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Abstract

Human infrastructures can modify ecosystems, thereby affecting the occurrence and spatial distribution of organisms, as
well as ecosystem functionality. Sustainable development requires the ability to predict responses of species to
anthropogenic pressures. We investigated the large scale, long term effect of important human alterations of benthic
habitats with an integrated approach combining engineering and ecological modelling. We focused our analysis on the
Oosterschelde basin (The Netherlands), which was partially embanked by a storm surge barrier (Oosterscheldekering, 1986).
We made use of 1) a prognostic (numerical) environmental (hydrodynamic) model and 2) a novel application of quantile
regression to Species Distribution Modeling (SDM) to simulate both the realized and potential (habitat suitability)
abundance of four macrozoobenthic species: Scoloplos armiger, Peringia ulvae, Cerastoderma edule and Lanice conchilega.
The analysis shows that part of the fluctuations in macrozoobenthic biomass stocks during the last decades is related to the
effect of the coastal defense infrastructures on the basin morphology and hydrodynamics. The methodological framework
we propose is particularly suitable for the analysis of large abundance datasets combined with high-resolution
environmental data. Our analysis provides useful information on future changes in ecosystem functionality induced by
human activities.
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Introduction

The influence of human activities on Earth’s ecosystems has

caused changes in global and local scale species distributions [1].

With the recognition of the value of ecosystem services for human

communities and the role of biodiversity in delivering these

services [2], there is an increasing demand to produce reliable

projections of the effects of human interventions on species

habitats and distributions. Models able to relate species abun-

dances and environmental conditions (Species Distribution Mod-

els, SDMs) are being intensively used in ecological research and

conservation planning [3].

Advances in remote sensing and environmental modeling are

greatly contributing to the development of SDMs by supplying

detailed descriptions of the environment. However, when reliable

descriptions of (some) environmental variables are available,

several conceptual and analytical issues still need to be investigated

in order to increase confidence in the results of SDMs [4,5].

Species abundances are often the product of different constraints

acting at different scales [6]. Even when one (known, measured or

modeled) environmental factor is favorable for the species, other

(unknown) factors may not, and the species can be absent or

limited to a low abundance (Liebig’s law of the minimum). As a

result, observed species abundances commonly show complex

distributional patterns with respect to the known variables. Given

the asymmetric distribution of the residuals, such patterns are

difficult to interpret with central estimators (e.g., Ordinary Least

Square) [7–9]. In addition, sampling stochasticity will contribute to

variability in the response of the individual sample densities. SDMs

usually focus on the ‘true’ responses to the known explanatory

variable(s), excluding the variability induced by subsidiary factors.

For this reason, they often have been restricted to a partial

description of the distribution only, such as modeling of the

maximum or binary modeling of presence/absence. This ap-

proach expresses species distributions in terms of potential niche or

habitat suitability [10]. Habitat suitability fluctuates less in time

than realized abundances and it is generally preferred as a

reference parameter for spatial management strategies [11].

However, several applications of ecological forecasts require a

quantification of the realized abundances rather than just a

measure of habitat suitability. There is a need for forecasting

models that represent the entire probability distribution of

abundance (density, biomass) values at a particular combination

of environmental factors [12].

Quantile regression [13,14] is a statistical technique suitable for

the analysis of complex distributional responses [10,15–17]. The

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e89131

http://creativecommons.org/licenses/by/4.0/


method can be used to predict the complete quantile (t)

distribution of the response variable Y when conditioned by one

or more explanatory variables X 1{n: QY (tDX 1{n). Therefore,

regression quantile estimates can be used to construct predictions

without specifying how variance heterogeneity is linked to changes

in means. Quantile regression models have high performance in

explaining the observed variance also in the presence of spatial

autocorrelation of environmental variables [8].

Most studies have limited the use of quantile regression to

determine the functional relationship between a stressor and the

response variable at a limited number of high quantiles (e.g., [18]).

Models of the higher quantiles estimate the maximum possible

abundance given the known explanatory variables, thus providing

estimate of the species potential niche theoretically founded on

Liebig’s Law. Sub-optimal components of the distribution can be

investigated by extending the quantile regression model to the

complete range of quantiles [15]. Multiple quantile models have

been used to make inferences about the role of the different

environmental factors in limiting the different values of the

responses [19] or to accurately describe and compare species

distributions along single gradients [20].

In this paper we propose a novel integration of numerical

hydrodynamic models and SDMs to investigate the response of

four common macrozoobenthic species to anthropogenic modifi-

cations of their habitat. We chose as study area a temperate coastal

embayment in the south - west of The Netherlands: the

Oosterschelde (Figure 1). This basin was recently subjected to

major human interventions (the realization of coastal defence

mega-infrastructures) that deeply affected the basin morpholgy

and hydrology [21]. We estimate the consequences on an

important component of coastal food webs: the macrozoobenthos

[22].

