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Abstract

Coordinated patterns of cortical morphology have been described as structural graphs and previous research has
demonstrated that properties of such graphs are altered in Alzheimer’s disease (AD). However, it remains unknown how
these alterations are related to cognitive deficits in individuals, as such graphs are restricted to group-level analysis. In the
present study we investigated this question in single-subject grey matter networks. This new method extracts large-scale
structural graphs where nodes represent small cortical regions that are connected by edges when they show statistical
similarity. Using this method, unweighted and undirected networks were extracted from T1 weighted structural magnetic
resonance imaging scans of 38 AD patients (19 female, average age 7264 years) and 38 controls (19 females, average age
7264 years). Group comparisons of standard graph properties were performed after correcting for grey matter volumetric
measurements and were correlated to scores of general cognitive functioning. AD networks were characterised by a more
random topology as indicated by a decreased small world coefficient (p = 3.5361025), decreased normalized clustering
coefficient (p = 7.2561026) and decreased normalized path length (p = 1.9161027). Reduced normalized path length
explained significantly (p = 0.004) more variance in measurements of general cognitive decline (32%) in comparison to
volumetric measurements (9%). Altered path length of the parahippocampal gyrus, hippocampus, fusiform gyrus and
precuneus showed the strongest relationship with cognitive decline. The present results suggest that single-subject grey
matter graphs provide a concise quantification of cortical structure that has clinical value, which might be of particular
importance for disease prognosis. These findings contribute to a better understanding of structural alterations and
cognitive dysfunction in AD.
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Introduction

Alzheimer’s disease (AD) is a progressive and disabling

neurodegenerative disorder that accounts for approximately 50%

to 80% of all dementia cases. AD is histopathologically defined by

the presence of amyloid-b plaques and tau-related neurofibrillary

tangles [1–7]. These plaques and tangles have been associated

with local synaptic dysfunction, suggesting that AD is a

dysconnectivity disease [4,8]. In addition, specific patterns of

cortical atrophy have been associated with AD, including memory

related structures such as the hippocampus and other medial

temporal lobe regions, and also the precuneus, cingulate and

prefrontal areas (e.g., [1,9–12]). However, clinical phenotypes

often present with more complex cognitive deficits besides memory

complaints and this might not be fully explained by atrophy

patterns alone [13]. Precise associations between clinical pheno-

types and different pathological processes are difficult to study,

partly because local functional and structural disruptions can have

unpredictable, widespread effects in complexly interconnected

brain networks [14]. Graph theory provides tools to investigate the

connectivity structure of such complex networks (i.e., graphs) that

can be obtained with functional and also structural neuroimaging

techniques [15–18].

Coordinated patterns of cortical morphology in structural

magnetic resonance imaging (sMRI) scans have been described

as graphs (e.g., [19–23]). The nodes in these structural graphs

represent cortical areas that are considered to be connected when

they covary in thickness or volume across subjects [24,25], or

when they show structural similarity within single-subjects [23].

Such graphs can be concisely quantified with graph theoretical

properties. In agreement with other types of brain graphs (e.g.,

functional graphs that are derived from functional synchronisation

patterns or anatomical graphs that are derived from diffusion

tensor imaging, i.e., DTI) structural graphs have a non-trivial

organisation of connectivity. Importantly, several properties of

structural graphs are altered in AD [26–28]. Furthermore, these

alterations are heterogeneously distributed across the brain,

indicating that specific cortical areas contribute more to disease

modifications of global network measurements. Structural graph

disturbances have been interpreted to reflect decreased informa-
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tion processing efficiency, possibly mirroring functional disruptions

in AD. However, the methodology of these previous grey matter

graph studies restricted the investigation of graph properties to

group-level analyses, and therefore the relationship between grey

matter graph alterations and disease severity in individual patients

still remains to be established.

