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Abstract

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems.
Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study
DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM
data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been
proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and
reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we
show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among
samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set,
including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream
gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry
effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under
flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the
presence of four fluorescence components, consistent with DOM components previously described in the literature. A
remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We
conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous
EEM data sets.
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Introduction

Excitation-Emission Matrices (EEMs) are three-dimensional

fluorescence data that provide information about the composition

of fluorescent chemical mixtures. They constitute optical land-

scapes that extend over the dimensions of excitation and emission

wavelengths {lex–lem}, and where fluorophores appear in the

form of peaks. In the field of marine and freshwater biogeochem-

istry, EEMs have been used for the study of dissolved organic

matter (DOM), being a comprehensive analytical technique with

which to characterise a highly complex mixture of organic

compounds [1–3]. Indeed, EEMs have served to advance scientific

knowledge about the ecology and biogeochemistry of DOM in

aquatic systems [1,2]. Most importantly, they have contributed to

evidence that some fractions of DOM are highly reactive organic

molecules that are involved in numerous ecosystem processes, such

as bacterial uptake [4–6], metal binding [7,8], photoreactivity [9–

11] and light attenuation [12]. Overall these findings suggest the

major involvement of DOM in the global carbon cycle [13,14].

Despite the great potential for EEMs to increase knowledge

about DOM behaviour in the environment, their interpretation

and statistical treatment remain a challenge [15]. The spectral

shapes of EEMs are complex mixtures of multiple and overlapping

independent fluorescence phenomena, caused by the wide range

of organic molecules contained in DOM. As only about 25% of

these molecules have been identified [16], there is a lack of

chemical standards to be used to separate the signal of bulk DOM

into its individual components. For that reason, there is a need to

develop pattern recognition methods capable of detecting and

isolating the signal of different fluorescing moieties in the absence

of any previous knowledge about the composition of DOM in a

given sample.

A well-suited tool to satisfy these needs are Self-Organising

Maps (SOM). SOM is an artificial neural network algorithm that

mirrors the biological brain function [17]. Due to its unsupervised

self-learning capacity, it is capable of recognizing patterns in

complex data sets without following any assumptions about the

data structure. Although it has been increasingly used within

analytical chemistry in recent years [18] it has not been until
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recently that SOM has been used to analyse EEM data sets

[19,20], and the potential for SOM to equate or even outperform

other state-of-the-art EEM data treatment methods like partial

least-squares regression (PLS), principal components analysis

(PCA) and parallel factor analysis (PARAFAC) has been

highlighted [15,18,21,22]. The map space produced by SOM

offers multiple possibilities for the graphical representation of the

output, allowing to unveil patterns among samples (best matching

unit and unified distance matrices), as well as to explore what

variables (wavelength coordinates in the case of EEM data sets) are

the most influent in creating the sample patterns (component

planes) [18]. However, pattern recognition at the variable level has

remained at a qualitative stage, and the specific need to isolate

independent fluorophores has not been covered.

Furthermore, previous analyses of EEM data sets with SOM

were performed on data from engineered systems, where the

diversity of fluorophores was essentially homogeneous among the

samples [19,20]. However, EEM data sets collected in natural

water systems are subject to contain a wide diversity of spectral

shapes, due to the multiple environmental factors that influence

DOM quality [23]. In this case, data pattern interpretation may

become more challenging, as the presence of outliers may alter the

stability of the SOM output, and hence its reliability.

In this context, this study aims at expanding the evidences that

SOM is a suitable tool for the study of EEM data sets. Specifically,

Figure 1. Experimental setting of the data set. A) Study site within the catchment from which the samples were collected. The river was
operationally divided into three reaches: the ‘‘headwaters’’, the ‘‘middle reaches’’ and the ‘‘lowland’’. The divisions between segments correspond to
the two big bends of Sant Celoni and Fogars de la Selva. B) Hydrogram contextualising the 15 sampling dates. Discharge data were recorded in the
gauging station at Fogars de la Selva. Sampling dates were operationally divided into ‘‘flood’’ (Q.4 m3?s21), ‘‘baseflow’’ (4.Q.1 m3?s21) and
‘‘drought’’ (Q,1 m3?s21) categories. As continuous monitoring was interrupted, the discharge on the last sampling date (2013/06/03) was measured
individually on that date. All discharge data were provided by the Catalan Water Authority (Agència Catalana de l’Aigua, [24]).
doi:10.1371/journal.pone.0099618.g001
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we focus on two aspects. On the one hand, we aim to further test

the performance of SOM when a high heterogeneity of spectral

shapes is contained within the data set. We address this point by

assessing the stability of the quantization and the neighbourhood

relations of the SOM output under a leave-one-out cross-

validation approach. On the other hand, we search for indepen-

dent fluorophores by extending SOM with a correlation analysis of

component planes. This constitutes a novel approach to discrim-

inate areas of the EEM (i.e. groups of wavelength coordinates)

representing different fluorophores.