Our study uses a combination of extensive empirical data sets

and different types of models. Hydrodynamic variables are known

to be among the most important in determining the macro-

zoobenthic species spatial distribution [23,24], but they are rarely

measured with full spatial coverage, such that they are known for

all sample locations. Hydrodynamic and morphodynamic models

can fill the gap as they can describe water motion, sediment

transport and bed-level changes by numerically solving a coupled

set of mathematical equations [25]. Thus, as a first step to

investigate the effect of dike building on benthic habitats, we

simulated several past, present and future hydrological scenarios of

the Oosterschelde by using a numeric hydrodynamic model

(DELFT3D). The scenarios are representative of different stages of

the recent basin evolution and they can also explore alternative

management options, in this case the extreme option of removal of

the main storm surge barrier.

Extensive monitoring programmes of macrobenthic fauna have

been executed in the Oosterschelde over the past 50 years, with

most efforts concentrated in the last 20 years. We combine this

Figure 1. The Oosterschelde basin. In the boxes are reported the name and the realization date of the major dikes.
doi:10.1371/journal.pone.0089131.g001

Table 1. Areas of the total, subtidal and intertidal surface for the different scenarios.

1968 1983 1993 2001 2010 2010 (NDW) 2100 2100 (NDW)

Intertidal 171 149 143 147 142 144 65 98

Subtidal 236 234 226 225 227 225 304 271

Total 407 382 370 372 369 369 369 369

Values are in km2. NDW (No Delta Works) indicates the results of the scenarios simulated removing the major coastal defense infrastructures.
doi:10.1371/journal.pone.0089131.t001
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information with the results of hydrological models to construct

quantile regression SDMs. Upper boundary models emphasize the

role of the known variables in determining the species abundance,

thus they were used to describe the species potential niche and to

produce habitat suitability maps. To express our forecast in

realized rather than potential biomass stocks, we account for the

complete conditional response distribution forecast by fitting the

model on all quantiles. In this way it is possible to reproduce the

realistic scattering induced by subsidiary factors with no required

assumption about the distributional form (e.g., normal or

lognormal) or about the role of the environmental factors

(limitation vs. facilitation). While the majority of existent studies

focus on local/short term disturbances (e.g., bottom disruption,

increase turbidity, resuspension of pollutants, look at [26]), the use

of prognostic environmental models allow us to investigate the

effects of morphological/hydrological alterations on a whole-basin

scale and over a time span that is relevant compared to intrinsic

morphodynamic time scales.

Materials and Methods

Study area
The Oosterschelde (Figure 1) is an enclosed sea arm located in

the south of The Netherlands. It was formerly part of a complex

delta of the rivers Scheldt, Rhine and Meuse. In 1986, it was partly

separated from the North Sea by a storm surge barrier, that can be

closed during storm floods. After the realization of the storm surge

barrier, the tidal prism (volume of water flowing into or out of an

inlet between mean high tide and mean low tide) has been reduced

by approximately 30%. Current velocities have declined by 20–

40% in the tidal channels and by over 40% around the tidal shoals

and salt-marshes [21]. The import of sediment from the coastal sea

has been cut off. The availability of suspended sediment for

deposition on the flats has decreased considerably, with present

suspended particulate matter concentrations being only half those

of the pre-barrier situation (on average ,20 mg l21) [21]. The

decreased tide-induced sediment transport towards the tidal flats

relative to the erosion of the flats caused by wind-waves is causing

a net erosion of the intertidal area [27]. As a consequence, the

channels tend to fill up using sediment eroding from the tidal flats.

The erosion mostly affects on the upper intertidal, lowers the

mudflats, and is expected to lead to a drastic decrease of the

intertidal area ([28], Table 1. The loss of intertidal area is in itself a

threat for coastal safety, as the mud and sand flats damp wave

energy and protect the dikes behind. It also jeopardizes

environmental quality. The Oosterschelde was designated a

national park in 2002 and its primary importance as bird feeding

area, especially for waders, is recognized in the framework of

NATURA2000.

Environmental variables
In order to reconstruct the impact of the Delta Works on the

macrozoobenthos, we focused on the induced variation in the

maximal tidal current velocity (maximal values reached during a

full tidal cycle, m sec21) and the inundation time (% of time for

which the site is submerged during a full tidal cycle). The sediment

composition, traditionally considered as an other important factor

for macrozoobenthic species distribution [29], was not considered

in this study because it was not possible to compute accurate future

scenarios for this variable. The lack of a proper salinity gradient

and the limited variation between years in the Oosterschelde [30]

make this variable not useful for our purpose.

