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Abstract

Alcohol-mediated cancers represent more than 3.5% of cancer-related deaths, yet how alcohol promotes cancer is a
major open question. Using Drosophila, we identified novel interactions between dietary ethanol and loss of tumor
suppressor components of the Hippo Pathway. The Hippo Pathway suppresses tumors in flies and mammals by
inactivating transcriptional co-activator Yorkie, and the spectrum of cancers associated with impaired Hippo signaling
overlaps strikingly with those associated with alcohol. Therefore, our findings may implicate loss of Hippo Pathway
tumor suppression in alcohol-mediated cancers. Ethanol enhanced overgrowth from loss of the expanded, hippo, or
warts tumor suppressors but, surprisingly, not from over-expressing the yorkie oncogene. We propose that in parallel
to Yorkie-dependent overgrowth, impairing Hippo signaling in the presence of alcohol may promote overgrowth via
additional alcohol-relevant targets. We also identified interactions between alcohol and Hippo Pathway over-
activation. We propose that exceeding certain thresholds of alcohol exposure activates Hippo signaling to maintain
proper growth control and prevent alcohol-mediated mis-patterning and tissue overgrowth.
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Introduction

Alcohol consumption is a significant risk factor in cancers of
tissues that contact or metabolize alcohol (for example, upper
aerodigestive tract and liver cancers) and also in other tissues
such as breast cancer [1-16]. Alcohol-associated cancers are
responsible for more than 3.5% of all cancer deaths, yet how
alcohol causes cancer remains a major open question.
Drosophila are amenable to rigorous functional genetic
analysis and descriptive phenotypic characterizations.
Drosophila models have been established to explore the role of
alcohol in health contexts including models of fetal alcohol
syndrome and alcohol addiction [17-23] as well as cancer-
relevant phenotypes such as tissue overgrowth [24-26] in a
whole-animal model making it a particularly relevant system to
investigate the relationship between alcohol and cancer where
systemic responses could underlie the pathogenesis of
disease.

We identified novel interactions between dietary ethanol and
the Hippo Tumor Suppressor Pathway, a signaling network
highly conserved from flies to mammals. The Hippo Pathway
acts as a master regulatory pathway to restrict growth and
proliferation and to promote apoptosis, and its disruption is
implicated in a number of cancers [27-34]. Hippo (Hpo; Mst1
and Mst2 in mammals) [35-39] is the upstream kinase in a core
cassette in which activated Hpo kinase associates with
Salvador (Sav1 or hWW45 in mammals) [40,41] and
phosphorylates and activates downstream effector kinase
Warts (Wts; Lats1 and Lats2 in mammals) [40,42,43] and Wts
co-activator Mats (Mob1 in mammals) [44]. Wts phosphorylates
and inhibits transcriptional co-activator Yorkie (Yki; YAP and
TAZ in mammals) [45], a potent oncogene. Components of this
core cassette can be regulated by distinct upstream factors to
define the eventual biological outputs. For example, GPCR
signaling regulates Wts directly [46], Sik kinases regulate Sav
[47], and a set of FERM-domain proteins including Merlin (Mer)
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and Expanded (Ex) act upstream to activate Hpo by an as yet
undefined mechanism [48].

We found that alcohol exposure enhanced overgrowth upon
Hippo Pathway attenuation in multiple organs in Drosophila.
Surprisingly, alcohol did not enhance overgrowth from over-
expressing yki, suggesting the Hippo pathway may target yki-
independent growth regulators that are alcohol-responsive. We
also found that high doses of alcohol enhanced phenotypes of
hpo over-expression. Our studies reveal multiple interactions
between alcohol and the Hippo Pathway and suggest a
previously undescribed role for Hippo signaling to prevent
tissue overgrowth upon alcohol exposure.

