTD 21.770 21.259 4.853 0.386

New method 21.770 21.391 3.586 0.441

SS13 WTD 23.132 21.135 159.81 0.156

New method 23.132 21.241 130.44 0.179

SS2 WTD 1.116 1.131 0.084 0.997

New method 1.116 1.130 0.085 0.997

SS22 WTD 20.891 20.694 5.016 0.871

New method 20.891 20.856 4.097 0.857

SS23 WTD 22.235 21.194 131.06 0.261

New method 22.235 21.261 53.508 0.299

*: ‘‘New method’’ is the energy-based wavelet de-noising method proposed.
doi:10.1371/journal.pone.0110733.t005
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De-noising results of various series. According to the

above result, the ‘‘bior3.9’’ wavelet and decomposition level 5 are

used for de-noising type-I series, and the ‘‘db16’’ wavelet and

decomposition level 4 are used for de-noising type-II series. De-

noising results of all series by the proposed method are shown in

Table 4. Along with noise content increase, true signals are

gradually submerged by noise, so it becomes more difficult to

accurately remove noise. Taking the type-I series for example,

when just a little noise included, the SS1 series with the true SNR

value 20.096 can be de-noised accurately; when the SNR value

decreases to 21.770, de-noising result of SS12 series becomes

much bad, the MSE value is as big as 3.586, and the Rxy value is

reduced to 0.441. When more noise is included, the SNR values of

SS13 and SS14 series are smaller than 23.000, their MSE values

are bigger than 130, and their Rxy values are smaller than 0.300,

so accurate de-noising results of SS13 and SS14 series cannot be

obtained by the proposed method. The same finding can be

obtained from de-noising results of type-II series.

Results by the proposed method and WTD. De-noising

results of eight series by both the proposed method and WTD are

presented in Table 5. Because SS14 and SS24 series are

contaminated by noise severely, they are not considered here.

On the whole, de-noising results of all series by the two methods

are similar to each other. For SS1 series example, the SNR, MSE

and Rxy values obtained by the proposed method are 20.097,

0.161 and 0.959, and those obtained by WTD are similar as

20.086, 0.147 and 0.972. Therefore, it is thought that the energy-

based wavelet de-noising method has comparable power as WTD

in de-noising of series.

Comparatively, de-noising process by the proposed method can

be conducted following the steps in Fig. 2, and it need not handle

wavelet coefficients, so is more practical and easier to be operated

than WTD. Moreover, uncertainty of de-noising result can also be

Figure 4. Energy distributions of RS1 (a) and RS2 (b) series obtained by different wavelets.
doi:10.1371/journal.pone.0110733.g004
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Table 6. Evaluation of the de-noising results of RS1 and RS2 series obtained by different wavelets.

Series Index* Wavelet used

db3 db8 sym7 coif4 bior4.4

SNR 1.742 1.742 1.749 1.751 1.740

RS1 MSE 2.168 2.167 2.133 2.124 2.177

Rxy 0.991 0.991 0.991 0.991 0.991

SNR 0.732 0.844 0.776 0.906 0.900

RS2 MSE (105) 1.651 1.318 1.523 1.169 1.188

Rxy 0.913 0.934 0.922 0.942 0.941

*: In Table 6–7, MSE and Rxy are used to compare original series and the de-noised series.
doi:10.1371/journal.pone.0110733.t006

Figure 5. De-noising results of RS1 (a) and RS2 (b) series by the energy-based wavelet de-noising method (the new method) and the
wavelet threshold de-noising (WTD) method.
doi:10.1371/journal.pone.0110733.g005
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estimated by the proposed method using 95% confidence interval,

but WTD method cannot do this.

Observed series analysis
Two observed hydrologic series (RS1 and RS2) are analyzed to

further verify the performance of the proposed method. RS1 series

presents 22-year (1980–2001) daily average temperature data

measured at the Beijing weather station, and it has a dominant

annual period due to the annual variability of climatic process.

RS2 series presents 30-year (1972–2001) monthly average runoff

discharge data measured at the Bengbu hydrologic station in the

Huai River in East China, and it has a dominant period of 12

months also due to the annual variability of hydrologic process.

Lag-1 autocorrelation coefficients of two series are 0.981 and

0.647 respectively, indicating good autocorrelation. Therefore, the

two series are not severely contaminated by noise, and their

deterministic components can be identified.

The two observed series are analyzed by the proposed method

using five wavelets (‘‘db3’’, ‘‘db8’’, ‘‘sym7’’, ‘‘coif4’’, and

‘‘bior4.4’’). Results in Fig. 4 clearly indicate that energy distribu-

tions of series vary with the wavelets used. Energies of RS1 series’

sub-signals under L3, L4, L5, L7, L8, L9, L10, L11, and L12

obtained by any of the five wavelets overstep 95% confidence

interval, so their sum is the de-noised RS1 series. The sub-signals

of RS2 series under L2, L3, L4, L5, L6 and L9 have the energies

overstepping 95% confidence interval, and their sum is the de-

noised RS2 series. Results in Table 6 indicate that de-noising

results of RS1 series by five wavelets are similar, but de-noising

results of RS2 series by five wavelets show big difference. It is due

to more complex variation of RS2 series as shown in Fig. 5. As a

result, the ‘‘db8’’ wavelet is chosen for de-noising of RS1 and RS2

series.