Materials and Methods

Ethics statement
Some of the sampling sites included in this study were located in

the protected areas of the Parc Natural del Montseny and Parc del

Montnegre-Corredor, both under the authority of the Diputació

de Barcelona. No specific permission was required to conduct the

fieldwork. We confirm that our study did not involve any

endangered or protected species.

Data set
Our EEM data set included 270 samples from a Mediterranean

river catchment called La Tordera (865 km2), situated to the

north-west of Barcelona, Catalunya. The sampling strategy was

designed in order to assess the influence of space and hydrology on

the EEM spectral shapes. Accordingly, in order to characterise the

longitudinal dimension, water samples were collected at 20 sites

along the main stem (60 km long). The sites were operationally

categorised into three main reaches, referred to as ‘‘headwaters’’,

‘‘middle reaches’’ and ‘‘lowland’’, divided by the bends of Sant Celoni

and Fogars de la Selva (Figure 1A). Each of these three river

reaches has distinctive properties. The ‘‘headwaters’’ section

corresponds to a forested catchment area with accentuated slopes

and incipient human pressure, the ‘‘middle reaches’’ are charac-

terised by intensive anthropogenic activity, receiving both diffuse

inputs from urban activities and point source effluents of waste

water treatment plants (WWTPs) and industries; and finally the

‘‘lowland’’ corresponds to a shallow and meandering geomorphol-

ogy with a lower density of direct anthropogenic effluents. Eleven

influent waters were also sampled upstream from the confluence

with the main stem. Some of them correspond to natural

tributaries with varying degrees of anthropogenic impact, whereas

others correspond to WWTPs or effluents from chemical

industries.

The seasonal hydrological variability was captured by sampling

on 15 different dates during which a wide range of hydrological

conditions was encountered: from flash floods to severe summer

droughts (Figure 1B). In this case, samples were also operationally

defined according to three categories: ‘‘flood’’ corresponds to

discharges higher than 4 m3?s21, ‘‘drought’’ to discharges lower

than 1 m3?s21, and ‘‘baseflow’’ to flows between 1 and 4 m3?s21.

We used discharge data from the gauging station of Fogars de la

Selva, provided by the Agència Catalana de l’Aigua (Catalan

Water Authority, [24]), as a reference.

Due to the wide variety of drained land cover, water sources

and hydrological conditions included in the sampling design, the

final EEM data set was expected to include a wide variety of

spectral shapes.

Field and laboratory procedures
Samples were collected in acid-rinsed glass bottles, and were

kept refrigerated in the dark until arrival at the laboratory. Next,

samples were filtered with 0.22-mm-pore nylon membranes and

kept refrigerated until their spectral analysis, which was conducted

within the next two days. Fluorescence analyses were performed

using a Shimadzu RF-5301 PC spectrofluorometer equipped with

a xenon lamp and a light-source compensation system (S/R

mode). For every EEM, 21 synchronous scans were collected at 1-

nm increments both in emission and in excitation. During each

scan, excitation was measured over a wavelength range of

230 nm,lex,410 nm. Initial emission wavelengths ranged from

310 nm to 530 nm, at intervals of 10 nm. The bandwidth used for

both excitation and emission was 5 nm. Spectra were acquired

with a 1-cm quartz cell.

Absorption spectra were measured for fluorescence inner filter

correction purposes using a Shimadzu UV-Visible UV1700

Pharma Spec spectrophotometer. Data were collected in double

beam mode with wavelength scanned from 200 to 800 nm and

with milliQ water as the blank. The slit width was set to 1 nm.

Raw EEM data were corrected and normalised to allow for

inter study comparison following the steps described by Goletz et

al. [25]. Spectral corrections were applied to both emission and

excitation measurements to correct for wavelength-dependent

inefficiencies of the detection system. An excitation correction

function was determined using Rhodamine B as a quantum

counter [26], whereas for emission a correction file was obtained

by comparing the reference spectra of quinine sulphate and

tryptophan provided by the National Institute of Standards and

Technology (NIST) according to the procedure described by

Gardecki and Maroncelli [27]. Next, data were normalised by the

area under the Raman peak of a deionised water sample at

lex = 350 nm and lem = {371–428} nm [28]. Inner filter effects

were corrected by comparing absorbance measurements accord-

ing to Lackowicz [26], as described by Larsson et al. [29]. Finally,

a blank EEM of deionised water, measured on the same day of

analysis and having undergone the same correction and normal-

isation procedures, was subtracted from every EEM sample.