For this research the Delft3D-Flow model (version 3.55.05.00) is

used in two-dimensional depth-averaged mode. The Delft3D-Flow

model is discussed in detail in [31]. For application in and around

the Oosterschelde, a specific model application has been made,

called the KustZuid-model. This model application and its

calibration are described in detail in [32]. Historical changes in

hydraulic parameters were deduced from seven different model

runs, each with a bathymetry from a different year. Sufficient

bathymetry data of the basin were available for the years 1968,

1983, 1988, 1993, 2001, 2007 and 2010. The Storm Surge

Barrier, Philipsdam, and Oesterdam were excluded from the 1968

and 1983 simulations, and included in the simulations for the years

after 1986. Also, the 1968 situation was modeled without the

Volkerakdam, so the Volkerak channel is still open. The 2100

scenario was modeled assuming the present trend toward erosion

of the intertidal areas/filling of the deepest gullies will linearly

continue in future. Additionally, we investigated the effect of the

removal of the Delta Works on the 2010 and the 2100 scenarios.

Although this is currently not a realistic option for management,

these scenarios explore the consequences for the natural

morphodynamics (and ecology) of the system. For each of the

simulations, the seaward boundary conditions were kept unaltered.

Biotic variables
Benthic dataset. The data used in the present study have

been extracted from the Benthic Information System (BIS version

2.01.0) hosted by the NIOZ research center in Yerseke (NL). The

BIS database contains about 500000 distribution records about

more than 2500 species of all major benthic classes that were

collected since 1960 mostly in the Delta region (SW Netherlands).

Table 2. Number of samples included into analysis.

1962–1968 1985–1989 1992–1994 2000–2002 2006–2008 2008–2010

Intertidal 152 37 541 549 542 149

Subtidal 65 455 138 169 272 273

Total 217 492 679 718 814 422

doi:10.1371/journal.pone.0089131.t002

Table 3. Target species characteristics.

Class Species Feeding behaviour
Ind. mass (mg
AFDW)

Polychaeta S. armiger Opportunistic deposit
feeder

2.6

Gastropoda P. ulvae Intertidal grazer 0.5

Bivalvia C. edule Suspension feeder 132

Polychaeta L. conchilega Selective deposit feeder 15

doi:10.1371/journal.pone.0089131.t003
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It comprises data from several monitoring projects performed

mostly under the authority of Rijkswaterstaat (Dutch Ministry for

Public Works and Water Management) in the framework of

baseline and impact studies related to the management of the

Oosterschelde. A subset of 3342 sampling locations has been

selected according to the availability of abiotic data. The 1968

hydrodynamic model was used to extract the environmental

conditions for the samples collected between 1962 and 1968. The

other scenarios were used to extract the environmental conditions

for the samples collected from one year before to one year later

than the modeled year (Table 2). When using a dataset combining

various monitoring projects with different sampling methods over

an extended period of time, metadata have to be carefully checked

for different sampling methodologies in order to avoid undue

effects of sampling on the observations. The intertidal locations

(n = 1372) were mostly sampled by using handcorers pushed 20 to

30 cm in the sediment with a total sampling area between 0.005

and 0.045 m22 (on average 0.019 m22). The subtidal locations

(n = 1970) were on some occasions (n = 176) sampled by using Van

Veen grabs with a sampling area of 0.1 or 0.2 m2 and a

penetration depth around 15 cm depending upon the nature of

the sediment. In most other cases the subtidal samples consist of

subsamples with an average sampling area of 0.023 m22 that were

taken by using handcorers pushed 20 to 30 cm in the sediment

contained in the bucket of a boxcorer after landing on the ship

deck. Whereas most (ca 95%) of the samples have similar

Figure 2. Models validation. Ratio between observed and predicted values. To validate our forecast for each of the modeled quantiles, the
whole dataset was sampled with replacement. Due to sampling with replacement, some observations are repeated and others remain unpicked. The
model was fitted on the sampled observation (training dataset) and used to predict the unpicked ones (validation dataset). The random sampling-
fitting-predicting procedure was iterated 5000 times and repeated for each one of the forecast quantiles. To make predicted (quantiles) and realized
values comparable each other, we discretized them in 10 homogeneous classes based on the predicted values. For each of the classes, the
correspondent sample quantile of the observed data was calculated. To finally asses the validity of the model, observed and predicted quantiles were
plotted against each other and checked for linear correlation. The four quantiles for species showed as examples in the graphs were selected among
those predicting occurrence (e.g., up to the 35th quantile for S. armiger, up to the 78th quantile for L. conchilega Table 4). The other quantiles generally
follow the same trends. The black broken line represent the 1:1 ratio.
doi:10.1371/journal.pone.0089131.g002
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characteristics regarding the sediment penetration and the

sampling area, the few Van Veen samples stand out due to a

ten times larger sampling area and a smaller (1/2) sediment

penetration compared to the other samples. Slightly lower density

(because of deep living organisms not caught with the Van Veen

grab) in the Van Veen samples compared with the handcorer

samples have not be taken into account within the present analysis.

