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Abstract

TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore,
understanding the molecular evolution of TRPA1 may help to illuminate the origin of ‘‘heat vision’’ in snakes and reveal the
molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24
snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong
positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a
comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species
studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding
demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related
to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we
identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other
vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino
acid substitutions may be potentially functional important for infrared sensing.
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Introduction

Besides their slithering body and lethal venom, perhaps the

most famous feature of snakes is their extraordinary ability to sense

infrared thermal radiation, also known as ‘‘heat vision’’. This

peculiar capability enables snakes to detect warm-blooded prey in

total darkness without relying on vision, olfaction or hearing [1,2].

Infrared detection in snakes is mediated by a specialized sensory

structure called the pit organ, an exquisitely sensitive biological

sensor that can detect temperature changes as small as 0.003uC
[3]. Further research has shown that the pit organ may be a more

general-purpose sensory system not only for prey detection, but

also for environmental temperature sensation [4]. For a long time,

biologists and naturalists have been trying to discover how this

amazing system works. Recently, a study by Gracheva et al. [5]

has revealed that a temperature-sensitive calcium ion channel,

TRPA1, serves as an infrared sensory molecule in the snake pit

organ, moving our understanding of this remarkable system to a

molecular level.

It should be noted that not all snakes possess heat vision; only pit

vipers, pythons and some boas have evolved to possess pit organs

for infrared detection. Recent cellular experiments have demon-

strated that snake TRPA1 channels are heat-responsive, from the

pit organ–containing snakes to non-pit snakes [5]. However, the

thermal thresholds of TRPA1s are quite different across snake

species: ,28uC for rattlesnakes, ,30uC for boas, ,33uC for

pythons, and ,37uC for non-pit rat snakes. Different thresholds

are consistent with different sensitivities of these snakes toward

infrared radiation [6]. Sensory systems evolve rapidly to

accommodate variations in environmental niches [7–10]. As the

core receptors of the pit organ, TRPA1 channels may have

experienced particular natural selection during the history of snake

evolution to fulfill functional requirements. Therefore, character-

izing the evolution of TRPA1 among snakes may shed light on

how snake infrared detection originated and evolved.

The study of Gracheva et al. [5] clearly revealed the TRPA1

channels as the infrared sensors in pit-bearing snakes and pointed

out that the lower thermal thresholds of TRPA1s in pit-bearing

snakes compared to other snakes make them more sensitive to

detect changes in ambient temperature than non-pit snakes’

channels. However, the genetic mechanism of such a shift of

thermal thresholds is unknown. Because three different families of

snakes may have independently adapted TRPA1 as an infrared

sensor (based on the phylogenetic distribution of pit-bearing

species), it is also intriguing to see whether and to what extent they

acquired such a function through convergent evolution. To

explore these questions, TRPA1 sequences of the two types of

snakes (pit-bearing and non-pit-bearing) can be compared to

identify amino acid changes that may be responsible for the

functional alternation. Yokoyama et al. [11] recently compared
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four published snake TRPA1 sequences with fourteen vertebrate

orthologs and identified three critical amino acids that might be

involved in infrared sensitivity. Considering that this study

included only a limited number of snake species, it is worthwhile

to further investigate this topic using a broader taxonomic

coverage of snake species.

Here, we aimed to study the molecular evolution of TRPA1

across the snake phylogeny and test whether the effect of natural

selection on TRPA1s directly contributed to functional alterations

in different types of snakes. In addition, by analyzing more snake

TRPA1 sequences, we attempted to identify critical amino acid

changes responsible for the special functions of snake TRPA1

proteins. To this end, we sequenced almost the entire coding

region of the TRPA1 gene from 20 species representing many of

the major lineages of extant snakes. Moreover, we specially

included some non-pit snakes closely related to the three kinds of

pit-bearing snakes (i.e., Viperinae snakes vs pit vipers, Xenopelti-

dae snakes vs pythons and non-pit boas vs pit boas). These snake

species can serve as ‘‘negative controls’’ for the comparative study

of the evolution of TRPA1 channels in the snakes, thus facilitating

the identification of the critical residues.