Optical indices calculation
Specific Ultra-Violet Absorbance (SUVA), as a surrogate

measurement for DOC aromaticity, was measured as the

Napierian absorption coefficient at labs = 254 nm normalised by

DOC concentration [30]. DOC concentration was determined by

oxidative combustion and infrared analysis using a Shimadzu

TOC Analyser TOC-VCSH.

The Humification Index (HIX), indicator of the humification

degree of humic substances, was calculated as the ratio between

the area under {lex254, lem(435–480)} and the area under {lex254,

lem(330–345)}, as described by Zsolnay [31]. Finally, the Fluores-

cence Index (FI) [32,33], indicator of the allochthonous vs

autochthonous origin of DOM, was calculated as the fluorescence

intensity at {lex, lem} = {370,470} nm divided by that at {lex,

lem} = {370,520} nm.

Self-organising maps
Self-Organising Maps (SOM) – also known as Kohonen maps –

are a special type of two-layered artificial neural network (ANN).

ANNs are mathematical models mirrored in the functioning of the

biological nervous system, which have the ability to learn the

patterns of input features and predict an output. They consist of an

adaptive system of interconnected neurons – or processing units –

that change their structure during a learning phase. In this phase,

weight vectors (called prototype vectors or, in this context,

prototype EEMs) that lie in the connections between neurons

are adjusted to minimize the overall error of the network

prediction [34].

Self-Organising Maps for the Analysis of Heterogeneous EEM Data Sets
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By the end of the learning process, the EEM samples have been

assigned to their best matching unit (BMU), that is, the unit that

has the most similar prototype EEM. Thus, the outcome of the

SOM will be a grid in which each unit will contain a prototype

EEM whose spectral properties vary gradually but unevenly across

the grid, according to the characteristics of the input data. By

projecting the original EEMs on their BMU in the SOM grid,

sample patterns can be explored.

According to Cattell [35], this analysis can be considered as an

analysis in the Q mode, as it consists of a comparison between

objects [36]. It can be seen as an exercise involving reduction of

the dimensionality, in which samples become distributed over a

two-dimensional grid, as well as a classification process, whereby

samples become grouped into discrete units [37]. Moreover, in

order to facilitate visual inspection of the distribution of the

samples across the SOM grid, the analysis can be complemented

with a clustering analysis of the neural EEM prototypes [38].

Correlation analysis and the determination of EEM
fluorescence components

In the SOM grid, it is possible to represent the intensity of a

given wavelength coordinate of the prototype EEMs throughout

the different neurons using a colour scale. This kind of

visualisation is called a component plane [17], and shows how

the fluorescence magnitude on a given coordinate varies from

neuron to neuron over the SOM grid. Two highly correlated

wavelength coordinates will therefore produce two similar

component planes [39,40]. When the number of variables in the

data set is low, it is possible to visually compare the patterns

among component planes and detect which ones are positively,

negatively or not correlated [41,42]. However, this becomes an

unfeasible task when dealing with high-dimensional data, as is the

case of EEMs (in our case, defined by 366 lex–lem coordinates).

Barreto-Sanz and Perez-Uribe [39] proposed a methodology to

simplify this task by projecting the correlations between the

component planes on a new SOM grid. This new projection

Figure 2. Summary of the methodology applied in this study. A) N initial samples are reduced to M prototype EEMs by SOM analysis. B) EEM
prototypes are clustered to facilitate exploration of the relationships between the sample EEMs. C) SOM is performed on the correlation matrix of the
component planes of the Q-mode SOM analysis. The output corresponds to an aggregation of highly correlated wavelength coordinates in a single
neuron unit. D) Neuron units are clustered in order to find groups of highly correlated wavelength coordinates. E) Wavelength coordinate clusters are
displayed in an EEM optical space in order to evaluate their biogeochemical meaning. Adapted and extended from Vesanto and Alhoniemi [38].
doi:10.1371/journal.pone.0099618.g002
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groups highly correlated variables into the same neuron, and

moderately correlated variables into nearby neurons. At this point,

a hierarchical clustering analysis can be used to determine a

consistent number of groups of {lex–lem} coordinates, each of

which can be considered as a different fluorescence component. As

in this case the analysis involves exploring dependences between

the descriptors, it can be considered as an R-mode SOM analysis

[35,36].

Computations
SOM analysis was conducted using the Kohonen package for R

[37]. The successive steps undertaken in our computations are

conceptualised in the flow diagram shown in Figure 2. EEMs were

pre-processed by normalising their fluorescence intensity by their

maximum, in order remove effects of changes in concentration

and focus specifically on qualitative variations [43]. The input

matrix for the SOM analysis in the Q-mode contained 270

linearized EEMs with fluorescence data from 366 lex–lem

coordinate pairs (Figure 2A). The output layer was an hexagonal

grid (Figure 2B). Its size was chosen to be the largest size that

ensured stability of the quantization error [44]. In addition,

dimensions were set to preserve the proportions of the two highest

eigenvalues of the covariance matrix of the input data [19,45–47].