Target response variables. From a preliminary data

inspection (Fig. S1), we identified 4 main clusters in the biomass

distributions (g m22 Ash Free Dry Weight, AFDW) of the 10 most

frequently observed species (relative number of occupied samples).

We investigated more in detail the distribution of the most

common (or the only) species for each cluster (Table 3):

N Scoloplos armiger (bristleworm): intermediate-small motile Poly-

chaeta. It is an opportunistic species, inhabiting a wide range

of sedimentary habitats. S. armiger is widespread throughout the

northern hemisphere and it is the most common species in the

Oosterschelde [33].

N Peringia ulvae (mudsnail, new name for genus Hydrobia): small

epibenthic gastropod. This species is mainly distributed in the

silty upper intertidal, where it can graze on the benthic diatom

film [34]. Despite its small individual body size, it can reach

locally a high biomass due to very dense aggregation of

individuals.

N Cerastoderma edule (common cockle): large shallow burrowing

bivalve. It constitutes a predominant portion of the Oos-

terschelde intertidal biomass [35,36]. Cockles are a primary

food source for avifauna like Oystercatcher and Knot [33].

N Lanice conchilega (sand mason): medium-sized sedentary Poly-

chaeta living in tubes that protrude several centimetres from

the sediment. Dense aggregates of L. conchilega can form sand-

reefs that have a relevant influence on the sedimentation

[37,38] and on the ecology of the macrozoobenthic commu-

nity [39,40]. The species can be used as a proxy in the

management of marine resources and the conservation of

marine biodiversity [41,42].

Figure 3. Models of the 0.975th quantile, response surfaces. Models of the maximal biomass, when extrapolated in the explanatory variable
space, give a description of the species potential niche consistent with the Liebig’s Law.
doi:10.1371/journal.pone.0089131.g003
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Model fitting and validation
Quantile regression [13,14] is an extension of the linear model

that aims at fitting any desired quantile of a response variable

distribution to an independent variable. The t-th sample quantile

of any random variable Y, Q(t), is that value splitting the

distribution in a tau portion YƒQ(t) and a (1{tau) portion

YwQ(t). It can be calculated by solving

argmin
j[<

Xn

i~1

(rt(yi{j))~

argmin
j[<

(t{1)
X
yiƒj

(yi{j)zt
X
yiwj

(yi{j)

2
4

3
5

with respect to j(t). By extension, the linear conditional quantile

distribution function QY (tDX~x) can be estimated by solving

b̂b(t)~ argmin
b[<

X
rt(yi{x’ib)

For each species, the full conditional quantile distribution (from

the 0.01 to the 0.99 quantile, with intervals of 0.02) of their

biomass (g m22 AFDW) was modeled with respect to the maximal

current velocity, the inundation time and their first-degree

interaction terms (model selected as the most explicative, Tab.

S1 lists AIC scores for different model structures). To validate our

forecast for each of the modeled quantiles, the whole dataset was

sampled with replacement. Due to sampling with replacement,

some observations are repeated and others remain unpicked. The

model was fitted on the sampled observations (training dataset)

and used to predict the unpicked ones (validation dataset). To

obtain a sufficiently large data population, the procedure was

iterated 5000 times. The predicted values (expressed as a

distributional quantile) were discretized in 10 homogeneous

classes, for which the corresponding sample quantile of the

validation data was calculated. To finally asses the validity of the

model, observed and predicted quantiles were plotted against each

other and checked for linear correlation. Examples of four

quantiles for each species are shown in Figure 2.

Given that the maximum can be a fairly volatile statistic due to

the influence of outliers [18], we considered a slightly sub-optimal

quantile to model the upper boundary of the species responses

(t~0:975, Figure 3). The abiotic scenarios forecasted by the

hydrodynamic model (Figure 4) were used to predict maps of

potential biomass (habitat suitability) for different years. In the

Results section we show the outputs for the years 1968, 2010 and

2100 (Figure 5).

To estimate the total biomass standing stock in each scenario

grid cell we randomly sampled a biomass from the forecast

conditional distribution (Figure 6). The total biomass stock T

(Figure 7) were calculated as

T~
Xn

i~1

fyi[Qyi
½tD(X 1~xi

1,X 2~xi
2)�g � S

where S is the grid cell surface. Realized stock estimates can

slightly differ across different simulations due to stochasticity in the

sampling from the conditional quantile distribution. The large

number of modeled cells (ca. one million) strongly buffers this

uncertainity. In any case, we averaged the outputs of 5

simulations. The error bars are not visible on the scale of the

barplots (Figure 7). The inundation time scenarios were used to

distinguish between intertidal (inundation time ,100%) and

subtidal stocks.