Furthermore, while most functional studies have reported that

graph topologies move towards more random connectivity

configurations in AD [29–32], it is still unclear whether this also

occurs in grey matter graphs. It has been proposed that the loss of

highly interconnected areas renders graph topologies more

random [29]. Moreover, highly interconnected areas might be

specifically targeted by the disease, because these areas have been

associated with increased amyloid-b deposition in AD [33,34] and

with increased vulnerability for activity-dependent degeneration

[35]. Examining these topological alterations in single-subject grey

matter graphs might provide more insight into the association of

functional disruptions and coordinated changes in cortical

morphology.

The present study addresses these questions by investigating

graph properties of single-subject grey matter graphs for the first

time in AD using a recently developed method [23]. Presently, we

expected that if structural graphs are related to functional

disruptions then AD structural graphs would be characterised by

a more random topology than those from control subjects. We also

expected that the contribution of local disruptions would be

heterogeneously distributed across the cortex, with preferential

involvement of highly interconnected areas. Furthermore, we

hypothesised that within the AD group, a more random graph

topology would be related to more severe cognitive decline.

Methods

Alzheimer patients and control subjects
In total 38 patients with probable Alzheimer’s disease (AD) and

38 gender and age matched controls were recruited from the

Alzheimer Centre of the VU University Medical Centre. All

subjects received standard dementia screening that included a

medical history, physical and neurological examination, cognitive

examination, extensive neuropsychological evaluation, screening

laboratory tests, an electroencephalogram (EEG), and a magnetic

resonance imaging (MRI) scan. Patients were diagnosed during a

multidisciplinary consensus meeting with probable AD when they

fulfilled the criteria proposed by the National Institute on Aging

and the Alzheimer’s Association (NIA-AA) workgroup [36].

Subjects from the control group were people who visited the

clinic with (mostly) memory complaints, but did not meet the

criteria for MCI or major depression after standard dementia

screening (as described above). General cognitive functioning was

assessed using the mini-mental state examination (MMSE, [37]),

which was part of the standard dementia screening. The Ethical

Review Board of the VU University Medical Center Amsterdam

approved the study, which was conducted in accordance with

regional research regulations and conformed to the Declaration of

Helsinki. All participants or their lawful caregivers provided

written informed consent to use their clinical data for research

purposes. Patients who declined to provide written informed

consent were not disadvantaged in any other way by not

participating in the study.

Image acquisition and preprocessing
Neuroimaging of the subjects was carried out on a 3.0 Tesla

scanner (SignaHDxt, GE Healthcare, Milwaukee, Wisconsin,

USA) using a standard circularly polarised head coil with foam

padding to restrict head motion. The scan protocol included a

whole-brain 3D fast spoiled gradient-echo sequence (FSPGR) with

a repetition time of 708 ms, an echo time of 7 ms, flip angle of 12u,
180 sagittal slices, field of view of 250 mm, slice thickness of 1 mm,

and a voxel size of 0.9860.9861 mm3. All scans were reviewed for

brain pathology other than atrophy by an experienced radiologist.

The origin of the scans was automatically set to the anterior

commissure using the linear transformation matrix to MNI space

that was calculated in FSL-FLIRT [38]. Next, the structural T1

weighted images were segmented into cerebrospinal fluid, grey

and white matter using Statistical Parametric Mapping software

(SPM8; Functional Imaging Laboratory, University College

London, London, UK) implemented in MATLAB 7.12 (Math-

Works, Natick, MA). C.M. visually checked the quality of all

segmentations.

Single-subject grey matter networks
Single-subject grey matter graphs were based on intracortical

similarity using a completely automated and data-driven method

that has been previously described in [23]. Briefly, the method

starts with defining the network’s nodes as small regions of interest

in the native space grey matter segmentations that correspond to

36363 voxel cubes. These cubes keep the three dimensional

structure of the cortex intact and so geometrical information is

used in addition to the grey matter values in the voxels. The

similarity between all the nodes in the network was determined

with the correlation coefficient, as this metric is simple to

understand and implement, while at the same time fast to

compute [39–42]. The numerator of the correlation coefficient rjm

between cubes vj and vm calculates the sum over the product of the

differences between the cubes’ values at each voxel location i = 1,

2, ... n for n voxels (after subtraction of the cubes’ average values,

respectively v
__

j and vm

__
). The denominator of the correlation

coefficient is the product of the cubes’ standard deviations:

rmax
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h
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Given that the cortex is a curved object, two similar cubes could

be located at an angle from each other, which could decrease their

similarity value. Therefore, the maximum correlation value was

computed over different rotations of the seed cube. Regions with

zero variance in grey matter values were excluded (average across

all subjects ,0.01%), because in these cases the correlation

coefficient is undefined.