During the training phase, the learning rate decreased linearly

from 0.05 to 0.01. The initial neighbourhood size included two-

thirds of all distances of the map units, and decreased linearly

during the first third of the iterations. After that, only the winning

unit was being adapted. In order to emphasise dissimilarities

between the neurons of the SOM grid, a hierarchical cluster

analysis with complete linkage was performed using the Lance-

Williams update formula [48].

Figure 3. Clustering of the U-matrix of the SOM analysis in the Q-mode. A) Ten regions were defined in the SOM grid (black solid lines),
based on hierarchical clustering of the U-matrix. B) EEM prototypes representing the main SOM regions.
doi:10.1371/journal.pone.0099618.g003
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The influence of outliers on the performance of SOM was

assessed by evaluating the quality of the SOM output in a series of

leave-one-out (LOO) sample subsets. As measures of output

quality, we used the SOM reliability criteria described by de Bodt

et al. [44], which tested the stability of both the quantization and

the topology of the SOM model. The stability of the quantization

was assessed using the intra-class sum of squares (SSIntra) statistic,

which is the sum of the squared distances between the observed

data and their corresponding neural centroid. On the other hand,

the stability of the neighbourhood relations was inspected by

computing the histograms of all pairwise neighbourhood stabilities

of a given LOO subset. SSIntra and neighbourhood stabilities

were computed as described in de Bodt et al. [44]. For every LOO

subset, the statistics were averaged over 50 runs of the SOM

analysis, in order to minimise the variability of the output due to

random initialisation of the reference vectors [49].

In parallel, 366 component planes were obtained from the

SOM analysis (Figure 2C), one for each {lex–lem} coordinate

that defined our original EEMs. In order to discriminate the

number of fluorescence components within the samples, a

correlation analysis was performed, based on the steps defined

by Barreto-Sanz and Pérez-Uribe [39]. These steps included:

– Transformation of the component planes into normalised

vectors.

– Calculation of the Pearson’s correlation between each pair of

vectors, obtaining a covariance matrix of dimensions

(3666366).

– Computation of a SOM analysis of this covariance matrix,

hereafter referred to as the SOM analysis in the R-mode. In

this grid, neurons grouped highly correlated {lem–lem}

coordinates.

– Clustering of the U-matrix with a hierarchical cluster analysis

with complete linkage using the Lance-Williams update

formula [48].

– The optimal number of groups (i.e. fluorescence components)

was determined by inspecting the silhouettes [50] of a range of

partitions, from two to nine groups. The best partition had a

high average s ið Þ, and the fewest objects with a negative s ið Þ,
where s ið Þ is a measurement of how well object i matches its

assigned cluster.

Eventually, the correlation analysis led to the definition of a

number of EEM regions containing uncorrelated fluorescence

phenomena and hence, assumed to reflect different fluorescence

components. Next, the components in every sample were

quantified as area-normalised fluorescence volumes, following

the Fluorescence Regional Integration described Chen et al. [51].

Finally, the fluorescence components found by correlation

analysis, and expressed as normalised volumes as described above,

were evaluated as descriptors of the data set by performing a non-

metric multidimensional scaling (NMDS). The analysis was

performed using the vegan package for R [52], and Bray-Curtis

dissimilarities. Each variable was centred and scaled to a mean of 0

and a standard deviation of 1. In addition, the relationship

between the fluorescence components and the optical indices of

HIX, SUVA and FI was tested with a vector fit analysis within the

NMDS ordination.

Results

SOM codebooks
The output of the SOM analysis trained on the 270-sample data

set is summarised in Figure 3. The unified distance matrix

(frequently referred to as U-matrix, Figure 3A) represents the

distances between the EEM prototypes of neighbouring neurons

using a colour scale [53]. This kind of visualisation is the most

frequently used method to explore dissimilarity and clustering

patterns in the SOM grid [17].

In our results, inter-neighbouring distances were clearly uneven

across the SOM grid, indicating the presence of dissimilarity

patterns. Low distances dominated in the upper-middle part of the

U-matrix, whereas high dissimilarities were observed in the central

region of the lower part of the SOM grid. In order to further

emphasize and differentiate regions with higher similarities

between neurons, a 10-cluster division was applied to the U-

matrix (Figure 3A). It should be noted here that the partitioning of

the U-matrix was used only for visualisation purposes. Some

neurons had such a high dissimilarity to their neighbouring

neurons (lowest values in the U-matrix) that they formed stand-

alone clusters by themselves (hereafter referred to as SN-1 to SN-5,

where SN stands for single neuron). The rest of the grid was

partitioned into five multi-neuron zones (hereafter referred to as

MN-1 to MN-5). The nomenclature specified in Figure 3 will be

used hereafter to facilitate description of the distribution of

samples throughout the SOM grid in order to explore relation-

ships between samples.