Results and Discussion

Sequence Data and Phylogenetic Reconstruction
The TRPA1 calcium ion channel has six transmembrane

domains with an intracellular N- and C-terminus; the N-terminus

region possesses 17 ankyrin repeats [12]. In this study, we

generated 20 new TRPA1 cDNA sequences. The TRPA1

sequences comprise ,3.1 kb coding regions, including all 17

ankyrin repeats in the N-terminus and almost the entire C-

terminus (lacking the final 30 bp). We also generated 19 TRPV1

cDNA sequences that contained ,2.1 kb coding regions. The

sequences that we generated spanned 93.7% and 85.3% of the

protein-coding region of TRPA1 and TRPV1, respectively. In

addition, because no TRPV1 sequence is available for pit boas, we

analyzed the transcriptome data [5] using the rattlesnake (Crotalus

atrox) TRPV1 as the reference sequence and assembled ,2.4 kb

TRPV1 coding sequence for the garden tree boa (Corallus

hortulanus). Gene orthology of the newly obtained TRPA1 and

TRPV1 sequences was confirmed by BlastX searches against

GenBank. All sequences of the TRPA1 and TRPV1 genes

determined in this paper were deposited in GenBank under

accession numbers JN164328 to JN164367.

Using the ML and Bayesian methods, we reconstructed the

gene trees for TRPA1 and TRPV1 at the DNA and protein levels.

Both tree-building methods yielded identical tree topologies and

similar branch support for a given dataset. For snakes, the

phylogenetic relationships generated by the TRPA1 and TRPV1

nucleotide alignments agree with each other at the family level

(Fig. 1), which are consistent with the currently accepted family-

level relationships for extant snakes [13,14]. The protein results of

both genes are topologically concordant with the DNA results, but

weakly supported at many nodes (results not shown). The

evolution of TRPA1, the infrared sensory molecule, within snakes

does not change the phylogenetic positions of the three groups of

pit-bearing snakes (pit vipers, pythons and pit boas); suggesting

that no apparent misleading effect of convergent evolution exists.

Interestingly, we found that the length of the three ancestral

branches leading to pit-bearing snakes was considerably longer in

the TRPA1 tree than in the TRPV1 tree, while the remaining

branch lengths show little differences between the two gene trees

(Fig. 1). Thus, the acceleration of the evolutionary rate in the

ancestral branches of the three groups of pit-bearing snakes is a

specific event that occurred in TRPA1. This finding prompted us

to postulate that the rapid evolution of TRPA1 was driven by

positive selection in the lineages leading to three groups of

infrared-sensitive snakes.

Changes of Selective Pressure on TRPA1 across the Snake
Phylogeny

To test whether TRPA1 is under positive selection in pit-

bearing snakes, we calculated the average dN/dS ratios using the

one-ratio model for the five pit vipers and two pythons. We did not

calculate this ratio for pit boas because there is only one pit boa

species (Corallus hortulanus) in our dataset. As a negative control, we

also conducted the same analyses for other families of snakes

without a pit organ and other non-snake vertebrates. The

comparison of average dN/dS ratios showed very large differences

between the two groups. The average dN/dS ratios for pit vipers

and pythons were 0.820 and 0.995, respectively, while the average

dN/dS ratios for colubrids (non-pit snakes), elapids (non-pit

snakes), birds and mammals were only 0.230, 0.272, 0.039 and

0.167, respectively. This apparent difference can also be observed

in the result of our sliding window analyses, with many peaks

significantly greater than 1 for pit vipers and pythons, while the

curves were uniformly below 1 for the negative control clades

(Fig. 2).