Materials and Methods

Drosophila tools
RNAi was achieved using inverted repeat alleles from the

Transgenic RNAi Project for hpo (P{TRiP.JF02740}attP2,
referred to here as hpoIRT), for Mer (P{TRiP.JF02841}attP2,
MerIRT), and for ex (P{TRiP.JF03120}attP2, exIRT), and from the
National Institute of Genetics for wts (12072R-2, wtsIRN) and for
yki (4005R-2, ykiIRN). Mosaic analysis utilized the FLP/FRT
system [49] including the stocks y w eyFLP; FRT42D pW+
UbiGFP/SM6-TM6B and w; FRT42D hpoMGH1. Over-expression
of transgenes used stocks UAS ykiV5, UAS FLAGyki, UAS
ykiS168AGFP.HA, and UAS hpo. Screen crosses and other
experimental crosses were reared on Formula 4-24 Blue food
(Carolina Biological) reconstituted from 1 gram of food flakes
per 4 milliliters of the specified doses of ethanol or water.
Previous studies established that alcohol doses in food decline
over time [50]; we exploited this to try to recapitulate the human
scenario of periodic alcohol exposure, not constant alcohol
exposure, food in each vial was supplemented with 300
microliters of ethanol at the specified dose every other day.

Drosophila alcohol screen
To identify interactions between alcohol and overgrowth

models, or alcohol and alterations in signaling pathways, we
utilized both (1) Gal4/UAS [51] and (2) FLP/FRT systems [49]
to generate contexts of tissue overgrowth in an ongoing screen
(1). We crossed tissue-specific gal4 drivers (including wing
drivers engal4, c765gal4, eye driver eygal4, etc.) to UAS
transgenes that direct RNAi or over-expression of genes known
to cause tissue overgrowth or participate in signaling cascades
on food sources containing a range of ethanol or water only.
We considered positive hits those genes whose overgrowth
phenotypes were enhanced when larvae were reared in the
presence of ethanol (2). We crossed eyFLP-containing stocks
to corresponding FRT chromosomes containing mutations that
cause tissue overgrowth. We considered positive hits those
mutations whose over-representation in a mosaic eye was
enhanced when larvae were reared in the presence of ethanol.

Genotypes

w/UAS dcr2; engal/+ (Figure 1A-C,G, Figure 2A-B)
w/UAS dcr2; engal/+; UAS hpoIRT/+ (Figure 1D-E,G)

y w eyFLP; FRT42D pW+ UbiGFP/FRT42D hpoMGH1 (Figure
1H-K)

w/UAS dcr2; engal/+; UAS GFP/+ (Figure 1L-O)
w; c765gal4/+ (Figure 1P, Figure 2C,E-F, Figure 3A,E,H-J,

P)
w; c765gal4/UAS Myc (Figure 1Q-S)
w/UAS dcr2; engal/+; UAS MerIRT/+ (Figure 2A)
w/UAS dcr2; engal/+; UAS exIRT/+ (Figure 2B)
w; c765gal4/UAS wtsIRN/+ (Figure 2C)
w; engal/+ (Figure 2D)
w; engal4/+; UAS ykiV5/+ (Figure 2D)
w; c765gal4/UAS FLAGyki (Figure 2E)
w; c765gal4/UAS ykiS168AGFP.HA (Figure 2F)
w; c765gal4/UAS hpoWT/+ (Figure 3B-I)
w; c765gal4/UAS ykiIRN (Figure 3K-P)

Quantification
Mosaic eyes were visually scored as: “+” for mild over-

representation of mutant tissue (white) compared to wild-type
tissue (red), “++” for moderate over-representation, and “+++”
for strongest over-representation. To rule out unintentional
observer bias, trials were conducted blind with lab members
scoring eyes without knowledge of genotypes. Adult wings
were mounted, photographed, and traced to give pixel area.
For engal4 wings, we measured area posterior to vein L4. For
c765gal4, total wing area is shown. Area comparisons utilized
T-tests; mosaic eye and wing abnormality comparisons utilized
chi-squared tests. The data shown in the figures are
representative experiments which have been performed
independently a minimum of three times.