Figure 4. Outlier sensitivity test. A) Quantization stability: variation
of the average SSIntra among 270 LOO subsets. The black dot indicates
the mean. The absence of outlier values of CV(SSIntra) and the similar
mean and median should be noted. B) Stability of neighbourhood
relations: Histograms of the stabilities over all pairs of observations. In
red, histograms of the LOO subsets in which the left-out sample was
assigned to a single-neuron cluster. In green, histograms of the
remaining LOO subsets. In black: histogram of the whole data set. It
should be noted that there is hardly any difference between them. In
grey, theoretical histogram of a randomly distributed map, following a
binomial distribution defined according to de Bodt et al. [44]. This
demonstrates that the SOM results are organised in a far from random
distribution.
doi:10.1371/journal.pone.0099618.g004
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Outlier sensitivity analysis
The outlier sensitivity test showed that the presence of a few

samples with very distinctive and infrequent spectral shapes

(especially those assigned to single-neuron clusters) did not affect

the SOM outcome in a meaningful way. The SSIntra computed

for the 270 LOO subsets followed a Gaussian distribution without

any outlier values (Figure 4A). Moreover, the mean was almost

identical to the median (92.27 and 92.17, respectively), further

indicating that none of the LOO subsets exhibited a statistically

relevant differentiated quantization structure.

The histograms of neighbourhood stability showed that at a

radius of one and two neurons, the neighbourhood relations

remained almost the same irrespective of the sample left out by the

LOO subsets (Figure 4B). This demonstrates that the topology of

the SOM output is preserved in the presence of specific outlier

samples. Furthermore, all the histograms of the LOO subsets are

clearly different from the theoretical histogram of a randomly

organised map (Figure 4B). This indicates that in every SOM

analysis, corresponding to different LOO subsets, the samples are

meaningfully organised in the SOM grid, in a far from random

distribution [44].

Figure 5. Projection of space, discharge, and type of tributary onto the U-matrix. Neuron colour scale indicates, for every neuron, the sum
of the euclidean distances to all its immediate neighbours. Samples are projected on the SOM grid and coloured according to A) hydrology: blue
represents flood conditions, black represents base flow, and green drought; B) space: blue corresponds to headwater samples, black middle reaches
samples, and green are the lowland samples; C) types of tributary: blue are industrial, black are WWTP, and green are natural tributaries.
doi:10.1371/journal.pone.0099618.g005

Table 1. Characteristics of the silhouettes of a range of hierarchical partitionings of the R-mode SOM grid.

# groups �SS Smin Smax n(S,0)

2 0.56 20.74 0.86 17

3 0.57 20.50 0.80 13

4 0.54 20.29 0.74 9

5 0.48 20.43 0.72 13

6 0.48 20.44 0.70 8

7 0.41 20.23 0.70 7

8 0.42 20.23 0.70 7

9 0.35 20.33 0.70 16

The silhouettes analysis [5] corresponds to the calculation of s ið Þ for every object in the data set, where s ið Þ is a measurement of how well object i matches its assigned

cluster. �SS corresponds to the average s ið Þ , Smin to the minimum s ið Þ , Smax to the maximum s ið Þ and n Sv0ð Þ to the number of objects that have a negative s ið Þ . Values of S

near one indicate that the object is very well clustered, whereas negative S indicates that the object might be assigned to the wrong group.
doi:10.1371/journal.pone.0099618.t001
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Sample projection
The samples in our data set were collected along a longitudinal

downstream gradient, and under a variety of hydrological

conditions. In order to test the influence of space and hydrology

on the distributions of EEM spectral shapes, samples were

projected onto the SOM grid, and coloured according to their

sampling location (‘‘headwaters’’, ‘‘middle reaches’’ and ‘‘low-

land’’ categories) and hydrology (‘‘flood’’, ‘‘baseflow’’ and

‘‘drought’’ categories, Figure 5).

In terms of hydrology (Figure 5A), samples collected during

flood conditions were grouped into three main neurons, all

situated in region MN-4. However, baseflow and drought samples

were distributed across the grid. In the case of space (Figure 5B),

the three categories appeared in different parts of the SOM grid.

Headwater samples appeared mainly in region MN-4, samples

from the middle reaches in regions MN-3 and MN-5, and those

from the lowland mainly in region MN-1. Specifically, the neurons

in region MN-4, which contained samples from middle reaches or

the lowland, were the very same neurons that corresponded to the

flood category in the hydrological projection. This combination of

a single category for hydrology (flood) and multi category for space

(whole length of the river) in a single neuron suggests a

homogenisation effect on the spectral shape of EEMs over the

whole length of the river under flood conditions.