Next, the similarity matrices were binarised to construct

unweighted and undirected graphs after determining a threshold

for each individual graph with a permutation based method to

ensure a similar chance of including 5% (SD = 0.002) spurious

correlations for all individuals (see [40]). Only positive similarity

values survived this threshold. The graphs were undirected

because causality cannot be inferred from correlations. Although

continuous weights would contain the most information [43,44],

the present study assessed only the basic network topology and

therefore the networks were binarised for simplicity.

Note that in the present study the term ‘‘connectivity’’ is used to

indicate when two nodes show high statistical similarity, which can

exist in the absence of axonal connectivity.

Single-Subject Grey Matter Graphs in AD
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Graph properties
In order to quantitatively describe the single-subject graphs and

to maximise comparability of our results with those reported by

previous graph studies in AD, we assessed the following basic

network properties: the size of networks, the connectivity density

(i.e., the proportion of existing connections to the maximum

number of possible connections), the degree, the characteristic

path length (i.e., the minimum number of edges between any pair

of nodes), the clustering coefficient [45] and the betweenness

centrality [46]. All these properties were measured at local (i.e.,

single nodes) and global (i.e., averaged across nodes) scales. In

addition, the small world coefficient [45,47] was computed by

normalising the average clustering coefficient and characteristic

path length of each graph with those averaged from 20

randomised reference graphs of identical size and degree

distribution [48]. Normalised clustering coefficient was denoted

as c, and normalised characteristic path length was denoted as l.

A network has the small-world property when c/l.1, suggesting

that its topology is different from that of a random graph [45,47].

This connectivity architecture is thought to be efficient as clusters

can be regarded as specialised units in a network that can

exchange information via sparse connections between them. We

found that 20 random reference graphs were sufficient to produce

stable results (range SD values across subjects, c: min = 0.0002,

max = 0.0006; l: min = 7.2661027, max = 4.1961026; s:

min = 0.0002, max = 0.0005).

Another feature of brain graphs is the existence of nodes with a

central role in a network, i.e., ‘‘hubs’’. The existence of hubs in a

network decreases the characteristic path length and renders

graphs more resilient towards random attack of nodes and/or

edges (e.g., [49]). However, this also makes them the weakest

points of networks. Hubs have been proposed to be specifically

targeted in AD (e.g., [33,35]). Here, hubs were identified as nodes

with a higher than one standard deviation above the average

betweenness centrality. More technical details of these measure-

ments and their interpretation have been extensively discussed

elsewhere (e.g., [15,17,44,50–52]). Network extraction and com-

putation of their properties were all computed with in house

software that was developed in Matlab v7.12.0.635 and modified

scripts from the Brain Connectivity Toolbox (www.brain-

connectivity-toolbox.net, [44]).

Statistical comparisons
Statistical comparisons were performed in R version 2.15.0 (30-

03-2012). Lilliefors tests from the R package ‘‘nortest’’ indicated a

significant departure from normality of the distributions for some

of the network properties. Log-transformation proved unsuccessful

in rendering the data normal, and therefore we used a rank

transformation of network properties values so that we could use

parametric analysis methods [53,54]. Ties were replaced by

average ranks.

It has been demonstrated that differences in graph size and

connectivity density influence other network properties [55,56]. In

the present study the distributions of the graph defining properties

(i.e., size, average degree and connectivity density) and also the

property-interrelationships showed close correspondence between

the groups, thus allowing for comparisons of other network

properties (see Table S1 in File S1).