The two-ratio model vs one-ratio model (2Dln L = 479.42;

P,0.00001) revealed that the TRPA1 genes evolved under very

different selective pressures among pit-bearing (average v= 1.147)

and non-pit snakes (average v= 0.166), but did not provide solid

evidence of positive selection. Thus, we performed site model tests

to examine whether signals of positive selection were present in

some sites of the pit-bearing snake TRPA1 proteins (Table 1). For

pit vipers and pythons, the TRPA1 gene showed evidence for

positive selection, with an estimated v of 5.072 and 21.36 at

15.26% and 2.61% of sites across the gene, respectively. In

contrast, none of the remaining datasets could reject the null

model M1a, suggesting that no sites evolved under positive

selection among these clades. These findings suggested that

positive selection of the TRPA1 gene occurred only within the

pit-bearing snakes. In addition, for pit vipers we identified nine

sites as being under positive selection using the Bayes empirical

Bayes method (PP.95%; Table 1). The functional significance of

these particular sites is unknown, but they all fall within the N- and

C-terminus and not in the transmembrane region of the TRPA1

channel, implying that the N- and C-terminus may be more

responsible for infrared sensitivity.

The selective pressure variation among all branches of the

TRPA1 and TRPV1 tree (from mammals to snakes) estimated by

the GABranch method revealed more detailed information about

the evolution of both genes (Fig. 3). The dN/dS ratio provides an

indicator of the selective pressures that acted upon a gene over a

given period with low values, indicating purifying selection and

increases in values, indicating relaxation of constraint or positive

selection. As a control gene, TRPV1, a closely-related TRP family

member to TRPA1 but not involving in infrared sensation in

snakes [5], exhibited no dramatic change in selective pressures

across the tree, and the dN/dS ratios of all branches were low

(0.06 to 0.19), indicating a strong purifying selection (Fig. 3).

Unlike TRPV1, TRPA1 showed a great variation in selective

pressures, especially within the snake lineage. For the branches

belonging to mammals, birds and lizards, the dN/dS ratios

remained low (0.06 to 0.3; Fig. 3), implying that the TRPA1

proteins of these animal groups may have retained a similar

biological function. The dN/dS ratios within snakes increased

considerably (mostly .0.3) compared to the non-snake verte-

Positive Selection of TRPA1 in Pit-Bearing Snakes
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brates, indicating that the functional constraint on the TRPA1

protein became relaxed in snakes.

Another notable feature of the TRPA1 tree on molecular

evolution is that the branch leading to the common ancestors of pit

vipers (dN/dS = 7.071), the branch leading to the common

ancestors of pythons (dN/dS = 0.976) and the branch of the pit

boa Corallus hortulanus (dN/dS = 1.862) have much higher dN/dS

values than their sister branches leading to non-pit snakes (dN/dS

values 0.15,0.3) (Fig. 3). This finding suggested that the functional

alteration of snake TRPA1 proteins from infrared-insensitivity to

infrared-sensitivity might be independently driven by positive

selection acting on the common ancestors of pit vipers, pythons

and pit boas. Besides the above three branches, there were another

eight branches with dN/dS values over 0.9. Because the dN/dS

values estimated by the GABranch method could not demonstrate

positive selection statistically, we used branch-specific models to

recalculate the dN/dS values of the eleven branches and test

whether they were significantly greater than 1. We found that,

except for branch K, the two-ratio model fit the dataset significantly

better than the one-ratio model, but only five branches had dN/dS

values significantly greater than 1 (Table 2). All five branches are

ancestral branches of pit-bearing snakes or branches leading to pit-

bearing snakes, indicating that positive selection of the TRPA1 gene

occurred only within pit-bearing snakes.

