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Abstract

Background: The DevR(DosR) regulon is implicated in hypoxic adaptation and virulence of Mycobacterium tuberculosis. The
present study was designed to decipher the impact of perturbation in DevR-mediated signaling on these properties.

Methodology/Principal Findings: M. tb complemented (Comp) strains expressing different levels of DevR were constructed
in Mut1* background (expressing DevR N-terminal domain in fusion with AphI (DevRN-Kan) and in Mut2DdevR background
(deletion mutant). They were compared for their hypoxia adaptation and virulence properties. Diverse phenotypes were
noted; basal level expression (,5.362.3 mM) when induced to levels equivalent to WT levels (,25.869.3 mM) was
associated with robust DevR regulon induction and hypoxic adaptation (Comp 9* and 10*), whereas low-level expression
(detectable at transcript level) as in Comp 11* and Comp15 was associated with an adaptation defect. Intermediate-level
expression (,3.361.2 mM) partially restored hypoxic adaptation functions in Comp2, but not in Comp1* bacteria that co-
expressed DevRN-Kan. Comp* strains in Mut1* background also exhibited diverse virulence phenotypes; high/very low-level
DevR expression was associated with virulence whereas intermediate-level expression was associated with low virulence.
Transcription profiling and gene expression analysis revealed up-regulation of the phosphate starvation response (PSR) in
Mut1* and Comp11* bacteria, but not in WT/Mut2DdevR/other Comp strains, indicating a plasticity in expression pathways
that is determined by the magnitude of signaling perturbation through DevRN-Kan.

Conclusions/Significance: A minimum DevR concentration of ,3.361.2 mM (as in Comp2 bacteria) is required to support
HspX expression in the standing culture hypoxia model. The relative intracellular concentrations of DevR and DevRN-Kan
appear to be critical for determining dormancy regulon induction, hypoxic adaptation and virulence. Dysregulated DevRN-
Kan-mediated signaling selectively triggers the PSR in bacteria expressing no/very low level of DevR. Our findings illustrate
the important role of appropriate two-component- mediated signaling in pathogen physiology and the resilience of
bacteria when such signaling is perturbed.
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Introduction

Mycobacterium tuberculosis (M. tb) remains a major human

pathogen causing widespread disease and mortality. It is estimated

that an infected individual has a 5–10% risk of developing TB over

his/her lifetime [1], although this scenario shows regional

variation that is influenced to a significant extent by HIV infection

[2]. The synergistic effect of the two diseases and outbreaks of

drug-resistant TB (MDR-TB, XDR-TB) are significant hindrances

in the treatment of this killer disease. Another major challenge in

controlling tuberculosis is the lack of suitable anti-tubercular

therapy against non-replicating persistent bacteria [3]. Conse-

quently, there has been considerable effort in understanding

mycobacterial persistence and dormancy in the recent years, in

order to devise strategies targeted towards their control and

elimination [4,5].

The interaction of M. tb with the host is dynamic and complex

during the multiple phases of its intracellular adaptation and

involves the participation of numerous regulatory networks [6].

Two-component systems play a central role in bacterial adaptation

by regulating a spectrum of physiological processes ranging from

nutrient uptake to virulence. DevR-DevS (also called as DosR-

DosS) is the best characterized two-component system of M. tb.

DevR is implicated in the adaptation of M. tb to potential host-

derived signals such as hypoxia, nitric oxide, carbon monoxide or

ascorbic acid [7–10] and also in M. tb virulence [11–15]. DevR is
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positively auto regulated under activating conditions [16] and it

induces the expression of ,47 genes that collectively constitute the

DevR regulon [7,17].

DevR is a typical response regulator belonging to the NarL

subfamily and it contains a N-terminal phosphorylation domain

and a C-terminal DNA binding domain [18]. The requirement of

phosphorylation to induce DevR regulon gene expression is well

established [16,19,20]. Numerous studies have demonstrated the

important role of DevR during the physiological adaptation of M.

tb to hypoxia [7,15,21–25]. We recently showed that co-expression

of DevR and DevRN-Aph fusion protein (DevRN-Kan) in M. tb

Comp1* bacteria led to defective hypoxic adaptation and

attenuation of virulence [15]. DevRN-Kan protein functions as

an inhibitor of DevR signalling and we suggested that the level of

activated DevR may be a critical determinant of DevR function.

In the present study, we tested this hypothesis by analyzing M. tb

complemented (Comp) strains engineered to express DevR at

either high, intermediate or low levels through the use of

promoters of different strengths. Comp* strains that expressed

DevR at high levels (,3366 mM) were restored in both DevR

regulon induction and hypoxia survival functions. However,

Comp* strains that expressed DevR at low levels failed in both

responses. In Comp* strains with intermediate DevR levels such as

Comp1*, DevRN-Kan competed effectively for the activating

phosphosignal resulting in a partial defect in hypoxic adaptation.

Intriguingly, strains expressing either a high or a low level of

DevR/no DevR, were virulent in the guinea pig model of infection

while intermediate-level expression was associated with attenua-

tion. The possible underlying mechanism and scope for plasticity

in DevR-mediated phosphosignalling are discussed.

Results

Inhibitory action of DevRN-Kan is modulated by the level
of DevR under hypoxia

Various M. tb Comp strains that were constructed as described

(Tables 1 and 2) were monitored for HspX expression as a

measure of DevR regulon induction in response to hypoxia. As

expected, DevR and HspX protein expression was induced (,4-

fold and ,7-fold, respectively) in hypoxia-adapted WT cultures

(Figure 1, lanes 1–2). Among Comp* strains (in Mut1* background

that co-express DevR and DevRN-Kan proteins), the induction

response is comparable to that of WT where DevR is expressed

from the inducible promoter (Figure 1, lanes 3–4 and 5–6, in

Comp9* and Comp10*, respectively), whereas only a modest

induction of HspX was observable in Comp1* which expresses

DevR from a low copy number plasmid under its basal promoter

(Figure 1, lanes 11–12). However, HspX expression was below the

limit of detection by western blotting in Comp11* and Comp15

(Figure 1, lanes 7–8 and 17–18) but detectable by RNA

measurements (see below). The low-level expression of DevR in

Comp11* and Comp15 strains is attributed to DevR being

expressed from a single chromosomally integrated copy of the

gene under its basal promoter.

The precise role of promoter strength in DevR regulon gene

expression was assessed in Comp strains generated in Mut2DdevR

background (without interference from DevRN-Kan). The HspX

induction response in these Comp strains was similar to those in

Mut1* background only when DevR was expressed from the

inducible promoter (Figure 1, lanes 14 and 16). Notably, inducible

HspX expression was partially restored in Comp2 and Comp16

strains (Figure 1, lanes 22 and 20), but not in Comp1* and

Comp12* bacteria (equivalent strains in Mut1* background).