Group comparisons of the remaining graph properties were

tested with ANCOVAs using grey matter volume, age and gender

as covariates. The groups had similar equality of variance for all

graph properties as measured with the Levene’s test (all p.0.05).

In order to reduce dimensionality and aid comparability among

graphs but also with other studies, local graph properties were

summarised by averaging these across the cubes within each of the

90 anatomical areas that were defined in individual subjects by

means of the Automated Anatomical Labelling atlas (AAL, [57])

using the statistical parametric mapping toolbox of SPM8

(IBASPM). This toolbox was also used to obtain measurements

of total grey matter volume and local volumes of the AAL regions.

Group differences in betweenness centrality were tested for each

anatomical area with ANCOVAs including regional volume, age

and gender as covariates. Relationships between global and local

graph properties and MMSE scores were determined with

Pearson’s correlations. Using forward regression and starting with

a model including only global volume and hippocampal volume as

predictors of MMSE, we assessed how prediction improved after

adding the graph properties that showed the strongest correlation

with MMSE. Finally, where appropriate we computed p values

using the False Discovery Rate (FDR, [58,59]).

Results

Subject characteristics
The main subject characteristics are summarised in Table 1.

The groups were successfully matched on gender (both groups

contained 19 female and 19 male subjects) and did not differ in age

(mean age AD: 72.0664.32 years; mean age controls:

71.9164.32). As expected, the AD patients scored significantly

lower on the MMSE than control subjects (p = 7.65610215).

Furthermore, global grey matter volume was significantly lower in

AD (p = 0.0004; see Figure 1a). All single-subject grey matter

graphs were fully connected through on average 8683 nodes

(SD = 545) and an average connectivity density of 15% (SD = 0.74)

across all subjects.

Alterations of global network properties in Alzheimer’s
disease

All single-subject grey matter graphs in both AD and control

groups had higher average clustering than random reference

networks (i.e., c.1. Range c across all individuals: min = 1.35,

max = 1.73) and similar average path length (i.e., l<1. Range l
across all individuals: min = 1.04, max = 1.08), indicating that all

networks had a small world topology (i.e., c/l.1. Range across all

individuals: min = 1.30, max = 1.60). However, this topology was

altered in AD. All full ANCOVA’s models were significant after

correction for multiple hypotheses testing with FDR. The graphs

from AD patients were characterised by a decreased characteristic

path length (F (1, 71) = 19.62, p = 3.3561025; Figure 1b) and

Table 1. Subject characteristics.

Group

AD C p-value

Sample size 38 38 na

Age 72.0664.32 71.9164.32 <1

Gender (M/F) 19/19 19/19 1

average MMSE+/2SD 19.6565.42 27.6762.20 7.65610215

average grey matter
volume in mm3

668.23674.62 729.33665.04 0.0004

AD is Alzheimer’s disease patients, C is control group, M is male, F is female,
MMSE is Mini-mental state examination, SD is standard deviation, mm3 is cubic
millimetre, na is not applicable.
doi:10.1371/journal.pone.0058921.t001
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decreased clustering coefficient (F (1, 71) = 4.58, p = 0.04;

Figure 1c) in comparison to graphs from control subjects.

Furthermore, Figures 1e to f show that the small world properties

were significantly lower in AD (l: F (1, 71) = 33.30,

p = 1.9161027; c: F (1, 71) = 23.45, p = 7.2561026; the small

world property: F (1, 71) = 19.50, p = 3.5361025). The between-

ness centrality did not differ between the groups (F (1, 71) = 0.06,

p = 0.81). Taken together, these results suggest that AD networks

move towards a more random topology. Because these graph

properties were corrected for global grey matter volume, it is

unlikely these results simply reflect cortical atrophy.

Local graph disturbances in Alzheimer’s disease
The betweenness centrality is commonly used to assess which

nodes are ‘‘hubs’’, indicating that they are more centrally

connected relative to the other nodes in a network. The groups

showed a large difference in uncorrected BC (F (1, 74) = 8.18,

p = 0.006), complicating the interpretation of the comparison of a

relative hub definition. As an alternative, we compared regional

BC between the groups. Figure 2a shows the spatial distribution of

local BC values, after normalization for graph size for each group.