Results and Discussion

Ethanol enhances tissue overgrowth associated with
loss of the Hippo tumor suppressor

In an ongoing screen to elucidate the link between alcohol
and cancer, we used the Gal4/UAS system [51] and the
FLP/FRT system of mosaic analysis [49] to modulate levels of
conserved growth regulators, tumor suppressors, and
oncogenes in various tissues (eye, wing, etc.) in Drosophila
exposed to a range of dietary ethanol. Wings from control flies
(en>dcr2) reared on food containing 1-10% ethanol generally
showed no size increase, although consistent with previous
reports [21] there were small but statistically significant size
decreases in some cases (Figure 1A-B). Early in the wing
screen, we identified the hpo tumor suppressor as a strong hit
(Figure 1C-G). RNAi to hpo in the posterior wing increased size
of this posterior compartment by more than 30% (Figure 1C-
D,G). Posterior wing overgrowth was statistically significantly
further increased by about 10% in flies reared on food
containing 2-5% ethanol (Figure 1D-G) compared to hpo RNAi
alone.

To establish if ethanol-mediated enhancement of tissue
overgrowth was a wing-specific phenomenon or a more
general tissue response, we examined the effects of dietary
ethanol on hpo mutant eye tissue. Mosaic eyes containing
control homozygous white wild-type tissue and homozygous
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Figure 1.  Dietary ethanol enhances overgrowth associated with loss of hpo.  (A-B) Quantification of the effects of 1-10%
ethanol on the posterior wing area (A) and whole wing area (B) of control flies (normalized to area of control wings on 0% ethanol). *
indicates p=0.023995 for females at 5% and p=0.000633 for females at 10% in A and p=0.016029 for females at 5% and
p=0.001122 for females at 10% in B. (C) Control wing. (D) hpo RNAi in the posterior wing. (E) Ethanol-mediated enhancement of
wing overgrowth upon hpo knockdown. (F) Wing tracings from C-E highlight size changes. C-E, representative female wings. (G)
Graph showing percent change in posterior wing area compared to controls at 0% ethanol for RNAi to hpo (black) and controls
(blue) for food containing 0%, 1%, 2%, 5%, 7.5%, and 10% ethanol (normalized to areas of control flies treated with 0% ethanol). *
indicates p=0.00224 (1%, females), p=0.00979 (2%, females), p=0.00589 (5%, females), p=0.00104 (7.5%, females), p=0.00730
(2%, males), p=0.02938 (5%, males), and p=0.01457 (7.5%, males). (H-J) Mutation in hpo (hpoMGH1) results in over-representation
of mutant tissue (white) compared to wild-type tissue (red) [50]. Mosaic eyes fall into a range of over-representation from the mildest
ratio scored as “+” (H) to moderate “++” (I) and severe “+++” (J). (K). Ethanol enhanced over-representation of mutant tissue in a
mosaic eye, noted by the increase in “++” and “+++” eyes. This phenomenon was observed most strongly at 5% and 7.5% ethanol.
Wild-type tissue in a mosaic eye serves as an internal control. We saw no gender differences; graph represents combined data for
males and females. * indicates p=1.33E-10 (5%), p=3.97E-11 (7.5 %), and p=8.1E-6 (10%) compared to the same genotypes on
0%. (L-N) Images of wing discs expressing a GFP transgene under the control of engal4 in flies reared on food containing (L) 0%
ethanol, (M) 2% ethanol, and (N) 5% ethanol. Scale bar on wing disc images reflects 100 micrometers. (O) Graph reflecting
quantification of GFP based on pixel intensity shows no change in GFP in flies reared on ethanol (p>0.05). (P) Control wing. (Q)
Myc over-expression across the wing from a fly grown on control food. (R) Myc over-expression across the wing from a fly grown on
food containing 5% ethanol. (S) Graph showing wing area for flies reared on 5% ethanol compared to controls at 0% ethanol for
myc over-expression. Wing area is normalized to 100% for myc-expressing flies reared on 0% ethanol. Genotypes for this and
subsequent figures are detailed in Materials and Methods. The number of flies analyzed in each experiment in this figure and
subsequent figures is shown in parentheses on the base of each column. The bars in each graph in this figure and subsequent
figures indicate Standard Deviation.
doi: 10.1371/journal.pone.0078880.g001
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red wild-type tissue show roughly equal white and red tissue.
Mosaic eyes containing tissue homozygous for hpoMGH1, a
strong hypomorphic allele, show over-representation of mutant
tissue (white) compared to wild-type tissue (red) [35] in a range
of over-representation from mild (“+” = more white than red,
about 65% of the eyes, Figure 1H) to moderate (“++” = strongly
more white than red, about 20% of eyes, Figure 1I) to severe
(“+++” = almost all white, about 10-15% of the eyes, Figure 1J).