Although the dN/dS value of the ancestral branch of two pythons

is smaller than 1 (v= 0.647), it is significantly higher than

background branch value (Table 2). Besides positive selection, the

relaxation of purifying selection due to a loss or diminishment of

protein function and a reduced efficacy of purifying selection due to

reduction in population size can also result in an increase in a dN/

dS value. Because TRPA1 plays an important role in the infrared

sensing of pythons, the first possibility of a relaxation of functional

constraint can be easily ruled out. In addition, an elevated dN/dS

value was not observed for the corresponding branch in the TRPV1

Figure 1. Phylogenetic relationships inferred from the TRPA1 and TRPV1 genes. Phylogenetic relationships of nine snake families were
reconstructed with the ML and Bayesian methods. Non-snake outgroups are not shown. The snake species with pit organs are highlighted by
shading. Branches with ML bootstrap support .70% and Bayesian posterior probability .0.95 are indicated as asterisks. Note that in the TRPA1 tree,
but not in the TRPV1 tree, the three ancestral branches leading to the three groups of pit-bearing snakes (bold lines) are considerably longer than
their sister branches connecting to non-pit snake relatives.
doi:10.1371/journal.pone.0028644.g001

Positive Selection of TRPA1 in Pit-Bearing Snakes
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tree, which indicates that the second explanation is also unlikely

because a shrinking population size will affect all genes. Therefore,

we conclude that the elevated dN/dS value of the ancestral branch

of pythons was caused by adaptive selection.

Taken together, our results clearly suggested that TRPA1

independently underwent natural selection of different degrees

during the periods when the three groups of pit-bearing snakes

originated. These ancient natural selection events probably

enabled the TRPA1 protein to acquire an additional or modified

function to serve as an infrared sensor in the ancestors of pit-

bearing snakes. Then, positive selection continued during the

diversification of pit vipers, pythons and pit boas, perhaps to fine-

tune the thermal response properties of their TRPA1 proteins to

adapt to various environmental niches.

The Distribution of Amino Acid Substitutions
Accumulated in the Ancestral Branches of Pit-bearing
Snakes

Our aforementioned results demonstrated that the TRPA1s of

the three groups of pit-bearing snakes (pit vipers, pythons and pit

boas) accumulated more amino acid changes than their closely

related non-pit relatives (Fig. 3). These accumulated changes are

likely responsible for the different sensitivities to infrared stimuli

between the TRPA1s of pit-bearing snakes and non-pit snakes. It

is worthwhile to find out the specific domain(s) in TRPA1 that are

enriched with amino acid changes in the three groups of pit-

bearing snakes, as this might hint at the location of the ‘‘infrared

sensory module’’ within the TRPA1 channel.

First, we assumed that the TRPA1 channels of the last common

ancestors of the three groups of pit-bearing snakes are all infrared-

sensitive, while the TRPA1 channels of other non-pit relatives are not

sensitive to infrared stimuli. Second, we assumed that all the amino

acid substitutions that occurred in non-pit snakes are not related to

the functional alteration of TRPA1 from infrared-insensitive to

infrared-sensitive. Based on these two assumptions, we compared the

distribution of the specific amino acid substitutions along the three

ancestral branches of pit-bearing snakes (Fig. 4). The specific amino

acid substitutions are defined as the residue mutations that are present

in those three branches, but not in their sister branches that lead to

the non-pit snake relatives (Fig. 4); these sites are probably involved in

infrared sensation. Ancestral TRPA1 protein sequences were

reconstructed using the CODEML program in PAML 4.4.

Figure 2. Sliding window analysis of the dN/dS ratios for six animal groups. The estimates are based on the Nei–Gojobori method. The
window size was set as 150 bp, and the step size was set as 15 bp. TM, transmembrane region; ANK, ankyrin repeat.
doi:10.1371/journal.pone.0028644.g002

Table 1. The Site Models Detecting Positive Selection in the TRPA1 Gene for Different Groups.