We further investigated whether groups differed at a regional level

in BC. Twenty-nine of the 90 ANCOVAs were significant after

correction for multiple hypotheses testing with FDR. Figure 2b

shows specific anatomical areas where the betweenness centrality

was significantly reduced in the AD group after correcting for local

grey matter: the right posterior cingulate gyrus (F (1, 71) = 6.25,

p = 0.01), left parahippocampal gyrus (F (1, 71) = 13.83,

p = 0.0004), left lingual gyrus (F (1, 71) = 5.13, p = 0.03) and

bilateral thalami (left F(1, 71) = 13.12, p = 0.0005; right F (1,

71) = 4.07, p = 0.05). The left parahippocampal gyrus, left lingual

gyrus and bilateral thalami of the AD group also showed decreases

in clustering coefficient and path length (See Table S6 in File S1.

See Figure S2 in File S1 for an overview of local graph properties

distributions for each group).

Associating graph alterations with symptom severity
We further scrutinised the relationships between graph alter-

ations and general cognitive decline in AD as measured with the

MMSE (available for 73 of the 76 subjects). The average

characteristic path length was strongly related to MMSE scores

(r = 0.48, p = 0.003, pFDR = 0.01, 95% confidence interval = [0.18–

0.70]; Figure 3a left), as was l (r = 0.51 p = 0.001, pFDR = 0.01,

95% confidence interval = [0.23–0.72]; Figure 3a right). In some

AAL regions, similar associations between local path length and

MMSE scores were found (see Table 2 and Figure S1 in File S1):

The characteristic path length of the left parahippocampal gyrus

showed the strongest relationship with MMSE scores, followed by

the left hippocampus, right fusiform gyrus and right precuneus.

However none of these survived correction for multiple compar-

isons with FDR.

Next, we examined whether these graph properties could

explain more variance in MMSE scores than global and

hippocampal grey matter volume. Table 3 shows that a model

including l and path length in the left parahippocampal gyrus

explained 32% of the variance in MMSE scores (adjusted

R2 = 0.32), which was a significant improvement (p = 0.004) when

compared to the model including only global grey matter and

hippocampal volume (adjusted R2 = 0.09). Adding the hippocampal

path length to the model did not lead to further improvements

(p = 0.79). To conclude, within the AD group more random graphs

were associated with worse cognitive dysfunction, supporting the

clinical relevance of single-subject grey matter graphs.

Discussion

The present study demonstrated AD-related alterations in single-

subject grey matter graphs, using a recently developed method to

describe patterns of intracortical similarities from MRI data. One

of the main findings was that the topology of AD graphs was more

random in comparison to control subjects. In addition, decreases

in nodal centrality were found in specific anatomical areas known

to be involved in AD, suggesting that the contributions of cortical

areas to global disruptions are heterogeneously distributed across

anatomical areas. Importantly, by using single-subject grey matter

graph measurements we were able to demonstrate a relationship

between graph alterations and general cognitive decline at both

whole brain level and in specific cortical areas. These findings

Figure 1. Box plots visualising differences in the distributions of global graph property values between Alzheimer’s disease
patients (AD) and control subjects (C). Box plots show the distributions of: a) grey matter volume: F (1, 74) = 13.78, p = 0.0004, b) the average
path length: F (1, 71) = 19.62, p = 3.3561025, c) the average clustering coefficient: F (1, 71) = 4.58, p = 0.04, d) average l: F(1, 71) = 33.30, p = 1.9161027,
e) average c: F (1, 71) = 23.45, p = 7.2561026 and f) the small world property F (1, 71) = 19.50, p = 3.5361025. Middle line indicates the median value,
the cross indicates the mean. * = p,0.05; *** = p,0.001, significance of ANCOVAs after adjustment of total volume, age and gender.
doi:10.1371/journal.pone.0058921.g001

Single-Subject Grey Matter Graphs in AD
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could not be explained by volumetric differences. The present

results support the clinical relevance of single-subject structural

brain graphs.