All analyses were performed with R [43] mostly using the

packges quantreg [44] and raster [45].

Results

The fitted models (summary tables and graphs in Supporting

Information, Tab. S2, S3, S4, S5, Fig. S2, S3, S4, S5) were able to

forecast with great accuracy each conditional quantile of the

observed distributions (Figure 2). While for S. armiger, P. ulvae and

C. edule the ratio between observed and predicted values was very

close to 1, the model tended to systematically overestimate the

lower values and to underestimate the higher values of the

L. conchilega realized biomasses (Figure 2). The good match

between observed and predicted occurrences (Table 4) indicates

that the data scatter below the upper limit is well represented until

the threshold for occurrence, even if the predicted values tend to

be slightly higher than the observed ones.

Upper boundary response surfaces (Figure 3) describe the

species’ potential niche. P. ulvae has a clear preference for the

sheltered and elevated mudflats. C. edule and S. armiger share the

same optimal habitat in the intertidal zone (intermediate

inundation time and moderate hydrodynamic stress), but they

diverge for subtidal habitats. While C. edule is scarce in

permanently inundated sites, S. armiger finds a sub-optimal habitat

there, especially at strong current velocity. L. conchilega preferred

subtidal but sheltered habitats (Figure 3).

The analysis of the Oosterschelde abiotic scenarios (Figure 4)

shows a decrease in intertidal and subtidal maximal current

velocity between 1968 and 1983, due to the realization of the

back-barrier dams, and a more consistent drop after 1983 with the

realization of the storm surge barrier. Given the ongoing trend in

erosion, only a small and shallow portion of the intertidal area will

Figure 4. Median values of the explanatory variables on
different year-scenarios. Circles represent the median values
predicted for the available years-scenarios by the hydrodynamic model.
Triangles represent the values predicted for the years 2010 and 2100
removing the Delta Works (NDW).
doi:10.1371/journal.pone.0089131.g004
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remain in 2100. The removal of the Delta Works could reset the

current velocity to the 1968 levels.

Extrapolated on the basis of the abiotic scenarios, upper

boundary models provided a clear spatial representation of the

species habitat suitability (Figure 5). While S. armiger is widely

distributed in the basin, the P. ulvae and C. edule are restricted to the

intertidal flats. This implies that the first species, even upon losing

its preferential habitat, will be able to cope with the future erosion

of the intertidal areas, while the last two will face a drastic decline.

High biomasses of L. conchilega in 1968 were mostly confined to the

eastern part of the basin and to the edge of the mudflats. The

reduction of tidal current velocity improved drastically the habitat

suitability of the north-east section of the basin for L. conchilega.

The suitable habitat surface for this species will further increase in

future, when the present mudflats will turn to shallow and almost

permanently inundated areas.

Maps obtained from sampling the complete conditional quantile

distribution (Figure 6 A) show the scatter below (and above, in case

of facilitative interaction) the upper boundary surfaces (Figure 6 B).

They are more difficult to read than those obtained by modeling

just a single quantile, but they represent a more realistic situation.

Thus, they can be used to quantify the realized species biomass.

The trends in biomass standing stock (Figure 7) show changes

between the years 1968–1993 (period of the Delta Works

realization) and a relatively stable situation during the last two

decades. As shown by 5, the large intertidal area lost between 1979

and 1986 in the eastern part of the basin due to the beginning of

the works for the Oesterdam (Figures 1 & Table 1) was able to

sustain high biomasses of all the analyzed species. S. armiger stock

declined after the Delta Works especially in the subtidal habitat.

Markedly intertidal species were positively (P. ulvae) or fundamen-

tally not (C. edule) affected by the changes in the system

hydrodynamics (Figure 7), but these species will face a dramatic

decline in future due to expected loss of intertidal habitat (Figure 4

& Table 1). For the year 2100 the C. edule standing stock is

estimated to be ca. 30% (just 10% in the intertidal) of the present

situation, while P. ulvae will almost disappear from the system. S.

armiger will be able to partially compensate the decline in the

Figure 5. Models of the 0.975th quantile, habitat suitability. Once extrapolated to realistic scenarios, the response surface shown in 3 are
useful to produce clearly interpretable habitat suitability maps. In the figure we show as example the output for the 1968, 2010 and 2100 scenarios.
doi:10.1371/journal.pone.0089131.g005
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intertidal biomass by establishing in the subtidal habitat. In

contrast, L. conchilega took advantage from the dampening of

current velocities in the channels and increased its biomass by ca.

15% between 1968 and 2001. If the Delta Works are not removed,

a further increase in L. conchilega is expected in future (Figure 7).