Consistent with our previous observations [15], DevR was not

upregulated in Comp1* and Comp2 strains under hypoxia; rather

its level declined over time (Figure 1 lanes 11–12, 21–22).

However, truncated DevRN-Kan was induced over the 5 day

period of hypoxic incubation in Comp1* bacteria (Figure 1, lanes

11–12). These results suggest that expression level of DevR is

dependent on the strength of the promoter which in turn

modulates the inhibitory action of DevRN-Kan.

At the transcriptional level also, as expected, regulon genes

transcription was induced in WT cultures under hypoxia (Figure 2).

Among the Comp* strains that co-express DevRN-Kan and DevR,

induction of the regulon was restored to nearly WT levels only in

Comp9* and Comp10* strains which support inducible DevR

expression (Figure 2). A modest induction of select regulon

transcripts was noted in Comp11* bacteria expressing DevR from

the basal promoter (Figure S1), whereas an intermediate level of

induction was observed in Comp1* and Comp12* bacteria that

express DevR from the basal/constitutive amidase promoter

(Figure 2). For example, hspX RNA expression was powerfully

induced by ,120-fold in hypoxic cultures of WT, Comp9* and

Comp10* bacteria vs. a relatively modest induction of 10- to 14-

fold in Comp1* and Comp12* and ,2-fold induction in Comp11*

bacteria.

Regulon gene expression in Comp strains expressing only intact

DevR (no DevRN-Kan) in Mut2DdevR background was assessed

simultaneously to decipher the role of promoter strength. The

induction response was equivalent in Comp strains constructed in

both Mut1* and Mut2DdevR backgrounds only when DevR is

expressed from the inducible or basal promoter (Figure 2). In

contrast, Comp16 strain (expressing DevR from the amidase

promoter) exhibited a fairly robust induction response for hspX,

fdxA and Rv1738 (84-, 3- and 3- fold respectively) compared to

markedly lower induction response (10-, 1-, 1.5- fold respectively)

in Comp12* bacteria (Mut1* background). DevRN-Kan mediated

inhibition was also evident in Comp11* vs. Comp15 bacteria

(Figure S1). These findings collectively indicate that both the

extent of hypoxic gene induction and the degree of inhibition by

DevRN-Kan are modulated by the level of DevR.

Quantification of the intracellular concentration of DevR
The intracellular concentration of DevR was estimated in select

M. tb strains by quantitative immunoblotting as described [26] to

determine the critical concentration required for the regulon

induction response. Purified His6-DevR protein was used as a

standard in the Western blot assays (Figure 3A). The intracellular

concentration of DevR was estimated as ,5.362.3 mM under

aerobic (basal) conditions and it rose ,5-fold to ,25.869 mM

under hypoxia in WT cultures (Figure 3B). In contrast, the

concentration of DevR was lower (,3.3 mM) in Comp2 and not

detectable in Comp15 bacteria. The hspX promoter is the earliest

promoter to be induced under hypoxia in a DevR-dependent

manner and it is induced even prior to the operon promoter [17]

and therefore its expression was monitored in select Comp strains

to determine the minimum DevR concentration that is sufficient to

support its induction. From quantitative immunoblot analysis, it is

estimated that a minimum DevR concentration of ,3.361.2 mM

(as in Comp2 bacteria) is required to support HspX expression in

the standing culture hypoxia model. Importantly, HspX induction

occurs on activation of existing DevR molecules (,3.3 mM

concentration in Comp2) and not in aerobic WT bacteria which

actually express DevR at slightly higher concentrations

(,5.3 mM). This clearly establishes that phosphorylation is

essential for generating ‘active’ DevR protein. This study also

demonstrates that an increase in devR transcripts due to

DevR Signaling in Mycobacterium Tuberculosis
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autoregulation is associated with ,5-fold increase in intracellular

DevR protein concentration under hypoxia.

Because the inhibitory action of DevRN-Kan appears to be

modulated by the intracellular concentration of DevR protein, the

intracellular concentration of DevRN-Kan in select M. tb Comp*

strains was also estimated (Figure 4A, B). A DevRN-Kan:DevR

ratio of $5.8 as in Comp1* bacteria interfered with robust HspX

induction in this strain whereas a lower concentration of DevR in

Comp2 bacteria (3.361.2 uM) supported HspX induction in the

absence of DevRN-Kan inhibitor (Figure 4B). These findings

suggest that both DevRN-Kan:DevR ratio as well as DevR

concentration play an important role in regulating DevR regulon

gene expression in M. tb strains that express this inhibitor.

DevR expression level is critical for hypoxic viability of M.
tb

The various M. tb strains were analyzed for their comparative

survival fitness properties under hypoxia (Figure 5). WT bacteria

sustained well and the initial load remained viable on day 50.

However, Mut1* and Mut2DdevR strains were defective in hypoxic

adaptation; their viability decreased from day 5 onwards (the

earliest time point when bacteria were sampled) and only ,2% of

Mut1* and ,3% of Mut2DdevR bacteria were viable on day 50

(Figure 5). Those Comp strains that express a high level of DevR

(from the inducible/constitutive promoter) adapted well under

hypoxia; on day 50 their viability ranged between 132 to 80%

relative to initial CFU observed on day 0. However, under hypoxic

conditions, Comp1* and Comp2 grew more rapidly than WT

bacteria but only during the first 10 days and thereafter the viability

decreased and on day 50, ,5% of Comp1* and ,48% of Comp2

bacteria were viable relative to maximum CFU observed on day

10. Interestingly, Comp11* and Comp15 bacteria, that express a

very low level of DevR (undetectable by western blotting),

exhibited a less severe hypoxic survival defect as compared to

the parental Mut strains; ,33% and ,24% viability of Comp11*

and Comp15 bacteria in comparison to only 3% and 5% viability,

respectively of Mut1* and Mut2DdevR bacteria on day 50 with

respect to the initial bacterial load. These observations, on one

Table 1. Plasmids used in this study.