Data sets N a ln L (null/M1a)
ln L (positive
selection/M2a) 2D (ln L) P values

Proportion of
Sites, v.1 v Positively Selected Sites b

Pit vipers 5 25630.99 25609.33 18.66 ,0.00001 0.1526 5.072 60, 218, 311, 399, 407, 410, 440, 1,030, 1,062

Pythons 2 24614.34 24609.16 10.36 0.0056 0.0261 21.36 —

Colubrids 8 26564.35 26563.55 1.60 0.4493 0.0108 3.369 —

Elapids 2 24535.32 24535.32 0 1 0.0632 1.000 —

Birds 2 25056.32 25056.32 0 1 0 1.000 —

Mammals 4 29336.40 29336.40 0 1 0.04711 1.000 —

aNumbers of sequences of the dataset.
bPositively selected sites identified using the Bayes Empirical Bayes method, numbered according to the full rattlesnake coding sequence. Only sites with PP.95% are

presented.
doi:10.1371/journal.pone.0028644.t001

Positive Selection of TRPA1 in Pit-Bearing Snakes
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Figure 3. Selective pressure variation of both TRPA1 and TRPV1 along branches of the tetrapod phylogeny. The tree topology is
inferred with ML for each gene. Branch lengths are drawn proportionally to the estimated numbers of nonsynonymous substitutions per codon. The
trees are rooted by the frog sequence (not shown). The selective pressures of branches are assigned to dN/dS categories (tick marks along heat scale)
by the GA-Branch method implemented in HyPhy. Branches assigned to a given dN/dS category share the same color. Deeper blue indicates a strong
purifying selection, whereas hotter colors indicate elevated dN/dS ratios. For branches with letters along them, dN/dS values are re-estimated in
PAML and subjected to a positive selection test by LRT.
doi:10.1371/journal.pone.0028644.g003

Positive Selection of TRPA1 in Pit-Bearing Snakes
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We identified 105, 129, and 79 specific mutation sites in the

ancestral branches leading to pit vipers, pit boas and pythons,

respectively. These sites were mapped to the TRPA1 domain

organization schematic (Fig. 4). Overall, for all three groups of pit-

bearing snakes, most of the mutation sites were interspersed in the

N- and C-terminal segments, but not in the transmembrane

domains. This finding suggests that the N- and C-terminal regions

are candidate domains for the differences in infrared sensitivities.

As a similar case, Saito et al. [15] recently reported an opposite

temperature sensitivity of TRPV3 channels between mammals

and western clawed frogs and also proposed the N- and C-

terminal regions of the protein as the molecular determinants for

the thermal difference. Additionally, in the case of TRPV2, the N-

and C-terminal regions are also reported to play crucial roles in

heat sensitivity in rodents [16]. In mammals, the swapping of the

C-terminal regions between TRPV1 and TRPM8 channels results

in an exchange of the thermal activation property [17] and

gradual truncations of the C-terminal regions of the TRPV1

channel gradually alter its temperature threshold for activation

[18]. Therefore, as a member of the TRP family, the C-terminal

Table 2. Positive Selection Detection of the Snake TRPA1 Gene along Different Branches.

Foreground
branch a Two Ratio vs. One Ratio Two Ratio vs. Two Ratio (vF fixed = 1)

Positive
selection

v0 vF (N/S) b 2D (ln L) df c P values 2D (ln L) df c P values detected ?

a 0.205 6.086 (133/7) 150.64 1 ,0.00001 * 27.06 1 ,0.00001 * !

b 0.210 0.647 (105/51) 34.20 1 ,0.00001 * 4.28 1 0.0386 *

c 0.204 1.523 (165/34) 119.50 1 ,0.00001 * 4.02 1 0.0450 * !

d 0.211 2.234 (54/8) 47.98 1 ,0.00001 * 3.86 1 0.0495 * !

e 0.215 Infinity (13/0) 19.26 1 ,0.0001 * 5.94 1 0.0148 * !

f 0.215 Infinity (9/0) 12.38 1 0.0004 * 4.00 1 0.0455 * !