Potential biomass standing stocks (from models using 0.975

quantile) are well correlated with the same-year estimations for

the realized stocks (Figure 8). The ratio between the realized and

the potential stocks varies from ca. 1:5 (S. armiger) to 1:10 (L.

conchilega).

Discussion

A major challenge in SDM is the clarification of the niche

concept and the calculation of the influence of each predictor [4].

The methodology we present offers a contribution to this debate.

It overcomes the dichotomy between ‘potential’ and ‘realized’

niche, in the sense that our forecast depends on the known

environmental gradients but at the same time is fully able to

reproduce the variance induced by subsidiary factors. The upper

boundary response surfaces offer a synthetic description of the

species potential niche (Figure 3). They represent the ‘true’ species

response to the known variables, in the sense that they exclude the

influence of subsidiary factors on the basis of the Liebig’s Law

assumptions. This analysis is useful to depict the potentially

important areas for the target species (Figure 5). On the other

hand, maps obtained by sampling from the full conditional

quantile distributions (Figure 6 A) give an image of the biomass

values as they could be realistically observed in nature, taking into

account the variance induced by subsidiary factors.

Considerations about the modeling methodology
Models of the full quantile distribution do not require

assumptions about the role of the subsidiary factors (e.g., models

of the maxima assume that the effects of unmeasured variables will

be further limiting rather than facilitative) or about the expected

distributional shape (e.g., [46,47]). While conventional SDM

models based on central estimators 1) assume constant error

variance, regardless of the value of the predictor variable 2) may

fail to distinguish real non-zero changes in zero-inflated distribu-

tions, the full quantile distribution model is ‘adaptable’ enough to

describe the heterogeneous distributions of the analyzed species.

However, phenomena generating endogenous autocorrelation and

patchiness at a spatial scale smaller than that of the macro-

zoobenthos sampling grid (i.e., propagation, aggregation, facilita-

tion, competition) can lead the model to estimate an incorrect ratio

between low and high biomass values. This is particularly the case

for L. conchilega (Figure 2), characterized by a strong aggregational

behavior [40], while for the other species the effect is mostly

limited to the lower quantiles and can lead to an overestimate of

the realized occurrences (Table 4). The strong patchiness in the L.

conchilega distribution is also evident from the fact that no overlaps

are predicted between the values forecast from high and low

quantiles (Figure 2).

The close relationship between the potential and the realized

estimated stocks (Figure 8) can be explained by interactions and

correlations between known and unknown environmental vari-

ables, that have the effect to increase the similitude of the

responses obtained from different quantiles [8]. The implication is

that models of the maxima constitute a good proxy for estimating

Figure 6. Complete distribution model vs Model of the maxima. Example for C. edule, year 2010. Map produced by sampling from the
complete quantile distribution models (A) are able to represent the realistic scatter around (mainly below) the response surface shown in (B). To help
the reader in appreciating the fine mosaic of points in (A) we restricted the map to a smaller portion of the basin and we used a logarithmic scale for
plotting the estimated values.
doi:10.1371/journal.pone.0089131.g006
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Figure 7. Biomass standing stocks, time series. Colored bar show the intertidal (green) and subtidal (blue) realized biomass stock estimated
from the different scenarios for the present extension of the basin. Broken-line bars on the years 1968 and 1983 include the area that was cut-off from
the beginning of the Oesterdam works in 1979 (25 km2 between 1968 and 1983 and 12 km2 between 1983 and 1986). Empty bars on the years 2010
and 2100 show the result of the scenarios simulated removing the Delta Works.
doi:10.1371/journal.pone.0089131.g007
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other components of the distribution, as already shown earlier

[48]. However, the degree of scattering beyond the upper

boundary (i.e., the realized fraction of the potential stock,

Figure 8) is species-specific and it is not possible to derive a

generic ‘rule of thumb’ to directly convert potential biomass in

realized stocks.

From a practical point of view, this kind of modeling needs a

high number of samples to include the complete span of possible

combinations between environmental conditions and biomass/

abundance. In addition it needs high-resolution environmental

layers. In our case we had approximately one milion cells in each

of the year scenarios, as the environmental layers were output by

the hydrodynamic models. Other examples of similar environ-

mental datasets are satellite images or interpolated surfaces from

extensive spatially covering measurements. The use of prognostic

environmental models creates the opportunity to extrapolate the

results for (hypothetical) past and future conditions, but at the risk

of generating error propagation between the environmental model

and the SDMs. In the present case, the limited accuracy of the

hydrodynamic model in forecasting the environmental conditions

at the edge of the mudflats can potentially lead to overestimation

of the subtidal biomass of the mainly intertidal species. Moreover,

the lower inundation time estimated for the year 1993 (Figure 4) is

likely related to lack of resolution in the measured depths close to

the shore rather than to effective variations in mudflat elevation or

tidal amplitude.