Tributaries are presented separately in Figure 5C, coloured

according to their origin: riverine, sewage-treated or industrial. It

is noteworthy that single-neuron clusters contained exclusively

industrial effluents, indicating that these sources produce DOM

spectral shapes that are dissimilar with respect to the DOM from

riverine and sewage-treated water. In contrast, WWTP samples

appeared mainly in region MN-5, and natural tributaries were

spread over the whole grid, but mainly in regions MN-4 and MN-

5, those also associated with headwaters and middle reach

sampling locations.

Determination of fluorescence components
The U-matrix of the SOM analysis in the R mode is shown in

Figure 6. It can be seen that the bottom half of the SOM grid

contains highly correlated wavelength coordinates, expressed by

the homogeneous dark red-coloured neurons that indicate short

distances between them. In the top part, there is a central light-

coloured region and darker neurons in the margins, indicating the

presence of greater heterogeneity among these units. Hence,

overall the SOM grid contains a high number of neurons with

highly correlated wavelength coordinates, and in contrast, a small

set of neurons with larger dissimilarities between them, thus

containing a higher diversity of fluorescence signals.

Next, the hierarchical clustering and silhouette analysis of the

SOM units showed that four clusters was the best number of

fluorescence components, as it exhibited the optimal combination

of the minimal number of presumably misplaced samples (n Sv0ð Þ)

and the highest average silhouette (�SS), (Table 1).

The four groups of wavelength coordinates (hereafter referred to

as C1 to C4) are represented on the excitation-emission space in

Figure 7. It can be seen that they appear spatially grouped in the

optical plane and, moreover, that they overlap regions previously

related to specific DOM fluorophores in the literature (Table 2).

C4 corresponds to the V region of Chen et al. [51] and broadly to

peak C of Coble [54], which were associated with humic-like

substances. This component has been detected in a wide range of

aquatic environments but mainly in waters draining forested

catchments [2], and hence, represents an indicator of terrestrially

derived DOM [54]. In the same emission range, but at the lowest

excitation wavelengths, component C3 is apparent. Similarly to

C4, it has also been associated with humic-like components of

terrestrial origin but with a higher molecular weight and more

freshly released character [2,55]. In the region of the EEM with

the lowest emissions are two spots centred at lex/lem = 230/

330 nm and 270/310 nm (C1), similarly to the coordinates of

maximal fluorescence of tyrosine [56]. Hence, components

appearing at these wavelengths have been attributed to peptide

material resembling or containing tyrosine, indicating the presence

of autochthonous microbially derived DOM [57]. Finally, C2

covers an area surrounding the previous protein-like spots,

overlapping the region occupied by tryptophan [56]. This

component has also been reported to reflect microbial activity,

and has been used as an indicator of anthropogenic DOM inputs

[58–60].

SOM fluorescence components as descriptors of the data
set

Finally, we evaluated the capacity of these four fluorescence

components to describe patterns in our data set as new

independent variables by performing a NMDS. The results are

shown in Figure 8. For the sake of simplicity in exploring the

distribution of the samples in the NMDS space, panels A and B

include only the main stem sites, whereas panel C includes only

the tributary sites. However, it should be noted that all three

figures come from the same analysis, and therefore the loadings of

the variables (i.e. the fluorescence components C1 to C4) and the

vector fit analysis of the optical indices is the same in the three

panels.

In summary, the first axis separates the humic-like components

C3 and C4 (negative side) from the protein-like components C1

and C2 (positive side). HIX and FI are oriented, respectively, in

the negative and the positive directions of the first axis with a high

level of significance (p,0.001). This reinforces our interpretation

of the components, such that C1 and C2 are related to microbially

Figure 6. Clustering of the U-matrix of the SOM analysis in the
R-mode. Every cluster groups highly correlated wavelength coordi-
nates, representing different fluorescence components.
doi:10.1371/journal.pone.0099618.g006
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derived components, whereas C3 and C4 are related to

terrestrially derived components. The second axis separates C1

and C3 from C2 and C4, suggesting further differentiation within

the protein- and the humic-like groups of components. SUVA

appears directed towards C3, however with a weaker level of

significance (p,0.05). It is noteworthy, though, that SUVA and

HIX appear perpendicular, showing independency from one

another, even though they have previously been found to

characterise a similar aspect of DOM [61].

According to our sampling design, we checked the role of

hydrology and space in this new ordination based on fluorescence

composition. In panel A, objects are coloured according to the

discharge category under which they were sampled. The samples

collected during flood conditions appear clearly aligned between

the region of C3 and C4 and that of component C2. Samples from

baseflow and drought conditions appear more broadly distributed

throughout the whole NMDS plane. Drought samples seem to be

more dispersed and occupy the negative secondary axis, which is

not directly associated with any fluorescence component or optical

index.