g 0.214 Infinity (16/0) 13.42 1 0.0002 * 0 1 1.0000

h 0.214 Infinity (15/0) 8.62 1 0.0033 * 1.44 1 0.2301

i 0.214 2.420 (20/3) 11.94 1 0.0005 * 0.90 1 0.3428

j 0.215 0.696 (14/6) 4.50 1 0.0338 * 0.34 1 0.5598

k 0.215 1.560 (5/1) 2.80 1 0.0942 0.08 1 0.7773

aBranch labels are according to Fig. 3.
bOmega of the foreground branch (estimated numbers of nonsynonymous substitutions/estimated numbers of synonymous substitutions).
cDegrees of freedom.
*P value lower than 0.05.
doi:10.1371/journal.pone.0028644.t002

Figure 4. Specific amino acid substitutions (TRPA1) accumulate in three important branches. Specific amino acid substitutions (TRPA1)
accumulate in branches (bold lines) leading to (A) the common ancestor of pit vipers, (B) the pit boa (Corallus hortulanus), and (C) the common
ancestor of pythons. Specific amino acid substitutions for each branch are defined as all substitutions along the branch subtract those that also occur
in the branch leading to the outgroup species (thin lines). These specific amino acid substitutions (indicated as vertical lines) are mapped above the
TRPA1 domain organization schematic. Note that the substitution density of the transmembrane region (TM1 to TM6) is apparently lower than both
the N-terminal region (ANK1 to TM1) and the C-terminal region (after TM6). TM, transmembrane region; ANK, ankyrin repeat.
doi:10.1371/journal.pone.0028644.g004

Positive Selection of TRPA1 in Pit-Bearing Snakes
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domains of TRPA1 channels may contain a domain responsible

for infrared sensing. It is also noteworthy that amino acid

mutations of the C-terminal region are relatively concentrated at

the end of the domain, but amino acid mutations of the N-

terminal region were distributed more evenly and not enriched in

any ankyrin motifs (Fig. 4). In the future, it will be necessary to

perform ‘‘swapping’’ experiments for both terminals to understand

the molecular basis for the differences in the infrared sensitivities of

TRPA1 channels between pit-bearing and non-pit snakes.

Amino Acid Sites of Potentially Functional Importance for
Infrared Sensing

Parallel amino acid replacements responsible for parallel

functional changes have been reported many times [10,19–23].

Because three groups of snakes (pit vipers, pythons and pit boas)

independently gained the ability to sense infrared radiation, the

sensory TRPA1 channels are thought to contain some convergent

amino acid changes among the three groups of infrared-sensitive

snakes. Yokoyama et al. [5] recently identified three parallel amino

acid replacements (L330M, Q391H, and S434T) that may be

critical for the development of infrared vision in the three groups

of snakes. Here, we wanted to test whether the three predicted sites

are still reliable when more snake TRPA1 sequences are analyzed.

We first generated a protein alignment of TRPA1 for all snake and

non-snake species used in this study (Figure S1). Following the

criterion used by Yokoyama et al. [11], we searched for amino

acids that are common in all the pit-bearing snakes, but not other

non-pit snakes and non-snake vertebrates. Of the three previously

predicted sites, only one site (L330M; Fig. 5) still met the criterion,

while the other two sites showed no convergence for the pit-

bearing snakes (for details, see Figure S1).