Full quantile distribution models can be used, like in this paper,

to quantify the overall effect of environmental changes on realized

biomass (Figure 7), and can be useful for ecological applications

that cannot rely only on habitat suitability estimations but require

accurate information about the realized size of the populations. It

should be noted, however, that this approach assumes that the

nature of the distributions, and thereby the influence of non-

measured subsidiary factors, will remain essentially unchanged.

This assumption is difficult to assess in the case of future

predictions.

Comparison with previous estimates (mainly C. edule)
The response surfaces forecast by 0.975th quantile regression are

coherent with what is reported in literature for the analyzed

species (e.g., [40,49]). While our representation of the response of

C. edule to inundation time and current velocity (Figure 3) closely

matches with that reported for the Oosterschelde by [36] on the

basis of stepwise backward logistic regression, the total biomass

standing stock we estimated is approximately 3 times higher than

that reported by these authors (27 vs 77 millions kg of wet biomass,

assuming a loss of 96% from wet to dry weight [50]). This is

related to the fact that logistic regression methods (more in

general, occurrence models) are able to give an accurate

description of the species presence but definitely underestimate

the contribution to the standing stocks of patches with extremely

high concentration of individuals.

Compared to previous estimates of C. edule standing stocks in the

Oosterschelde from large surveys our results show less temporal

variability (from 20000 tons AFDW in 1980 to 2000 tons AFDW

in 1989 as estimated by [35]). This is related (in addition to large

uncertainties and a potentially biased dataset in the analysis of

[35]) to the fact that our models average the yearly and seasonal

variability by uniformly (‘‘neutrally’’) sampling the forecast

conditional probability distributions. We made this choice to

represent only the amount of variation in standing stocks that can

be ascribed to the target explanatory variables. Additional

variability is still possible due to trends in large scale subsidiary

factors [6] that can restrict the realized output of the forecast

distribution to particularly high or low values.

Previous studies applying univariate quantile regression to

macrozoobenthic SDM (i.e., [18,20]), have used non-linear

regression techniques (i.e., B-splines transformation of the explan-

atory variable). This was not necessary in our case: the interactions

between the two explanatory variables made the models ‘flexible’

enough to accurately describe the species responses. More tests will

be needed to see how general this conclusion is. In any case B-

splines transformation could also be used in the multivariate

statistical model if needed.

Temporal trends in the Oosterschelde
The comparison between the upper-boundary response surfaces

and the realized biomass stocks allow us to make causal inferences

about the fluctuations in species realized biomass across years. P.

ulvae has maximum habitat suitability in sheltered and elevated

sites (Figure 3). The positive trend in P. ulvae biomass stocks

(Figure 7) from 1968 towards 2010 can be related to the decrease

in intertidal tidal currents. For the same reason, species with

preferences for intertidal environments with moderate current

velocity, like S. armiger and C. edule (Figure 3) transited through an

optimal condition in 1983 (reduction of the current velocity due to

the realization of the back-barrier dams) followed by a decline in

the following years (further reduction of the tidal currents, mainly

due to the realization of the Oosterscheldekering). The effect of the

dampening of tidal currents on the biomass of S. armiger and C.

edule diverges in the subtidal environment: negative for S. armiger

and positive for C. edule (Figure 7). Although the decline in the

Table 4. Target species occurrences.

Species Occurrence (%)

Total Intertidal Subtidal

Observed Predicted Observed Predicted Observed Predicted

S. armiger 64 65 73 77 58 58

P. ulvae 30 34 60 69 9 14

C. edule 25 29 55 63 4 9

L. conchilega 23 27 17 27 27 27

Observed occurrence are expressed in percentage of occupied samples on the overall dataset. For each modeled scenarios, predicted occurrences were calculated as
the percentage of cells for which the model forecast a biomass . = of the lowest value observed in nature. The predicted occurrence values reported in the table are
the average of all the scenarios modeled between 1968 and 2010.
doi:10.1371/journal.pone.0089131.t004
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intertidal biomass of C. edule was partially compensated by the

increase in the subtidal zone, the overall outcome suggests a

decrease in the C. edule potential as food resource for the avifauna

(especially waders like Oystercatcher).

L. conchilega prefers subtidal sites with weak currents (Figure 3). It

was positively influenced (Figure 7) by the dampening of the tidal

current velocity (Figure 4). In particular the realization of the

Philipsdam and of the Volkerakdam induced a net increase in

habitat suitability in the northern branch of the basin (Figure 5).