Plasmids Description Reference

pFPV27 E. coli-Mycobacterium shuttle plasmid with promoterless gfp, kmr [52]

pDSDevR devR coding sequence and 327 bp upstream region cloned in pFPV27 (low copy number plasmid), hygr [12]

pOperon Rv3134c-devRS operon promoter (2608 to +998) cloned in pFPV27, hygr [16]

p3134c-1 Rv3134c promoter (2608 to +90) cloned in pFPV27, hygr [16]

pJFR19 3-kb amidase promoter cloned in mycobacterial integrative vector pMV306H, hygr [53]

pMG85 devR coding region cloned downstream of amidase promoter in integrative vector pJFR19, hygr [54]

pSM POperon devR Rv3134c-devRS operon promoter (2608 to +998) replaces amidase promoter in pMG85, hygr This study

pSM PRv3134c devR Rv3134c promoter (2608 to +90) replaces amidase promoter in pMG85, hygr This study

pSM PdevR devR devR promoter (2327 to 21) replaces amidase promoter in pMG85, hygr This study

pKKNKan pET-28a- based plasmid for overexpression of DevRN-Kan fusion protein, Kanr [15]

pAVDevR pET-28a- based plasmid for overexpression of intact DevR protein, Kanr [15]

doi:10.1371/journal.pone.0035847.t001

Table 2. Mycobacterium tuberculosis strains used in this study.

M. tb strain Description Expression Reference

DevR DevRN-Kan

WT H37Rv + 2 [12]

Mut1* (devR disruption) devR disruption mutant expressing DevN-Kan 2 + [12]

Mut2 DdevR devR deletion mutant 2 2 [11]

Comp1* P basal devR Mut1* complemented with plasmid pDSDevR + + [12]

Comp9* POperon devR Mut1* complemented with integrated pSM POperon devR + + This study

Comp10* PRv3134c devR Mut1* complemented with integrated pSM PRv3134c devR + + This study

Comp11* P basal devR Mut1* complemented with integrated pSM PdevR devR + + This study

Comp12* Pamid devR Mut1*complemented with integrated pMG85 + + This study

Comp2 P basal devR Mut2 DdevR complemented with pDSDevR + 2 [15]

Comp13 POperon devR Mut2 DdevR complemented with integrated pSM POperon devR + 2 This study

Comp14 PRv3134c devR Mut2 DdevR complemented with integrated pSM PRv3134c devR + 2 This study

Comp15 P basal devR Mut2 DdevR complemented with integrated pSM PdevR devR + 2 This study

Comp16 Pamid devR Mut2 DdevR complemented with integrated pMG85 + 2 This study

doi:10.1371/journal.pone.0035847.t002
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hand provide functional evidence for DevR expression in these

Comp strains and on the other hand, confirm the inhibitory

activity of DevRN-Kan. All the strains showed a similar survival

profile over a time period of 50 days under aerobic conditions.

These findings establish that not only DevR is essential but its level

is critical for the hypoxic adaptation and survival of M. tuberculosis.

The level of DevR expression modulates virulence of M.
tb in guinea pig

The virulence properties of various passaged M. tb strains

including H37Rv (WT), devR mutant (Mut1*) and various DevRN-

Kan inhibitor-expressing Comp* strains were compared in the

guinea pig model of virulence as described [15]. In this

subcutaneous infection model, bacterial implantation in the lung

and other organs by dissemination requires time. At 6 weeks, the

earliest time point studied, nearly similar numbers of lesions were

visually scored for the WT, Mut1* and Comp9* -Comp11*

strains. The visual score of the Comp12* group was higher

whereas fewer lesions were scored in the Comp1* group (P,0.05

in comparison to WT, Table S1). Splenic enlargement was noted

in all infected animals with the exception of Comp1*-infected

guinea pigs (Table S1, Figure 6). At 13 weeks the weight of the

animals infected with the Comp1* strain was comparatively higher

(statistically significant, P,0.05) than that of the animals infected

with WT or Mut1* or other Comp* strains (Figure S2). The

bacterial loads in lung and spleen were also lower in the Comp1*

group (P,0.05 in comparison to WT, Figure 7).

For the evaluation of disease progression, later time points in

infection were assessed. An almost identical trend of visual scores,

though of a higher magnitude, correlating with disease progres-

sion, was observed at 10 weeks and 13 weeks post-infection for all

the groups except Comp1* (P,0.05). It is also noteworthy that the

visible tubercles in lungs of Mut1*- and Comp11*-infected animals

were comparable or even slightly more in comparison to WT-

infected animals. The spleens and lungs were significantly

inflamed in animals infected with all M. tb strains with the

exception of Comp1*. Bacterial multiplication continued between

6 and 13 weeks post-infection in both spleen and lung organs

(Figure 7). Interestingly, the Comp1* strain was significantly

attenuated at all the time points. Based on the comparative

assessment of various Comp* strains in the guinea pig model, it is

evident that the level of DevR expression profoundly influences

the virulence properties of these strains. Thus, while a high level of

DevR expression (as in Comp9*, Comp10*, Comp12*) is

associated with virulence, a moderate level of DevR expression

(Comp1*) leads to a low virulence phenotype and a very low level

of DevR expression (as in Comp11*) restores the virulence

phenotype. The difference in the infecting dose as the reason for

the low virulence phenotype of Comp1* is ruled out as an equal

number of viable bacteria were injected. The growth defect of

Figure 1. Immunoblot analysis. Lysates of M. tb strains were electrophoresed and subjected to SDS-PAGE and immunoblot analysis using
polyclonal antibodies against (A) DevR, (B) HspX and (C) SigA. In all panels: lanes 1–2, WT; lanes 3–4, Comp9*; lanes 5–6, Comp10*; lanes 7–8,
Comp11*; lanes 9–10, Comp12*; lanes 11–12, Comp1*; lanes 13–14, Comp13; lanes 15–16, Comp14; lanes 17–18, Comp15; lanes19–20, Comp16 and
lanes 21–22, Comp2. Lanes 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21 represent aerobic cultures; lanes 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22 represent 5
days standing hypoxic cultures. Representative blots from 2 to 4 independent experiments are shown.
doi:10.1371/journal.pone.0035847.g001
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Comp1* in guinea pig is likely due to the decreased infectivity of

Comp1* and its gradual clearing during the course of infection as

described earlier [15].

Mut1* bacteria exhibit a constitutive phosphate
starvation response

The virulent phenotype of the Mut1* strain in the guinea pig

model suggests that either DevR is not essential for M. tb virulence

or that virulence may be mediated through an alternative pathway

in Mut1* bacteria. With a view to obtain insights into the possible

molecular mechanisms underlying the virulence of Mut1* strain,

genome-wide transcriptome analysis of Mut1*, Comp1* and WT

strains was performed.