Interpretation of intracortical similarities
At this point the biological mechanisms underlying intracortical

similarities are still unknown and we can only speculate about the

causes of AD related alterations in these patterns. Intracortical

similarities might be induced by functional coherence of cortical

areas that has been demonstrated to cause coordinated changes of

cortical structures within individuals [60] and across individuals in

groups [24,61]. This hypothesis may explain why areas with many

connections were distributed across areas known to be involved in

the ‘‘default mode network’’: regions that show more functional

Figure 2. The spatial distribution of betweenness centrality (BC) values across the cortex, group differences in local BC and local
path length. a) BC values were averaged over subjects in the Alzheimer’s disease (AD, upper panel) and control (C, lower panel) groups. After
individual maps were normalised for graph size they were warped into MNI space where they were averaged for each group. Average maps were
normalised again to values between 0–1. The spatial distribution of the unnormalised BC values showed a strong correlation between the groups
(r= 0.74, p,2.2610216). b) Surface plots of the F values of the AAL regions that showed a significantly decreased average BC value after correction
for local grey matter volume, gender and age. c) Surface plots of the 20 AAL regions that showed a significant (p,0.05) correlation between local
path length (L) and mini-mental state examination (MMSE) scores (See Figure S1 in File S1 for the scatter plots of all significant correlations).
doi:10.1371/journal.pone.0058921.g002

Figure 3. Scatter plots of rank-transformed scores on the mini-
mental state examination (MMSE) with global path length L
and l. Correlations between MMSE and L (a) and l (norm. L.; b) for the
AD (black circles) and control group (dark grey plus signs). Note that
global grey matter volume, graph size and connectivity density were
unrelated to MMSE scores (resp. r = 20.18, p = 0.28; r = 20.18, p = 0.29;
r = 20.06, p = 0.73), nor were such relationships found with local grey
matter in any of the AAL regions.
doi:10.1371/journal.pone.0058921.g003

Table 2. Spearman’s rank correlations (r) between MMSE
scores and local path length after adjustment for local grey
matter volume, gender and age.

95% CI

Cortical Region r p pFDR min max

L parahippocampal gyrus 0.50 0.0016 0.15 0.21 0.71

R fusiform gyrus 0.45 0.0055 0.19 0.14 0.67

L hippocampus 0.44 0.0063 0.19 0.14 0.67

R precuneus 0.40 0.0139 0.31 0.09 0.64

R supramarginal gyrus 0.37 0.0233 0.31 0.05 0.62

R Heschl’s gyrus 0.37 0.0253 0.31 0.05 0.62

L fusiform gyrus 0.36 0.0282 0.31 0.04 0.61

R parahippocampal gyrus 0.36 0.0297 0.31 0.04 0.61

L inferior temporal gyrus 0.35 0.0335 0.31 0.03 0.61

R thalamus 0.35 0.0348 0.31 0.03 0.60

R inferior occipital gyrus 0.33 0.0460 0.32 0.01 0.59

L middle orbitofrontal gyrus 0.33 0.0468 0.32 0.01 0.59

CI is confidence interval

Ties were averaged.
doi:10.1371/journal.pone.0058921.t002
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synchronisation during rest than during tasks [62] (see File S1).

Notably, evidence exists that the default mode network is altered

in AD (e.g., [63,64]), and even shows alterations in young

individuals who are at an increased genetic risk for AD [65–67].

The present results support this hypothesis, as local graph

disruptions show overlap with this network.

In addition to functional coactivation, intracortical similarities

might arise as a result of axonal connectivity that can influence

morphological measurements of the cortex [68,69,70]. A recent

study has reported that about 40% of cortical thickness

correlations assessed at a group-level converged with group-

averaged DTI traced tracts [71]. Furthermore, cortical morphol-

ogy might also arise as a result of mutually trophic influences

[72,73].

Disruptions in any of these processes are likely to contribute to

changes in patterns of intracortical similarity that are related to

AD.