Ethanol doses of 1-10% decreased the percentage of eyes in
the mild “+” category and increased the percentage of eyes that
were scored as moderate and severe (“++” or “+++”) (Figure
1K). At 5% ethanol, approximately 50% of eyes were severe
(compared to less than 15% reared on 0% ethanol); at 7.5%
ethanol, this increased to over 60% of eyes.

We find it unlikely that RNAi off-target effects or alcohol
regulation of the GAL4/UAS system cause this phenomenon

Figure 2.  Ethanol enhances wing overgrowth associated with loss of Expanded, and Warts but not over-expression of
Yorkie.  (A-F) Percent change in posterior wing area (A-B, D) or total wing area (C, E-F) normalized to controls (en>dcr2 for A-B,
c765gal4/+ for C, E-F, engal4/+ for D) at 0% ethanol was graphed for each gene and for controls for food containing the indicated
doses of ethanol (0%, 2%, and/or 5%) ethanol for (A) Mer RNAi in the posterior wing (* indicates p=1.08025E-05 for females at 5%,
p=0.02382138 for males at 5%), (B) ex RNAi in the posterior wing (* indicates p=3.74229E-10 for females at 2%, p=0.005567613
for males at 2%, p=0.000441271 for females at 5%, p=3.00164E-05 for males at 5%), (C) Wts RNAi in the wing (* indicates
p=1.64464E-7 for females at 2%, p=8.18059E-7 for females at 5%, p= 8.0633E-11 for males at 5%), (D) ykiV5 over-expression in
the posterior wing (* indicates p=0.004919 for females at 2%, p=0.041432 for males at 2%), (E) FLAGyki over-expression in the
wing (*indicates p=0.000884273 for control females at 5%), and (F) ykiS168A over-expression in the wing (* indicates p=
0.00038782 for ykiS168A females at 5%; also, in this experiments, * indicates p=0.012339878 for female control wings at 5%
compared to control wings at 0%). P values are given for comparisons of the same genotypes reared on the indicated doses of
ethanol to those reared on control food lacking ethanol. Experiments in A-E were conducted at 21°C, experiments in C-D were
conducted at 25°C, experiments in E were conducted at 18°C, and experiments in F were performed at 16°C.
doi: 10.1371/journal.pone.0078880.g002
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Figure 3.  Ethanol promotes Hippo signaling in Drosophila.  (A) Control wing. Representative wings over-expressing hpo reared
on (B) 0% ethanol and (C) 10 % ethanol. (D) Tracings of wings in A-C. (E) Quantification of the effects of ethanol treatment on wing
area (normalized to control wing treated with 0% ethanol). Significant area effects were seen at 5% in some but not all experiments.
* indicates p=0.00004738091994 (males, 5%), p=0.0000003789435 (females, 10%), and p=5.50153E-11 (males, 10%). (F-G)
Wings from flies reared on (F) 5% and (G) 10% ethanol showed increased patterning abnormalities. (H) Quantification of the effects
of ethanol on proximal-distal positioning of the intersection of L2 and L3. Comparing control and Hpo over-expressing wings at 0%
ethanol, * indicates p=0.0132429375674621 (females) and p=0.00003467107 (males). Comparing Hpo over-expressing wings at
0% to 5%, * indicates p=0.0000391195433611(females), p=0.03843393 (males). Comparing Hpo over-expressing wings at 0% to
10%, * indicates p=0.0000000059140932 (females) and p=0.000442676 (males). (I) Quantification of weakening and loss of
segments within L2, L3, and L4 longitudinal veins. Comparing control and Hpo over-expressing wings at 0% ethanol, * indicates
p=2.45092E-22 (females) and p=0.00000659349 (males). Comparing Hpo over-expressing wings at 0% to 5%, * indicates
p=0.02424 (males). Comparing Hpo over-expressing wings at 5% to 10%, * indicates p=0.00550172 (females). Comparing Hpo
over-expressing wings at 0% to 10%, * indicates p=0.00001108737(females) and p=0.04258 (males). (J) Control wing. (K-L)
Representative wings undergoing RNAi to yki. Obvious wing size reduction is observed at 21°C (K) which increases at the higher
temperature of 25°C. (M) Overlay of tracings of wings in J-L. (N) Representative wing undergoing RNAi to yki reared on 10%
ethanol. (O) Overlay of tracings of wings in (K) and (N). (P) Quantification of the effects of ethanol treatment on wing area at 21°C
(normalized to control wing treated with 0% ethanol). * indicates p=0.00433037 (females), p=0.030839921 (males). Wings shown
are from females.
doi: 10.1371/journal.pone.0078880.g003
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because (1) ethanol did not affect Gal4/UAS-mediated
expression of a GFP transgene (Figure 1L-O), and (2) alcohol
enhanced over-representation of hpoMGH1 mutant eye tissue
(Figure 1H-K), a genetic system that used neither GAL4/UAS
or RNAi tools. Moreover, these data indicate that this
phenomenon is not specific to wing tissue but may represent a
general response of hpo-deficient tissue to ethanol.