Hypoxia led to an induction of 270, 297 and 389 genes in the

WT, Mut1* and Comp1* strains, respectively. Forty genes of the

DevR/DosR regulon were amongst the genes that were induced in

the WT strain. Of the remaining genes induced under hypoxia in

the WT strain, 66 genes belonged to the Enduring Hypoxic

Response (EHR) category as described [13]. Thirty nine genes of

the EHR category were up-regulated in all three strains indicating

their induction in a DevR independent manner as reported [13]. A

total of 435 and 449 genes were downregulated in Mut1* and

Comp1* as compared to 118 genes in WT bacteria under hypoxia

(Figure 8). The nuoABEFIJKLMN genes that encode subunits of

NADH dehydrogenase, the ubiquinol–cytochrome C complex

(qcrABC), and ATP synthase (atpABDEFGH) that are involved in

normal aerobic growth were either repressed or not induced under

hypoxia in all the 3 strains. Their repression likely reflects reduced

aerobic respiration during bacteriostasis under hypoxic conditions.

Genes belonging to the intermediary metabolism and respiration

category were downregulated to a greater extent in Mut1* and

Comp1* bacteria under hypoxia as compared to the WT bacteria

(100 and 100 genes vs. 27 genes, respectively). In Mut1* and

Comp1* bacteria more genes for amino acid biosynthesis (12 and

7 genes vs. 7 in WT), nucleotide metabolism (5 and 1 genes vs. 1 in

WT), lipid biosynthesis (19 and 16 genes, respectively vs. 11 genes

in WT), were repressed. Likewise, in the Mut1* and Comp1*

bacteria, more genes (110 and 117 genes, respectively vs. 28 genes

in WT) belonging to the cell wall and cell processes category

(including cellular transport genes) were downregulated. Twenty

three of the ribosomal protein coding genes in Mut1* were

repressed compared to 9 and 16 genes, respectively, in the WT

and Comp1* strains. Overall, the repression of genes belonging to

intermediary metabolism, lipid metabolism, information path-

ways, cell wall and cell processes functional categories in the

Mut1* and Comp1* bacteria may be the reason for their defective

hypoxic adaptability. An overall comparison of our data to the

previously published microarray-generated gene lists shows partial

overlaps (Table S2). However, the differences in the number of

genes up/downregulated in various publications are possibly due

to the different models used for developing hypoxia.

Figure 2. Expression analysis of selected DevR regulon transcripts. Various M. tb Comp strains were grown to an A595 of 0.2–0.3 under
aerobic conditions and kept standing for 5 days (hypoxic cultures). Gene expression was assessed in Comp strains generated in Mut1* and
Mut2DdevR backgrounds by qRT Reverse transcriptase-PCR analysis. Fold change in target gene expression in hypoxic vs. aerobic cultures was
calculated from normalized transcript levels with respect to 16S rRNA. Mean fold change 6 SD determined from three independent cultures is shown.
doi:10.1371/journal.pone.0035847.g002
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Intriguingly, several genes were selectively upregulated under

both aerobic and hypoxic conditions in Mut1* bacilli in

comparison to WT and Comp1* strains. These included those

genes encoding the two-component system senX3-regX3, phosphate

transport operon pstS3-pstC2- pstA1, whiB3, pimB, udgA, PPE 25,

PE18, PPE51 etc., Table 3, Figure S3). The differential expression

of these genes in Mut1* bacilli was confirmed by qRT reverse

transcriptase-PCR analysis (Figure 9). Interestingly, all these genes

were also reported to be upregulated in response to phosphate

starvation in M. tb and to constitute the phosphate starvation

response [27]. Our results suggested a possible role for DevRN-

Kan inhibitor in eliciting the phosphate starvation response (PSR)

in Mut1* bacteria. Therefore, additional M. tb strains, namely,

Mut2DdevR, Comp9* and Comp11* were analysed to obtain

further insight. Interestingly, the PSR genes were found to be up-

regulated in Comp11* bacteria (Figure 9), which like Mut1*

bacteria express a high level of DevRN-Kan protein. The pivotal

role of DevRN-Kan in eliciting a PSR is supported by the absence

of this response in Mut2DdevR bacteria which does not express

DevRN-Kan protein or in Comp9* bacteria or Comp1* bacteria

where DevRN-Kan-mediated phosphosignaling appears to be

neutralized by co-expression of DevR. We conclude that the PSR

genes were up-regulated in strains that express a high level of

DevRN-Kan protein and a very low level of DevR (Comp11*) or

no DevR at all (Mut1*). Note that upregulation of PSR genes

occurs in spite of growth in phosphate-sufficient medium. The

combined results of the guinea pig model and expression analysis

implicate the PSR genes in an alternative pathway for virulence in

Mut1* and Comp11* strains. Further studies are required to

elucidate the precise determinants governing plasticity of the PSR

response in the presence of DevRN-Kan inhibitor.

Figure 3. Estimation of intracellular concentration of DevR. (A) A standard curve for DevR protein was generated using purified DevR protein
and quantitative Western blotting. (B) M. tb lysates (15 mg protein) were electrophoresed and subjected to immunoblot analysis in parallel with
purified DevR protein using polyclonal antibodies to DevR, SigA (not shown) or HspX (lower panel). ‘2’ and ‘+’ indicate absence and presence of HspX
expression. In all panels, lanes 1, 3, 5 and 7 represent aerobic cultures and lanes 2, 4, 6 and 8 represent hypoxic cultures. The immunostained blots
were scanned and analyzed with software Quantity One. The data are the averages of two independent determinations. ND, not detected.
doi:10.1371/journal.pone.0035847.g003
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Discussion

In the present study, ten complemented M. tb strains that varied

in DevR expression level were constructed in two devR mutant

backgrounds and they were assessed for their hypoxic induction

response, hypoxic survival and virulence properties. The DevRN-

Kan inhibitor was observed to modulate the hypoxic response in a

DevR concentration-dependent manner. For the first time, the

intracellular level of DevR protein in WT bacteria was determined

and estimated to be ,5 mM (average ,36103 molecules/cell)

under basal (aerobic) conditions. Its expression was induced ,5-

fold under hypoxia to attain an intracellular concentration of

,26 mM (average ,26104 molecules/cell). The increase in

intracellular protein concentration of DevR is consistent with the

previously reported autoregulation of the Rv3134c-devRS operon at

the transcriptional level [16]. The elevated concentration of DevR

under hypoxia is comparable with that of CtrA transcriptional

regulator in Caulobacter crescentus which ranges between 10–30 mM

[28] and that of PhoP response regulator in Salmonella enterica which

increases from a basal concentration of ,2.7 mM to ,11 mM

Figure 4. Estimation of intracellular DevRN-Kan and DevR concentration in M. tb under hypoxia. (A) A standard curve was generated for
DevRN-Kan protein as for DevR protein. (B) M.tb lysates prepared from hypoxic cultures (15 mg) were electrophoresed and analyzed by
immunoblotting as described in the legend to Figure 3. ‘2’ and ‘+’ indicate absence and presence of HspX expression. Inset, Ratio of normalized
DevRN-Kan and DevR proteins in various Comp strains. The values shown are the averages of two independent determinations.
doi:10.1371/journal.pone.0035847.g004
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under conditions of Mg2+ limitation [29].We recently established

the presence of at least 47 sites at 19 chromosomal locations that

bind to DevR to induce hypoxic expression of DevR/DosR

regulon genes [17]. The accumulation of DevR under hypoxia

observed in the present study is consistent with an increased

requirement of this regulator for interaction at these binding sites.