Grey matter network alterations in Alzheimer’s disease
The presently investigated single-subject graphs were charac-

terised by a more random topology in AD and this was indicated

by a decreased path length, clustering coefficient and small world

coefficient (including both c and l). Most of these results are in line

with previous functional studies that also have demonstrated more

random topologies in AD [29–31], which is suggestive of an

association between functional and morphological disruptions.

Furthermore, local measurements were heterogeneously affect-

ed, indicating that specific areas are targeted in the disease. The

areas that showed decreased betweenness centrality in AD

included the posterior cingulate, the parahippocampal and lingual

gyri. These structures have previously been reported to be altered

in group-based structural graphs [26,28] as well as in functional

graphs [30,31]. Moreover, the parahippocampal gyrus and

posterior cingulate areas are part of the Papez circuit that is

involved in memory [74]. The posterior cingulate fasciculus that

connects these areas has been reported to be affected in AD [75].

Another important finding of the present study was that

decreased characteristic path length in medial temporal areas,

including the hippocampus, but also in other areas such as the

right precuneus was related to worse cognitive performance and

that these relationships could not be explained by differences in

local volumetric measurements. These results imply that graph

measurements have the potential to monitor disease progression,

which is important for the development of new treatments.

Interestingly, some of the areas where we found graph

disruptions, such as the posterior cingulate cortex and precuneus,

are known to be highly interconnected in both functional and

anatomical graphs [76,77] and are also part of the default mode

network [78,79]. Previous studies have reported functional

disruptions in these areas and metabolic disruptions in AD [67].

Evidence has also been reported of a positive association between

the amount of amyloid plaques and increased functional

connectivity [33], suggesting that functional hubs are more

vulnerable to AD pathology. A recent simulation study demon-

strated that these areas also show more resting-activity and are

therefore specifically at risk for activity driven degeneration and

that such degeneration rendered topologies more random [80].

The finding that grey matter graphs also become more random

might reflect functional dysconnectivity in AD. Future research is

needed to further investigate this relationship.

Remaining issues and conclusion
A priori differences in network size and/or connectivity density

complicate subsequent graph comparisons, because these proper-

ties influence other network property values [55,56,81–83].

Therefore most studies use anatomical templates to ensure the

same number of nodes and enforce identical connectivity density

to facilitate comparisons. However, cortical structure is highly

variable across individuals and therefore the same region defined

in different people with an anatomical template could consist of

different gyri and sulci patterns [84], or might not even exist due to

atrophy. In addition, results from recent studies suggest that AD is

characterised by a loss of connectivity and is therefore a

dysconnectivity disease [85]. Enforcing a similar connectivity

density between groups will therefore result in the inclusion of

more spurious connections in AD graphs, rendering their topology

more random. For these reasons the graphs in the current study

were analysed in their native space and binarised such as to ensure

a similar chance of including spurious edges. The groups showed

similar distributions of size and connectivity density and similar

interrelationships between the graph properties, supporting that

the present results reflect structural graph disruptions due to

Alzheimer’s disease. In addition, global volume, graph size and

connectivity density were unrelated to disease severity, while

altered graph properties showed strong relationships further

underlining the clinical importance of single-subject graphs.

The single-subject graphs of our previous study [23] had a

higher connectivity density than those presently investigated, using

the same procedure to threshold the graphs. This may have been

caused by differences in scanner strength (1.5T vs 3T) and/or

sample composition (34.80+/28.23 years vs 71.91+/24.32 years).

The comparison of scans acquired at different strengths and/or

scanners is a general difficult issue in neuroimaging research and a

detailed investigation of this issue is outside the scope of the

present study.

We found strong relationships between global cognitive

functioning as measured by the MMSE and altered single-subject

graph properties, that were absent with volumetric measurements.

Table 3. Comparing regression models to explain variance in Mini-Mental State Examination scores within the Alzheimer’s disease
group.