The study of Gracheva et al. [5] showed that the thermal

thresholds of TRPA1s in pit-bearing snakes are lower than those in

other non-pit snakes and this may be the molecular basis of

infrared sensitivities of pit-bearing snakes. Although the shift of

thermal thresholds may be caused by the single amino acid

substitution (L330M), other amino acid replacements contributing

to the lower thermal threshold of TRPA1 in pit-bearing snakes

may be involved for the following reasons: (1) it is unlikely that

only one substitution is responsible when TRPA1 channels in pit-

bearing snakes have accumulated so many specific amino acid

changes (Fig. 4); and (2) the thermal thresholds of TRPA1s in pit

vipers, pythons and pit boas are different, so the functionally

important sites may also diverge to different states in the three

groups of snakes. Accordingly, we modified our search criterion to

seek for sites that diverge to different states in pit-bearing snakes

(target group) but remain invariable in all other non-pit snakes

(control group). Because sites that remain constant in all non-pit

snakes are likely to be functionally important, substitutions at these

sites would be expected to result in the relaxation of functional

constraint or functional modifications; where this has occurred in

pit-bearing snakes, it would imply that the corresponding sites are

involved in the decrease of the thermal thresholds (an important

step towards infrared sensitivity). It must be noted that our

functional inference is based on an indirect relation between a

signal trait (infrared sensitivity) and the substitution observations,

and could be affected by many other traits such as habitat,

seasonality, preferred thermal niche. Therefore, the functional

inference is just putative and should be tested by future

experiments.

We found eleven sites (positions 91, 150, 193, 222, 330, 504,

515, 553, 603, 638, and 674; numbered according to the full

rattlesnake TRPA1 protein sequence) met this criterion (red

circles; Fig. 5). Of these sites, five (positions 150, 330, 504, 515,

and 553) are conserved not only within all non-pit snakes, but also

within other non-snake vertebrates. Notably, all eleven identified

sites are located within the N-terminal region, suggesting that the

N-terminal region may play a main role in thermal sensing.

Because the thermal thresholds of TRPA1s of pit vipers (,28uC)

are lower than those of pythons (,33uC) and pit boas (,30uC) [5],

the sites specifically altered within the pit vipers, but retained

invariable in all the remaining snakes, may contribute to further

turning down the thermal threshold of the protein (enhance the

infrared sensitivity). Thus, we set the pit vipers as the target group

and all the other snakes as the control group, and we repeated the

seeking procedure. As a result, 21 amino acid changes (positions

145, 258, 287, 294, 295, 297, 358, 368, 498, 523, 555, 597, 662,

667, 712, 723, 754, 756, 1013, 1015, and 1076) were identified

(green circles; Fig. 5). Of these sites, 16 are distributed across the

N-terminal region, 2 are within the transmembrane region, and 3

are within the C-terminal region (Fig. 5). This result suggests that

the enhanced infrared sensitivity of the pit viper TRPA1 channels

may be more related to the modifications within the N-terminal

region.

The N-terminal region of the TRPA1 protein comprises 17

ankyrin repeats, which are common structural motifs that mediate

protein–protein interactions [24]. Previous research indicates that

mutations in the ankyrin repeat domain of TRPV1, TRPV3, and

TRPV4 influences their binding profiles with ATP and calmod-

ulin, further altered the thermosensitive properties of these

proteins [25]. Given that most of the infrared-related sites

identified in this study are located within the ankyrin repeat

domain of TRPA1, it is possible that these substitutions allow the

TRPA1 channels of pit-bearing snakes to interact with a specific

protein or ligand that enables the infrared sensitivity. However, we

could not rule out the possibility that the ankyrin repeat domain of

TRPA1s in pit-bearing snakes function as the thermal sensor.

Long ankyrin repeats of TRPA1 have been thought to act as

molecular springs to sense mechanical stimuli [26], and the

thermal stimulation generated by infrared radiation is a type of

mechanical stimuli at the molecular level. Therefore, the

substitutions in ankyrin repeats may change the elastic properties

of the pit-bearing snake ankyrins, thus enabling them to respond to

the thermal stimuli generated by infrared radiation.

Materials and Methods

Taxon Sampling and Experimental Procedures
To better understand TRPA1 gene evolution across the snake

phylogeny, we collected 20 snake species in the field or from

private breeders. These 20 snake species, together with the 4

snakes that already have published TRPA1 sequences, represent 9

families of extant snakes spanning a broad evolutionary coverage

(Viperidae, Pythonidae, Boidae, Colubridae, Elapidae, Homalop-

sidae, Pareatidae, Xenopeltidae, and Typhlopidae). Moreover,

one lizard, two birds, five mammals and one frog were used as

outgroup taxa in the phylogenetic and evolutionary analyses.