While in the last two decades the situation was rather stable for

all the species (Figure 7), the future shrinking of the intertidal flats

(Table 1, Figure 4) will induce a severe collapse of the standing

stocks of C. edule and P. ulvae. Conversely, L. conchilega will reach the

highest abundance in 2100, expanding its distribution on the

shallow subtidal areas that will take the place of the present-time

Figure 8. Potential vs Realized stocks. The graphs show the ratio between potential (t = 0.975) and realized (sampling from the complete
cumulative distribution) intertidal (green) and subtidal (blue) biomass stocks estimated for different year/scenarios. The black dotted line represent
the 1:5 ratio. The black broken line represent the 1:10 ratio.
doi:10.1371/journal.pone.0089131.g008
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mudflats (Figure 5). L. conchilega is a powerful ecosystem engineer

[51,52], able to stabilize the sediment and increase sedimentation

[37,38]. Therefore, colonizing of the lowering mudflat, L. conchilega

can reduce the expected intertidal erosion. The decline in C. edule

and P. ulvae biomass (both the species are believed to increase

sediment erosion, either directly [53,54] or by disrupting the

benthic diatoms film [55,56]) could have as well the effect to slow

down the loss of intertidal areas.

At the present time, the removal of the Delta Works per se would

not have an important positive effect on C. edule and P. ulvae

(Figure 7), but it can be useful to slow down the erosion of the

intertidal habitat. However, given that the realization of the Delta

Works just amplified the pre-existent trend for sediment export

[32], some loss of habitat is always expected in the future. Once

the erosion process will be very advanced (year 2100), the wider

tidal range consequent to the removal of the dikes could increase

the intertidal surface (Table 1), helping in preserving a (small) part

of C. edule and P. ulvae habitat. On the other hand, the removal of

the coastal defense system would reduce the biomass stock of L.

conchilega to just a slightly higher value than in the pre-Delta Works

state. The only species that could substantially benefit from the

removal of the Delta Works is S. armiger (Figure 7), that usually is

not considered as a target for management strategies.

Retracing the past evolution of the Oosterschelde has given us

the opportunity to build and validate models predicting macro-

zoobenthic community responses to environmental conditions as

well as the anthropogenic modification of those conditions.

However, in considering these forecasts, it should not be forgotten

that they assume that the influence of non-measured subsidiary

factors will remain constant through time. This assumption is

difficult to assess in the case of future predictions.

At the time of constructing the storm surge barrier, it was

already foreseen that tidal currents in the Oosterschelde would

decrease in intensity (Figure 4) and that this would lead to

enhanced erosion of intertidal flats [57]. This increased erosion is

effectively observed [58], and different measures are taken to

mitigate the effect. After a first trial, it is planned to regularly use

dredge spoil dumped onto the tidal flats as nourishment [28].

Softer defense measures include artificially constructed oyster

banks [59] and saltmarsh restoration [60]. The emphasis placed

on these measures is related to the conservation goals, as legally

fixed e.g., in Natura2000 objectives.

What was not foreseen at the time of embankement, was the

striking improvement in quality of the subtidal benthic habitat

(Figures 5 & 7). The dampening of current stress allowed a vast

portion of the subtidal Oosterschelde to be colonized by large

macrozoobenthic organisms, which were confined to the inner and

sheltered part of the estuary before the embankements. This

change in habitats has created opportunities for touristic (diving)

activities, in particular in combination with the increased

transparency of the water. The evolution demonstrates that

natural values of the original system, such as intertidal productivity

and food provision for birds, are intrinsically incompatible with the

management option for coastal safety that was chosen, but that

other natural values such as subtidal benthic habitat quality do

have the potential to be compatible with this option. A public

debate is needed on whether nature conservation goals can and

should be brought closer in line with other management

objectives, or whether natural values should be constraining other

management options.

Conclusion

The methodology we presented allows a realistic representation

of species abundances on the basis of known environmental

variables. The estimation of realized abundance rather than just

habitat suitability revealed extra information on the sensitivity of

species to environmental factors [8,15,19] and on their population

dynamics and energetics [61,62]. Quantile regression requires

limited assumptions about the expected distributional shape and

the interactions between explanatory variables. Therefore, it can

be applied to a broad range of environments and organisms. The

integration between numerical and statistical models is a versatile

method for summarizing and simulating the response of species to

environmental gradients. This study emphasize the importance of

large and long term environmental monitoring programs, as they

provide an useful source of information to forecast future

ecosystem developments.

Ecological forecast must be included into dynamic infrastruc-

ture design to maintain operational efficiency and reduce the

ecological impacts [63]. Model extrapolations of the biological and

physical environment are a fundamental step to explicitly integrate

nature into infrastructure development and to forecast the future

availability of ecosystem services [64]. We showed that the

realization of surge barriers has mixed and depth-dependent

responses that also include improvement of environmental quality.

Under this perspective, the analysis of Oosterschelde basins is a

precious source of information to understand (and communicate)

the future ecological consequences of global trends in human

coastal development. The proposed framework can be applied to

plan human interventions in a way to minimize their impact or,

more optimistically, to maximize their benefits for target species.
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