In space, the most important segregation occurs on the second

axis. The sites from the lowland appear on the negative side,

whereas those from the headwaters and the middle reaches are

found on the positive side. Furthermore, headwater samples

appear slightly more concentrated in the region between C3 and

C4, similarly to the situation for flood samples in panel A.

Finally, panel C shows the tributary sites, which comprise a

mixture of natural and anthropogenic water types. This figure

shows a very clear pattern, consisting of an aggregation of

industrial and WWTP effluents near component C2. This suggests

a relationship between C2 and anthropogenically derived DOM.

Discussion

SOM coupled with a correlation analysis offers a flexible tool

that enables, in the first stage, a similarity-based classification of

EEMs and, in the second stage, a reduction of the dimensionality

by grouping highly correlated {lex–lem} coordinates (Figure 2).

Hence the methodology consists of two main parts: first, an

analysis of the objects (i.e. sample EEMs) and second, an analysis

of the variables (i.e. wavelength coordinates). In essence, the

analysis of the objects is an exercise of classification of the samples,

based on their spectral similarities; whereas the analysis of the

variables reduces the dimensionality by grouping those coordinates

that are highly correlated. This correlation analysis has meaningful

biogeochemical implications, as each group of correlated wave-

length pairs is assumed to be an independent fluorescent

component, with consistent distributions in the lex–lem space

according to the literature [54,62].

As a classification system, SOM has the advantage that it shows

a low degree of dependency on the frequency at which a sample

(or a spectral shape) is represented in the data set. By means of an

outlier sensitivity test, the SOM quantization and topological

structure was found to be robust to the presence of outlier samples.

Accordingly, a single sample with unique and distinctive features

can be classified on its own without affecting the classification of

the other samples. In this way, outliers are not a distorting

element, but a result integrated into the whole output. In our data

set, this was exemplified by the neurons SN-1, SN-3 and SN-5,

each of which represented only one sample. Specifically, they

represented industrial effluents, which had very different spectral

shapes with respect to the river water samples. This robustness to

outliers provides the advantage that a data set can be analysed

irrespective of its heterogeneity. This circumvents the main

limitation of other currently used and well-established methods

for EEM data treatment, like PCA, PLS or PARAFAC, which are

highly sensitive to the presence of outliers [63–65] as they largely

depend on least-squares solutions [18]. In least squares methods,

the overall model is adjusted to include a better fit of an outlier,

even if it results in a lower overall fit [66]. However, in SOM every

sample only modifies its BMU and its neighbourhood, resulting in

a less apparent influence of the presence of an outlier on the whole

model outcome.

Furthermore, this classification stage leads not only to the

grouping of samples with a high degree of similarity in terms of

spectral shapes, but also to the generation of a reduced number of

EEM prototypes (Figure 2, 0th to 1st level of abstraction). This

reduced data set contains all the initial diversity of spectral shapes,

but with the relative frequencies more evenly distributed. For

instance, in our work, one EEM prototype could represent either a

large number of samples that were very similar to one another (e.g.

13 headwater samples in a single neuron in SOM region MN-4,

Figure 7. Localisation of the fluorescence components. Repre-
sentation of the four groups of wavelength coordinates determined by
correlation analysis on the excitation-emission space.
doi:10.1371/journal.pone.0099618.g007

Table 2. Wavelength coordinate boundaries of the fluorescence components.

Component Correspondence with Approximate boundaries

Coble 1996 [54] Parlanti 2000 [62] lex (nm) lem (nm)

C1 B c 250–280 and 230–240 310–330 and 320–360

C2 T d 240–300 340–370

C3 A a9 230–240 .370

C4 C a .250 .400

Summary of the location of the fluorescence components determined by correlation analysis and correspondence with previous components described in the literature.
doi:10.1371/journal.pone.0099618.t002
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Figure 5B), or just a single sample with very unique properties (e.g.

an industrial effluent in SN-1, SN-3 or SN-5, Figure 5C). This re-

weighting effect of the representativeness within the data set allows

for an analysis of correlations among variables (i.e. lex–lem

coordinates) that can detect fluorophores that were initially

represented at only low levels. Indeed, in our correlation analysis,

we distinguished four areas in the EEM that were highly correlated

(Figure 2, 1st to 2nd level of abstraction). Our four components

had consistent properties in relation to previous descriptions in the

literature (Table 2). Specifically, we distinguished two protein-like

components, one of which appeared specifically related to

anthropogenically derived DOM, as well as two humic-like

components that coincided with the A and C areas described by

Coble [54].

This methodology for detecting fluorescence components

represents a novel statistical approach. In the procedure, the

partitioning of the SOM grid represents a key step where the final

decision is taken about the number of fluorescence components

present in the data set. This step requires particular attention.