The ability of alcohol to enhance overgrowth was not
universal. Over-expressing the oncogene Myc in the wing
(Figure 1Q) promotes wing overgrowth compared to a control
wing (Figure 1P). Dietary ethanol did not enhance this
overgrowth (Figure 1R-S).

Alcohol enhances organ overgrowth associated with
expanded and warts but not Merlin or yorkie

To establish if enhancement of wing overgrowth applied to
other components of the Hippo Pathway, we examined
knockdown of upstream tumor suppressor components Mer
and ex. Alcohol did not enhance overgrowth upon Mer RNAi in
the posterior wing (Figure 2A), but statistically significantly
enhanced overgrowth upon ex RNAi (Figure 2B). Our data
could reflect interaction with alcohol specific for Ex-directed
signaling through the pathway or could result from the
complicated way in which upstream inputs direct pathway
outputs. Signaling through the pathway is complex and not
strictly linear; for example, Ex promotes signaling through Hpo
[48] and also binds and inhibits Yki directly [52]. Loss of Mer or
ex singly has distinct phenotypes from loss of core components
hpo or wts [53]. However, simultaneous loss of Mer and ex
phenocopies loss of hpo or wts in other contexts [48]. The
interaction between alcohol and ex knockdown but not Mer
knockdown can be further resolved as future work in the field
elucidates how upstream factors activate the pathway to define
distinct biological outputs.

To address downstream components, we examined
knockdown of wts and over-expression of yki. RNAi to wts in
the posterior wing with engal4 led to such overgrowth that wing
folding prevented accurate quantification. We therefore used
weaker pan-wing driver c765gal4. Ethanol enhanced wing
overgrowth from RNAi to wts in females (Figure 2C).

Over-expressing yki in the posterior wing or across the whole
wing promotes tissue overgrowth. We tested conditions that led
to overgrowth similar to loss of hpo seen in Figure 1 for wild-
type yki transgene UAS-ykiV5. Surprisingly, ethanol did not
reproducibly enhance ykiV5-mediated overgrowth (Figure 2D).
Therefore we tested a distinct wild-type yki transgene, UAS-
FLAGyki. As with RNAi to wts, overgrowth produced by the
FLAGyki transgene using engal4 was too extensive to quantify,
so we assessed overgrowth with c765gal4. Consistent with our
findings for ykiV5, dietary ethanol did not enhance FLAGyki-
mediated overgrowth (Figure 2E). Because wild-type versions
of yki would be subject to inhibition by endogenous Hippo
signaling, we also tested the transgene UAS
ykiS168AGFP.HA. The S168A mutation cannot be
phosphorylated by Wts at the 14-3-3 site, so is insensitive to
Wts-induced inactivation via translocation out of the nucleus
[54]. Dietary ethanol did not enhance the overgrowth due to
ykiS168AGFP.HA expression (Figure 2F).