De-noising results of two observed series using different

decomposition levels are presented in Table 7. De-noising results

of RS1 series using decomposition level 2 or bigger levels are the

same. De-noising results of RS2 series using any decomposition

level are the same. Because the decomposition levels of 2 and 1 just

correspond to the sub-signals which reflect the two observed series’

dominant characteristics (i.e., dominant annual period of 12

months), it holds that the de-noising results are reasonable.

The two observed series are also de-noised by WTD (Fig. 5).

The calculated SNR values of RS1 and RS2 series obtained by the

proposed method are 1.742 and 0.844, and those by WTD are

similar as 1.763 and 1.045, being similar with each other.

Moreover, de-noised series also have no big difference with

original series because of just a little noise included, further

indicating the comparable power of the proposed method and

WTD.

Results Discussion

De-noising is an important but difficult task in hydrologic series

analysis. By exploiting the advantage of wavelet analysis, an

energy-based wavelet de-noising method was proposed in the

paper. The influences of three key factors on its efficiency were

discussed using various examples. By discussing all results, the

following understandings can be gained:

(1) Influence of wavelet. Wavelet choice is the foremost task in

wavelet analysis [29] – [30], also including wavelet de-noising.

When using the energy-based wavelet de-noising method to

analyze series, energy distribution and de-noising result of

series would vary with the wavelet used. For those synthetic

series used in this paper, the most suitable wavelets can be
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chosen based on de-noising result. However, deterministic

components in observed hydrologic data are unknown, so

proper wavelet cannot be chosen easily. Here, the criteria

proposed in the literature [9] were recommended to choose

proper wavelet. The criteria can take the composition and

statistical characters of series into account, so they are reliable

and useful.

(2) Influence of decomposition level. Decomposition level choice

is a key factor in discrete wavelet analysis, so it influences

wavelet de-noising. Analyses of all series indicate that the most

appropriate decomposition level for wavelet de-noising is the

one which can identify series’ deterministic sub-signal under

the smallest scale. If using bigger levels, de-noising results are

just the same, but de-noising process would be more time-

consuming. Furthermore, the proper decomposition level for

energy-based wavelet de-noising is just determined by the

composition of the analyzed series, so the chosen decompo-

sition level is reliable, by which de-noising result can be more

reasonable.

(3) Influence of noise content. Noise type has no influence on the

shape of background energy distribution, but noise content in

a series determines the magnitude of background energy

distribution and confidence interval. Generally, when a series

includes too much noise, its deterministic components would

be submerged by noise, and energy values of all sub-signals

would fall within the estimated confidence interval, so no

deterministic component could be identified by the proposed

method or WTD. However, for those series which are

contaminated severely by noise, they usually show pure

random but not good autocorrelation; for instance, the lag-1

autocorrelation coefficient (R1) of SS13 and SS14 series is as

small as 20.007 and 20.041. Therefore, it need not identify

deterministic components in these cases; we can regard them

as random series, and use proper statistical methods to

describe their statistical characters.

(4) Effectiveness of the proposed method. The WTD method

used commonly is based on wavelet coefficient thresholding,

so its effectiveness is influenced not only by wavelet and

decomposition level choice, but also by threshold estimation

and coefficient thresholding [19]. Differing from the WTD

method, the wavelet de-noising method proposed is based on

energy distribution of series, so it has more reliable physical

basis. By using it deterministic component of certain series

under each level can be identified and separated, and

uncertainty can also be estimated. Furthermore, de-noising

process by the proposed method can be more easily operable

following the steps in Fig. 2.

Conclusions

In this paper, Monte-Carlo test was operated to estimate energy

distribution of noise, and a reliable background energy distribution

was established. By comparing energy distribution of series with

the background energy distribution, an energy-based wavelet de-

noising method was proposed. Its effectiveness and applicability

were verified by discussing the influences of three key factors.

Results of both synthetic and observed series indicate comparable

power of the proposed method as WTD. However, wavelet choice

and decomposition level choice should be carefully considered

when using the proposed method, and effective methods should be

further studied to solve the problem. Those suggestions given

above can be used to handle the problem. In addition, we can

firstly evaluate autocorrelation of a series. If showing good

autocorrelation, the series can be de-noised by the proposed

method or other de-noising methods. However, if showing pure

random characters, the series can be regarded as a random series,

but need not to be de-noised. Further studies using more observed

data from other study areas may be required to strengthen the

applicability of the energy-based wavelet de-noising method

proposed.
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