Specifically, there are several clustering techniques that could be

used to classify the neurons in a SOM grid. It has been reported

that SOMs create clusters similar to those created by hierarchical

clustering [38,67]. Indeed, we computed a hierarchical clustering

with complete linkage using the Lance-Williams update formula,

and our clusters were consistent with the (dis)similarity patterns of

the U-matrix (Figures 3 and 6). However, in SOM grids of higher

resolution (i.e., number of neurons) the U-matrix can present more

complex patterns of clustering and subclustering. In this case, the

results of a hierarchical clustering analysis may not follow the

results of the U-matrix very closely [68]. As a better approxima-

tion, computation of Vellido’s algorithm and the use of the U-

matrix neural neighbourhood distances as a cluster distance

function have been proposed [39,68] as, in this case, the

neighbourhood conditions become explicit in the analysis and

the output fits better with the results of the U-matrix. Hence,

future studies should test the performance of different clustering

techniques when larger data sets – and hence, larger SOM grids –

are concerned.

Finally, after the regionalisation of EEMs into four fluorescence

components, we quantified their contribution in every sample

using the FRI technique originally described by Chen et al. [51].

This technique has been widely applied to track changes in DOM

composition [69–71]. It has the advantage that it integrates the

whole shape of the EEM region and accounts for the fluorescence

provided by shoulders and other spectral features that would be

omitted if only the maximal value of the region was taken into

account. However, it has recently been pointed out that the

numerical method used for integration can have important

consequences for the accuracy of the results. Specifically, the

Riemann summation method proposed by Chen et al. [51] and

used in this paper may result in the underestimation of the protein-

like fractions, and in the overestimation of humic-like fractions

[72]. In order to minimise this bias, future studies may consider

the use of other methods, such as the composite trapezoidal rule or

the composite Simpson’s rule [72].

Despite the main focus being on the methodology, some

biogeochemically meaningful information arose throughout the

study. Hydrology and downstream distance were found to be

relevant shapers of DOM spectral properties. Floods exhibited

differentiated patterns with respect to baseflow and drought

conditions. Floods appeared to have a homogenisation effect on

EEM spectral characteristics, with a gradual shift downstream

between the presence of humic-like components with high HIX

and SUVA. This indicates the prevalence of terrestrial humic-like

material along the whole length of the river that rapidly transfers

to the coastal system with little chance of being transformed [73].

The presence of C2 with high FI indicates some impact of

industrial and WWTP effluents during downstream transport

[58,74]. Outside flood conditions, samples collected from the

headwaters, the middle reaches and the lowland could be

Figure 8. Multivariate analysis of our data set based on the
four fluorescence components determined by SOM analysis. A
non-metric multidimensional scaling was complemented with a vector
fit analysis with the optical indices HIX, SUVA and FI. A) Main stem sites
are coloured according to their discharge category. B) Main stem sites
are coloured according to their downstream distance. C) Tributary sites
are represented according to their source type.
doi:10.1371/journal.pone.0099618.g008
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distinguished from each other. They exhibited successively lower

HIX and higher FI values from the headwaters to the lowland.

This indicated a shift from terrestrial-like characteristics to an

autochthonously generated DOM character during downstream

transport. Furthermore, industrial effluents exhibited unique and

distinctive properties with respect to the rest of the data set.

In summary, our results open a new viewpoint to the statistical

treatment of EEMs. Thanks to its robustness to the presence of

outliers, SOM can be applied to EEM data sets including both

high- and low-represented spectral shapes. This may have

important practical implications especially for the study of the

biogeochemical behaviour of DOM in natural systems, as

sampling designs will be less restricted to the requirements of the

statistical treatment, and more adaptable to research needs.

Conclusions

In this paper, the use of SOM in combination with a correlation

analysis has been presented as a powerful method to deal with

large and complex EEM data sets. Specifically, our findings

indicate that:

– SOM analysis coupled with a correlation analysis as described

by Barreto-Sanz and Perez-Uribe [39] allows an analysis both

at the object and at the variable level. Hence, it serves not only

to explore the differences in fluorescence properties between

samples, as shown by Bieroza et al. [19,20], but also helps to

identify particular fluorescence components, as shown herein.

– It is robust to the presence of outlier samples. That is, samples

with very distinct features are discerned while having little

effect on the ordination and classification of the other samples.

This distinct property makes it possible to work with

heterogeneous data sets.

– The correlation analysis performed on the SOM EEM

prototypes has an enhanced capacity to detect fluorophores

that are represented at only low levels in the original EEM data

set.

Therefore, we conclude that SOM analysis coupled with a

correlation analysis of the component planes expands the toolbox

of the fluorescence DOM researchers by enabling the analysis of

complex and heterogeneous EEM data sets. This may open new

possibilities for advancing our understanding of DOM character

and biogeochemical behaviour.
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