If alcohol-mediated enhancement of overgrowth upon loss of
ex, hpo, or wts occurs via interaction with Yki protein or its
targets, we would predict alcohol to enhance Yki over-
expression-induced overgrowth. Therefore, our genetic
interaction studies suggest that alcohol may interact with Hippo
signaling at or downstream of hpo and wts, possibly parallel to
yki. This is particularly unexpected because signaling through
Yki is reported to be crucial to overgrowth from loss of Hippo
Pathway tumor suppression. Our findings may reveal a role for
Yki-independent Hippo Pathway targets in promoting growth
upon alcohol exposure. Alternatively, alcohol may be acting in
a less straightforward way to regulate Yki protein not revealed
by our wild-type and mutant Yki over-expression studies.

Alcohol enhances Hpo over-expression phenotypes but
not Yki loss phenotypes

How does alcohol enhance overgrowth due to loss of ex,
hpo, and wts? A trivial explanation would be that alcohol further
impairs signaling through the pathway. This explanation would
predict that alcohol should therefore suppress the phenotypes
of over-activating the pathway, such as by over-expressing hpo
itself. In contrast, we observed that dietary ethanol enhanced
hpo over-expression phenotypes. Over-expressing hpo in the
wing reduced wing size and disrupted wing patterning (Figure
3B, quantified in 3E, 3H-I) compared to controls (Figure 3A).
Flies reared in 5% ethanol-containing food showed a trend of
enhanced wing size reduction while flies reared in 10%
ethanol-containing food showed significantly enhanced wing
size reduction (Figure 3C-E). Because knockdown experiments
in Figure 1 do not eliminate all Hippo signaling, the increased
Hippo pathway activation induced in the presence of 10%
ethanol may explain the perplexing result that 10% ethanol
doses did not enhance wing overgrowth or as strongly enhance
eye mutant tissue over-representation upon Hippo loss as
lower doses (Figure 1E-G, K). Exposure to 5% and 10%
ethanol significantly enhanced mis-patterning caused by Hippo
over-expression (Figure 3F-I).

How can we reconcile that alcohol (1) enhanced overgrowth
from impaired Hippo Pathway tumor suppression but (2) also
enhanced the phenotype of hpo over-expression? Although in
seeming conflict with our earlier results, the ability of ethanol to
enhance hpo over-expression phenotypes is consistent with
previous reports in the literature using in vitro systems. Hpo
kinases Mst1 and Mst2 were identified in mammalian systems
as stress response kinases [55] and are activated in cultured
cells by oxidative stress [56-58]. Alcohol promotes oxidative
stress; our findings may represent a validation of those in vitro
effects in a physiological setting.

Does this enhancement of Hippo-induced wing size
reduction occur through further downregulation of yki? If so, we
would expect alcohol to also enhance the wing size reduction
of knocking down (but not knocking out) yki because
presumably the increased Hippo signaling would act to further
down-regulate the Yki protein produced. Similar to hpo over-
expression, RNAi to yki across the entire wing results in a
smaller wing (Figure 3K-M) compared to a control wing (Figure
3J). Parallel exposure of flies to doses of 10% ethanol (a dose
at which we saw effects on hpo over-expression phenotypes of
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wing patterning and wing size) did not enhance the wing size
reduction due to RNAi of yki (Figure 3N-P). This may suggest
that that alcohol further enhances Hpo-mediated growth
regulation through targets other than yki.

A role for Hippo Pathway Tumor Suppression in
response to stress?