The combined results of expression analysis and viability

measurements of various M. tb strains indicate that the

intracellular concentration of DevR is crucial for bacterial

adaptaion under hypoxia. Strains expressing DevR at equivalent

levels as the WT strain supported both a robust induction response

and viability under prolonged hypoxia. However, strains express-

ing a very low level of DevR were defective in both functions.

These findings underscore the importance of DevR-mediated

adaptive responses and are consistent with previous reports that

DevR is essential for bacterial survival under hypoxia [15,21,30].

Our study also establishes that DevR concentration is not limiting

in WT bacteria to induce the DevR regulon under aerobic

Figure 5. Survival of H37Rv (WT), mutant (Mut1* and Mut2DdevR) and various complemented M. tb strains. The survival of various M. tb
strains was assessed under aerobic and hypoxic conditions over a period of 50 days. The mean CFU 6 SD determined from three independent
cultures is shown as % survival with respect to CFU on day zero.
doi:10.1371/journal.pone.0035847.g005
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conditions. Rather, the observed HspX induction in Comp2

bacteria implies that a lower intracellular DevR concentration

(,3.3 mM) can trigger induction under hypoxia and establishes the

essentiality of phosphorylation for generating ‘active’ DevR

protein.

Quantitative western blotting analysis also indicated that a

DevRN-Kan/DevR ratio of $,5.75 leads to an abrogation of

Figure 6. Pictorial representation of spleen and lungs. The figure depicts representative photographs of lungs and spleen of animals infected
with different M. tb strains euthanized at 6, 10 and 13 weeks post-infection.
doi:10.1371/journal.pone.0035847.g006

Figure 7. Bacterial load in spleens and lungs of M. tb-infected guinea pigs. CFU are expressed as Mean 6 SD. [*, (P,0.05) in comparison to
WT]. CFU of lung is that of the right lower lobe.
doi:10.1371/journal.pone.0035847.g007
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regulon expression (as in Comp1* and Comp11*). A possible

explanation is that DevRN-Kan may compete with DevR for the

activating phosphosignal as occurs in vitro [15]. The structure

adopted by DevRN-Kan may support its phosphorylation in

aerobic cultures unlike DevR whose closed structure was

postulated to undergo helical rearrangements upon phosphoryla-

tion in order to generate the active DNA binding species [31].

Moreover, phosphorylation of isolated N-terminal domains of

response regulators DrrB, DrrD and MtrA (of OmpR/PhoB

family) is enhanced compared to that of the corresponding full-

length proteins [32]. Thus the basis of the expression defect in

Comp1* bacteria is likely to be DevRN-Kan-mediated disregula-

tion of phosphosignaling. The analysis of complemented strains in

a complete devR deletion background (Mut2DdevR) lends credence

to this hypothesis. For instance, the partial restoration of the

induction response and viability under hypoxia was noted in

Comp2, but not in Comp1* bacteria. Likewise, a comparison of

the strains expressing DevR from a constitutive promoter

(Comp12* and Comp16 bacteria) revealed that Comp12 (in

Mut1* background) but not Comp16 bacteria (in Mut2DdevR

background) was defective in the hypoxia induction response. A

similar observation has been made in B. subtilis where the N-

terminal domain of Spo0A response regulator acts as a competitor

of Spo0A function [33].

Some noteworthy phenotypes were observed in the guinea pig

virulence model in the present study; intermediate-level expression

of DevR in Comp1* bacteria was associated with low virulence

whereas very low-level expression as in Comp11 *or high- level

expression in Comp9*, Comp10*, Comp12* bacteria were

associated with bacterial virulence. Thus the expression level of

DevR appears to be critical for determining virulence and is

supported by published reports which suggest that M. tb strains

that express DevR at different levels do exhibit varying degrees of

virulence. Clinical isolates belonging to the sub lineages of the W/

Beijing family were found to constitutively overexpress many

DevR regulon genes suggesting a role for elevated expression on

intracellular adaptation [34]. The significantly increased virulence

of Comp12* strain compared to WT bacteria at 6 weeks post-

infection may be attributed to the constitutive expression of DevR

in this strain and associated pre-adaptation of Comp12* bacteria

within the host. Although several studies have highlighted the role

Figure 8. Genes significantly upregulated or downregulated during hypoxia in WT, Mut1* and Comp1* strains. Fold change 5 day/0
day (Hypoxia/Aerobic) was calculated. Significant differential regulation: $1.5-fold induction, #0.66-fold repression (P#0.05).
doi:10.1371/journal.pone.0035847.g008

Table 3. Genes upregulated in Mut1* under aerobic and
hypoxic conditions.

Rv #
Gene
Name Mut1* Aer Comp1* Aer Mut1* Hyp

Comp1*
Hyp

Rv0322 udgA 6.76 1.03 1.89 0.66

Rv0490 senX3 3.21 1.01 1.68 1.09

Rv0491 regX3 3.31 1.19 2.47 1.58

Rv0557 pimB 4.75 0.83 2.80 0.78

Rv0784 Rv0784 31.09 1.38 5.92 0.75

Rv0785 Rv0785 3.98 1.11 3.45 0.80

Rv0928 pstS3 7.13 0.96 3.13 0.68

Rv0929 pstC2 7.18 1.36 3.69 1.03

Rv0930 pstA1 4.64 1.14 2.69 1.01

Rv1419 Rv1419 1.85 0.88 1.91 1.36

Rv1787 PPE25 8.46 0.80 4.51 1.05

Rv1788 PE18 7.84 0.96 3.74 0.67

Rv3027c Rv3027c 3.17 1.01 2.33 1.30

Rv3046c Rv3046c 2.26 1.21 1.65 1.34

Rv3416 whiB3 7.14 0.64 3.52 1.15

Geometric mean of normalized signal intensities in Mut1* and Comp1* bacteria
expressed in aerobic and hypoxic cultures with respect to that in aerobic and
hypoxic WT cultures, respectively. Genes upregulated in Mut1* are listed
(Geometric mean of normalized signal intensity $1.8). ‘Aer’ and ‘Hyp’ refer to
aerobic (0 day) and hypoxic (5 day) conditions.
doi:10.1371/journal.pone.0035847.t003
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of DevR in bacterial adaptation and virulence [7,11–15,35–40], it

is intriguing that either expression of DevRN-Kan alone (as in

Mut1*) or its co-expression with low level of DevR (as in Comp11*

bacteria) was associated with the virulence phenotype. These

results highlight the plasticity of signaling in M. tb and underscore

the importance of appropriate DevR-mediated signaling in

determining virulence outcomes of M. tb.