Model description Adj. R2 F p

Model 1 Global GM volume+GM hippocampus 0.09

Model 2 Model 1+l 0.20 5.87 0.02

Model 3 Model 2+path length of left parahippocampal gyrus 0.32 6.59 0.02*

6.72 0.004**

GM is grey matter volume, * is comparison between Model 2 and Model 3, ** is comparison between Model 1 and Model 3.
Ties in rank scores where averaged.
doi:10.1371/journal.pone.0058921.t003
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However, a limitation of the MMSE is that it is mostly a clinical

screening tool and should not be regarded as an elaborate

neuropsychological assessment. Future research is needed to

examine whether altered graph properties are related to dysfunc-

tion in specific cognitive domains. In addition, the diagnostic

potential of these graphs should be further investigated using

sophisticated classification algorithms such as support vector

machines (e.g., [27,86,87]).

The present finding of a decreased average characteristic path

length in AD was unexpected because other structural studies have

associated AD with increased characteristic path lengths [26,28].

To better understand these seemingly discrepant results with

previous group-based studies we constructed group-based graphs

for both AD and control groups as previously described in [28]

and explored how the use of different threshold settings (i.e.,

enforce equal connectivity density or equal probability of spurious

connections) influence group differences (see File S1 and Tables

S2, S3, S4 and S5 therein for a full description of these exploratory

analysis). Our main finding was that path length can be increased

as a consequence of disconnected nodes, while at the same time l
is decreased in AD suggesting a move towards more random

graphs. In addition, we found for all thresholding procedures an

increased clustering coefficient in AD, which was associated with a

decreased c, also indicative of a more random graph topology.

Most importantly, these exploratory results demonstrate that the

traditionally used thresholding-method to enforce equal connec-

tivity density on graphs can introduce differences between the

groups in the number of connected areas, and also in the average

weight of the edges (which indicates that groups differed in the

amount of included spurious connections). Additionally, the

weights in the group-based AD connectivity matrix were on

average higher than those of controls (which is likely to be related

with the higher clustering coefficient value). All single-subject

graphs in the current study were fully connected and did not differ

in the average weight of included edges, suggesting that these

factors cannot explain group differences in other graph properties.

Our results show closer resemblance to those reported by

functional graph studies [29–32]. A recent study that investigated

EEG graph topology during healthy ageing implied a develop-

mental curve that follows an inverted U-shaped trajectory [88]

where graph topologies in young children (,20 years) and elderly

people (.55 years) were more random than those in adulthood. In

addition, more random topologies in elderly subjects were

associated with reductions of grey matter volume. Therefore,

variability in group differences reported across studies might

reflect that graphs were investigated at different points on this

developmental curve. The present results support this hypothesis,

since in AD shorter normalised path lengths were associated with

more cognitive impairment (also found by [32]; although also see:

[89,90]). Furthermore, we found that a shorter characteristic path

length in the precuneus of control subjects was associated with

better cognitive functioning (see File S1), which is in line with the

general assumption that shorter path lengths are associated with

more efficient networks [91–93]. Future research is needed to

further investigate how graph alterations are related to changes of

cognitive functioning during the development of AD.

The current approach could be used to further investigate why

the spatial pattern of plaques in AD does not show a clear

correspondence with tangles and atrophy patterns: Possibly,

coordinated changes in cortical structure in AD are caused by

disrupted functional dynamics due to plaques and tangles. Future

research will further investigate this question by combining

functional and structural graphs within subjects.

Finally, the control group in the present study comprised people

who entered the clinic with memory complaints, but were found to

have no objective cognitive disorder after testing. It cannot be

ruled out that these people might experience a very early stage of

the disease, as they have a higher chance to develop AD [94]. If so,

the present results might be underestimated, but their clinical

relevance is increased, as this group is more representative of

people who visit memory clinics.

In conclusion, this study demonstrated evidence of the clinical

value of single-subject grey matter graphs, which provide a concise

quantitative description of disruptions in coordinated morpholog-

ical patterns of entire brains. The present results contribute to a

better understanding of the relationship between structural

changes and cognitive dysfunction in Alzheimer’s disease.
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