If Hippo signaling is activated by alcohol as part of a stress
response, it seems reasonable to speculate that Hippo
signaling is acting to prevent some of the deleterious effects of
alcohol. If this is the case, then impairing Hippo signaling in the
presence of alcohol would mean those deleterious effects of
alcohol would take place. Taking our findings into account with
this logic, we propose that in addition to tissue homeostasis
regulated by Hippo signaling under normal conditions (Figure
4A), alcohol does not promote the overgrowth of Drosophila
eye and wing tissues in part because alcohol promotes
activation of Hippo signaling (Figure 4B). However, in contexts
where Hippo signaling is impaired and tissue undergoes
established Yki-dependent overgrowth (Figure 4C), we propose
alcohol can then also act to promote additional tissue
overgrowth, possibly by interacting with Yki-independent
targets of Hippo signaling (Figure 4D) because yki over-
expression is not sufficient to recapitulate this phenomenon.

The ability of alcohol to promote Hippo signaling in flies and
for oxidative stress to promote Hippo signaling in mammalian
systems [55-58] suggests there may be a highly conserved role
for stress to activate the Hippo Pathway. This raises interesting
questions regarding the origins of Hippo signaling to respond to

alcohol. We speculate that activation of Hippo signaling by
alcohol developed in a common ancestor as a mechanism to
maintain proper patterning and growth regulation even upon
exposure to environmental stressors; maintenance of this
mechanism may have been selected for in species like
Drosophila that develop in the presence of alcohol, such as on
fermenting fruit or other species that encounter environmental
exposure to related stressors, to prevent stress-mediated
tissue overgrowth.

Our findings that alcohol enhances both Hippo Pathway loss
of function and over-expression phenotypes are consistent with
a role for dietary alcohol (i.e. whole animal exposure) to have
specific effects on target organs undergoing Hippo Pathway
modulation. This could be particularly relevant in prescribing
lifestyle changes and for designing therapies for patients
depending on whether or not their tumors maintain intact Hippo
signaling. Moreover, our findings suggest that impaired Hippo
Pathway tumor suppression may underlie the pathogenesis of
specific alcohol-mediated cancers. Notably, there is striking
overlap between Hippo-associated cancers [27-34] and
alcohol-associated cancers, including colorectal, liver, and
breast cancers [59-64].

Yki is the best-characterized target of the Hippo Pathway; its
homologs YAP and TAZ are widely accepted to play an
important role in cancer. Therefore, we were surprised that
alcohol did not enhance tissue overgrowth upon yki over-
expression. Alcohol may act in a novel way to promote Yki
accumulation or activity. Indeed, alcohol promoted Hippo
signaling which normally antagonizes yki; this could have

Figure 4.  Model for alcohol interaction with the Hippo Pathway.  As established, when Hippo signaling is intact (A), Yki is
properly regulated and tissues maintain proper growth control. We propose that alcohol promotes activation of the pathway at or
upstream of Hippo to target alcohol-relevant growth-promoting activities (B) to maintain proper growth control upon alcohol
exposure. When Hippo signaling is impaired (C), Yki becomes overactive and promotes tissue overgrowth. We propose that when
Hippo signaling is impaired in the presence of alcohol (D), Yki acts to promote overgrowth as established, and additional alcohol-
relevant targets of the pathway act to promote further overgrowth.
doi: 10.1371/journal.pone.0078880.g004
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masked alcohol-mediated enhancement of wild-type yki
phenotypes and resulted in the lack of observed interaction
between dietary ethanol and wild-type yki over-expression
(Figure 2D). However (1), we did not observe any significant
phenotypic enhancement of over-expressing hpo at dietary
alcohol concentrations of 2% (not shown), where we did not
see interactions between yki over-expression and ethanol and
(2) alcohol did not enhance the organ size reduction caused by
knockdown of yki. Therefore, we believe the simplest model to
explain our data is that in the range of alcohol concentrations
tested in our study, alcohol interacts with Yki-independent
targets of Hpo and/or Wts. Our report may represent another
context of Hippo Pathway functions that are Yki-independent
including reported roles in F-actin regulation [65] and polarity
[66]. Moreover, controversial reports propose YAP acts as a
breast cancer tumor suppressor [67-69]. Thus, Hippo Pathway
targets parallel to YAP could be particularly relevant to alcohol-
mediated breast cancers.
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