An interesting finding of transcriptome analysis was the

upregulation of regX3-senX3 two-component system and PSR

genes in Mut1* bacteria. Notably, these genes were also

upregulated in Comp11* bacteria but not in Mut2DdevR strain.

For the reason that it lacks the DNA binding domain, we do not

believe that DevRN-Kan can ‘cross-activate’ a different TCS

regulon in the conventional way. However, the DevRN-Kan

module appears to be involved in the ‘activation’ of regX3-senX3 in

some other way. Since (a) DevRN-Kan is efficiently phosphory-

lated in vitro and competes with DevR for the phosphosignal [15]

and (b) DevRN-Kan is well expressed within bacteria, a possible

mechanism is that phosphorylation of DevRN-Kan through low

molecular weight phosphor donors such as acetyl phosphate or by

non-cognate sensor kinases may deplete intracellular phosphate

stores resulting in phosphate starvation conditions. Further

investigation is required to understand the role of DevRN-Kan

in generating phosphate starved conditions. Phosphate limitation

is the signal for activation of SenX3-RegX3 in M. smegmatis [41].

Therefore it is possible that DevRN-Kan functions as a phosphate

sink and leads to ‘phosphate starvation’ conditions to activate

SenX3-RegX3 in M. tb as well. Taking together these findings, the

mechanism of SenX3-RegX3 regulon induction in only some

strains may relate to the relative concentration of DevRN-Kan and

DevR proteins. Mut1* expresses only DevRN-Kan protein while

Comp11* has a high ratio of DevRN-Kan/DevR. Since the PSR

genes are induced only in these two strains, it is likely that an

‘adequate’ ratio is relevant. On the other hand, other Comp

strains (Comp9*, 10*) express DevR at higher levels Therefore the

DevRN-Kan/DevR ratios are lower and an adequate concentra-

tion of DevR would support DevR regulon induction in these

strains and preclude DevRN-Kan function as a phosphate sink.

The phosphate starvation response was recently characterized

in M. tb and includes senX3-regX3, phosphate transport operon

pstS3-C2-A1, whiB3, ppk1 genes etc. [27]. The upregulation of the

pstS3-pstC2-pstA1 operon and not of the 2 other putative Pst

operons (pknD-pstS2 and pstB-pstS1-pstC1-pstA2) in the present

study is suggestive of ‘phosphate limiting’ conditions within Mut1*

and Comp11* bacteria. This is consistent with the occurrence of

phosphate limiting conditions and the requirement for pstS3-pstC2-

pstA1 genes during M. tb growth in vivo [42]. RegX3 has been

previously reported to regulate ppk1 expression, which is known to

regulate (p)ppGpp synthesis through mprA-sigE-relA pathway [43].

Upregulation of the ppk1, sigE and relA genes but not of mprA in

Mut1* bacilli suggest that this may lead to induction of the

stringent response in this strain through a MprA-independent

pathway. Several genes belonging to the PE and PPE family such

as those encoding PPE 25, PE 18 and PPE 51 were also

upregulated in Mut1* and Comp11* bacteria. Members of this

family have been shown to have antigenic potential [44,45].

Therefore, the upregulation of PE/PPE genes may play a role in

the enhanced intracellular survival of these strains. In vivo and ex-

vivo studies of senX3 and regX3 mutant strains has highlighted the

role of RegX3 in survival and persistence of M. tb and have

suggested that M. tb is exposed to a Pi-limited environment in

mammalian lungs and that SenX3-RegX3 may play an important

role in M. tb virulence [11,27,46]. The observed upregulation of

this two-component system in Mut1* and Comp11* bacteria may

facilitate their preferential multiplication in guinea pig lungs

compared to the WT strain. WhiB3, whose transcripts were also

up-regulated, is a transcription factor that is essential for survival

Figure 9. Differentially expressed genes in Mut1* bacteria. Relative aerobic transcript levels (Mean 6 SD) of PSR genes in Mut1* and Comp1*
strains with respect to that in WT bacteria were calculated from Ct values determined by RT reverse transcriptase-PCR analysis. Data from three
independent cultures is shown.
doi:10.1371/journal.pone.0035847.g009

DevR Signaling in Mycobacterium Tuberculosis

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e35847



and persistence of M. tb [47,48]. Therefore, WhiB3 may also

confer a survival advantage to Mut1* and Comp11* bacilli.

In summary, the upregulation of the PSR genes may help

Mut1* and Comp11* bacteria to adapt better to stress within the

host and thereby contribute to their virulence in guinea pigs.

While the level of DevR appears to be critical for hypoxic survival,

regulon induction and virulence, our findings also point towards

the crucial role of appropriate DevR signaling in determining the

outcome of the bacterial adaptation response. This study reveals

hitherto to unknown plasticity in DevR-mediated phosphosignal-

ling. It has implications in understanding the consequences of

perturbing sigalling pathways in M. tb and may provide novel

strategies for intervention of Mycobacterium tuberculosis adaptation in

vivo.

Materials and Methods

Ethics statement
Due approval was accorded by the Institutional Animal Ethics

Committee, NTI, Bangalore prior to the animal experiments.

Construction of plasmids
The plasmids and strains used in this study are described in

Tables 1 and 2, respectively. DNA fragments carrying different M.

tb promoters were excised out of plasmids pOperon, p3134c-1 and

pDSdevR using appropriate restriction enzymes. The Operon

promoter and the Rv3134c promoter were then cloned in the

integrative plasmid vector pMG85 by replacing the amidase

promoter to generate pSM Poperon devR and pSM PRv3134c devR.

The devR coding sequences along with its own upstream promoter

were cloned into the pJFR19 integrative vector by replacement of

the amidase promoter to generate pSM PdevR devR (Table 1). All

the plasmids were verified by DNA sequencing.

Construction of M. tb strains
The constructed plasmids (Table 1) were electroporated into M.

tb Mut1* and Mut2DdevR strains to generate various complement-

ed strains (Comp series) that are described in Table 2. The identity

of the strains was confirmed by PCR analysis. ‘*’ is added to all

strains that express DevRN-Kan protein (Mut1*, Comp1* etc.).

Preparation of passaged bacilli
All experiments were performed with guinea pig-passaged M. tb

WT, Mut1* and Comp* strains unless mentioned otherwise. For

passaging, frozen stocks of laboratory cultured bacilli (at 280uC)

were thawed, resuspended in PBS and ,56106 CFU were

injected subcutaneously into guinea pigs. Passaged bacteria were

recovered from guinea pigs at 6 weeks post infection by plating

spleen homogenates on Middlebrook (MB) 7H11 agar with

OADC. Bacterial scrapings were cultured once in MB 7H9

medium containing Albumin Dextrose Complex (ADC) and stored

at 280uC for further use. The passaged strains were verified by

PCR analysis.

Assessment of viability of M. tb strains in vitro
Frozen passaged M. tb stocks were sub cultured twice or thrice

in Dubos medium containing ADC and 0.1% Tween 80 to

logarithmic phase (A595 ,0.4). The cultures were diluted to A595

of 0.005 and 10 ml aliquots were dispensed in 50 ml tubes and

grown either with shaking at 220 rpm (aerobic setup) or kept

standing in 15 ml tubes (hypoxic setup). Cultures were sampled

once only from separate tubes dedicated for each time point of the

hypoxia set up. Bacterial CFU at defined time points was

estimated by plating serial dilutions in duplicate on MB 7H11

agar containing ADC and incubating the plates at 37uC for 6

weeks.

Quantitation of bacterial gene expression
Various M. tb strains were cultured as described above with

shaking at 220 rpm from an initial A595 of 0/025(100 ml culture in

a 500 ml flask). At A595 ,0.2–0.3, a 50 ml aliquot was centrifuged

immediately (aerobic culture) and the remaining culture aliquot

was kept standing (10 ml in 50 ml tubes) at 37uC (hypoxic culture).

RNA was isolated using TRI reagent (Molecular Research Center,

USA) and purified using RNeasy mini column (Qiagen,

Germany). Reverse transcription was performed with random

hexamer primers and cDNA High capacity Reverse Transcriptase

kit (ABI, USA). M. tb mRNAs were quantitated by real-time PCR

using gene-specific primers (Supplementary Table S3) in a MyIQ

Single colour detection thermal cycler (Biorad Inc.).

Expression analysis by immunoblotting
M. tb strains were grown to logarithmic phase as described

above, diluted to A595 of 0.025 and grown with shaking to an A595

of 0.3. A culture aliquot was immediately harvested by

centrifugation (aerobic culture). For hypoxic cultures, 10 ml

aliquots of aerobic cultures were dispensed into 50 ml screw-

capped tubes and kept standing for 5 days. Lysates were prepared

as described [49] from two to four independent cultures at each

condition and 10 or 15 mg protein was analyzed by 12.5% SDS-

PAGE and immunoblotting using rabbit polyclonal antisera as

described [25]. Anti-SigA antibody was a generous gift from Dr.

T.S. Balganesh (AstraZeneca, Bangalore).

For measurement of intracellular concentrations of DevR and

DevRN-Kan proteins, a standard curve for each of the purified

proteins was prepared (based on triplicate measurements) using an

appropriate range (198 ng to 7 ng for DevR and 332 ng to 8 ng

for DevRN-Kan) as described [26]. M. tb lysates were analysed at

least thrice in parallel with the purified proteins. After immuno-

staining, the blots were scanned and then intensities of the stained

DevR and DevRN-Kan bands were quantitated (Quantity One

software, Biorad, USA). The signal intensities derived from SigA

were used to normalize the signal intensities from DevR and

DevRN-Kan in each lysate. Calculations of intracellular concen-

trations were based on various parameters, namely, efficiency of

M. tb lysis (assumed to be ,85% based on laboratory experience),

reported total average mass of protein/cell (150 fg), a cellular

volume of 0.94 fl [50] and a molecular mass of 23.2 kDa and

45 kDa for DevR and DevRN-Kan, respectively.

Guinea pig virulence assay
Guinea pigs (4–8 animals per group) were infected by

subcutaneous route with passaged M. tb strains in phosphate

buffered saline (approx 56106 viable organisms per animal) for 6,

10 and 13 weeks. The virulence assay was performed as described

[12]. In this model, bacteria spread to the lungs and spleen from

the site of injection (thigh). Briefly, at the time of sacrifice, internal

organs were examined for visually scorable lesions in spleen, liver,

lung, inoculation site and its draining lymph nodes as described

[51]. Lungs and spleens were transferred to selective Kirchner’s

liquid medium for CFU determination [12]. The spleens and right

lower lobes of lungs were individually homogenized in dedicated

homogenizers and serial dilutions were plated in duplicate on MB

7H11 agar containing OADC and also on LJ slopes. The colonies

were counted after 6 weeks of incubation at 37uC and the identity

of the recovered bacilli was confirmed by PCR analysis. The

statistical significance of the differences between the various strains

DevR Signaling in Mycobacterium Tuberculosis

PLoS ONE | www.plosone.org 12 April 2012 | Volume 7 | Issue 4 | e35847



for different parameters was determined using the Mann-Whitney

test.

Transcriptome comparison
RNA was extracted from 3–5 replicate cultures of each M. tb

strain grown as described above (in the section ‘Mut1* bacteria

exhibit a constitutive phosphate starvation response’). Total RNA

of 1 mg was polyadenylated and cDNA was synthesized from the

polyadenylated RNA samples. Cy3/Cy5 labelled cRNA was

synthesized and amplified using Agilent Low RNA Input

Amplification Kit PLUS, Two-Color. Genomic DNA of M. tb

H37Rv was labeled using Agilent Genomic DNA labeling kit

PLUS. The labeled RNA samples were hybridized against the

labeled genomic DNA on Agilent custom made 8615 K M. tb

array with 60 mer probes using the Agilent platform (Genotypic

Technology, Bangalore, India).

Microarray data extraction and analysis
The slides were scanned using the Agilent Genepix scanner and

data was extracted using the Agilent Feature Extraction Software.

Single color analysis was performed by splitting the Two Color

hybridized samples into single channel. Quantile normalization

was done using GeneSpring GX software using the recommended

Per Chip and Per Gene normalization. Normalized signal intensity

of samples was compared with that of the control i.e Cy3/Cy5

labeled H37Rv genomic DNA for each gene among 3–5 biological

replicates. Genes were considered to be upregulated for values

$1.5 and down regulated for values #0.66) under aerobic (0 day)

or hypoxic (5 day) conditions (P-value#0.05). Raw and fully

annotated microarray data has been deposited with NCBI and the

GEO Accession No. GSE30264 (www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc = GSE30264)

Supporting Information

Figure S1 Induction of select DevR regulon genes in
Comp11* and Comp15. Fold change in hspX and Rv1738

expression in hypoxic vs. aerobic cultures in Comp11* and

Comp15 strains was calculated from normalized transcript levels

with respect to 16S rRNA. Mean fold change 6 SD determined

from three independent cultures is shown.

(TIF)

Figure S2 Comparison of gross body weights of M. tb
infected guinea pigs. Gross body weights expressed as (Mean

6 SD). [*, statistically significant (P,0.05) in comparison to WT].

(EPS)

Figure S3 Differential gene expression in M. tb strains.
Heat map depicting the fold change in differential gene expression

(log base 2) in M. tb strains (2–5 biological replicates).

(TIF)

Table S1 Virulence of passaged M. tuberculosis strains.

(DOCX)

Table S2 Comparison of our results with previously
published microarray analysis. (A) M. tb WT (H37Rv),
(B) M. tb dosR (devR) mutant.

(DOC)

Table S3 Primers used for Real Time Reverse tran-
scriptase-PCR analysis.

(DOCX)
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PhoP can activate its target genes in a PhoQ-independent manner J Bacteriol

186: 2476–80.
30. Honaker RW, Leistikow RL, Bartek IL, Voskuil MI (2009) Unique roles of

DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis

dormancy. Infect Immun 77: 3258–3263.
31. Wisedchaisri G, Wu M, Sherman DR, Hol WG (2008) Crystal structures of the

response regulator DosR from Mycobacterium tuberculosis suggest a helix
rearrangement mechanism for phosphorylation activation. J Mol Biol 378:

227–242.

32. Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM (2010)
Regulation of response regulator autophosphorylation through interdomain

contacts. J Biol Chem 285: 32325–35.
33. Fujita M, Losick R (2005) Evidence that entry into sporulation in Bacillus subtilis

is governed by a gradual increase in the level and activity of the master regulator
Spo0A. Genes Dev 19: 2236–2244.

34. Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE, 3rd (2007) The W-

Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and
has the DosR dormancy regulon constitutively upregulated. J Bacteriol 189:

2583–2589.
35. Kumar A, Toledo JC, Patel RP, Lancaster JR, Jr., Steyn AJ (2007)

Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia

sensor. Proc Natl Acad Sci U S A 104: 11568–11573.
36. Shiloh MU, Manzanillo P, Cox JS (2008) Mycobacterium tuberculosis senses

host-derived carbon monoxide during macrophage infection. Cell Host Microbe
3: 323–330.

37. Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR (2004) Two
sensor kinases contribute to the hypoxic response of Mycobacterium

tuberculosis. J Biol Chem 279: 23082–7.

38. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, et al. (2003)
Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophag-

es: Insights into the Phagosomal Environment. J Exp Med 198: 693–704.

39. Fontan P, Aris V, Ghanny S, Soteropoulos P, Smith I (2008) Global

transcriptional profile of Mycobacterium tuberculosis during THP-1 human

macrophage infection. Infect Immun 76: 717–725.

40. Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M (2008) Probing

host pathogen cross-talk by transcriptional profiling of both Mycobacterium

tuberculosis and infected human dendritic cells and macrophages. PLoS One 3:

e1403.

41. Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR, Jr. (2007) The

two-component regulatory system senX3-regX3 regulates phosphate-dependent

gene expression in Mycobacterium smegmatis. J Bacteriol 189: 5495–5503.

42. Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for

Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl

Acad Sci U S A 102: 8327–8332.

43. Sureka K, Dey S, Datta P, Singh AK, Dasgupta A, et al. (2007) Polyphosphate

kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria.

Mol Microbiol 65: 261–276.

44. Brennan MJ, Delogu G, Chen Y, Bardarov S, Kriakov J, et al. (2001) Evidence

that mycobacterial PE_PGRS proteins are cell surface constituents that

influence interactions with other cells. Infect Immun 69: 7326–7333.

45. Okkels LM, Brock I, Follmann F, Agger EM, Arend SM, et al. (2003) PPE

protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis:

strong recognition of both specific T-cell epitopes and epitopes conserved within

the PPE family. Infect Immun 71: 6116–6123.

46. Rickman L, Saldanha JW, Hunt DM, Hoar DN, Colston MJ, et al. (2004) A

two-component signal transduction system with a PAS domain-containing

sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem

Biophys Res Commun 314: 259–267.

47. Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, et al. (2007)

Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-

4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad

Sci U S A 104: 11562–11567.

48. Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, et al. (2009)

Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating

virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5:

e1000545.

49. Rodrigue S, Brodeur J, Jacques PE, Gervais AL, Brzezinski R, et al. (2007)

Identification of mycobacterial sigmafactor binding sites by chromatin

immunoprecipitation assays. J Bacteriol 189: 1505–1513.

50. Cox RA (2003) Correlation of the rate of protein synthesis and the third power

of the RNA: protein ratio in Escherichia coli and Mycobacterium tuberculosis.

Microbiology 149: 729–37.

51. Mitchison DA, Wallace JG, Bhatia AL, Selkon JB, Subbaiah TV, et al. (1960) A

comparison of the virulence in guinea-pigs of South Indian and British tubercle

bacilli. Tubercle 41: 1–22.

52. Valdivia RH, Hromockyj AE, Monack D, Ramakrishnan L, Falkow S (1996)

Applications for green fluorescent protein (GFP) in the study of host-pathogen

interactions. Gene 173: 47–52.

53. Chauhan A, Madiraju MV, Fol M, Lofton H, Maloney E, et al. (2006)

Mycobacterium tuberculosis cells growing in macrophages are filamentous and

deficient in FtsZ rings. J Bacteriol 188: 1856–65.

54. Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, et al. (2006) Modulation

of Mycobacterium tuberculosis proliferation by MtrA, an essential two-

component response regulator. Mol Microbiol 60: 643–657.

DevR Signaling in Mycobacterium Tuberculosis

PLoS ONE | www.plosone.org 14 April 2012 | Volume 7 | Issue 4 | e35847