Detailed information for all species used in this study is listed in

Table 3. This study was performed in strict accordance with the

guidelines developed by the China Council on Animal Care and

Use. All animal processing procedures were approved by the

Institutional Animal Care and Use Committee of Sun Yat-Sen

University (permit number: 2010–034).

Nerve tissue samples (brain, trigeminal ganglia, spinal nerve,

etc.) were preserved in RNAlater (Ambion) in the field, shipped to

the laboratory within a week and stored at 280uC. Total cellular

RNA was extracted from about 20 mg of the preserved tissue

mixture using the RNA prep pure tissue kit (Tiangen, Beijing) and
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Figure 5. Amino acid sites of the TRPA1 protein that may be functionally important for infrared detection. Amino acid residues that are
highly conserved in all non-pit snakes, but divergent in the other three groups of pit-bearing snakes, are indicated by red circles. Amino acid residues
that are separately conserved within pit vipers and the remaining snakes are indicated by green circles. These sites are numbered according to the
full rattlesnake TRPA1 protein sequence. Positions conserved across all non-pit snakes and other non-snake vertebrates are indicated by black
triangles below the sequences. These functionally important sites are mapped to the TRPA1 channel functional schematic (cyan blocks represent
ankyrin repeats, and pink cylinders represent transmembrane domains). Note that most sites are distributed in the N-terminal domain (ANK1 to TM1),
rather than the C-terminal domain (after TM6), suggesting that the N-terminal domain may be the responsible region for infrared detection capacity.
doi:10.1371/journal.pone.0028644.g005
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then reverse transcribed into cDNA by primeScript RTase

(Takara, Dalian) with dT25. Based on the currently available

TRPA1 and TRPV1 mRNA sequences of snakes, lizards and birds

(Table 3), 9 PCR primers (Table 4) were designed to amplify the

target TRPA1 and TRPV1 cDNA fragments using a nested PCR

strategy. For the TRPA1 fragment, the first step PCR mixture

(25 ml total) contained 1 ml of RT template, 2.5 ml of 106 buffer,

1 ml of primer AF1, 1 ml of primer AR, and 1 U of High-Fidelity

DNA polymerase (TransGen, Beijing), and PCR was conducted

using the following cycling settings: 4 min at 94uC of initial

denaturing; 30 cycles of denaturing at 94uC for 45 s, annealing at

50uC for 40 s, extending at 72uC for 3.5 min; and a final

extending step of 72uC for 10 min. The second step PCR was

conducted using the same procedure but with 1 ml of the first step

PCR product as a template and AF2 and AR as primer pairs. For

the blind snake Ramphotyphlops braminus, AF2 and AR did not work;

thus, the primers AF2-1 and AR-1 were used instead. Target

bands were purified by agarose gel extraction (Tiangen, Beijing)

and cloned into a PMD19-T vector (Takara, Dalian). For each of

the cloned bands, at least three positive recombinant clones were

identified by colony PCR and sequenced on an automated

ABI3730 DNA sequencer. The TRPV1 fragments were amplified

and sequenced using a similar methodology.

Phylogenetic Reconstruction and Evolution Analyses
Deduced amino acid sequences of TRPA1 and TRPV1 were

aligned with CLUSTALW [27] and modified with BioEdit [28].

The nucleotide alignments were generated according to amino

Table 3. The species used in this study; newly generated sequences are in bold.

Taxonomy Species Collection locality

With
pit
organ Accession number

TRPA1 TRPV1

Typhlopidae Ramphotyphlops braminus Hongkong, China - JN164334 JN164355

Pythonidae Python regius ---- yes GU562965

Python molurus bivittatus Private breeding yes JN164338 JN164363

Xenopeltidae Xenopeltis unicolor Mangshan, Hunan, China - JN164340 JN164360

Boidae Corallus hortulanus ---- yes GU562969 JN164348*

Eryx tataricus Private breeding - JN164342 JN164362

Pareatidae Pareas margaritophorus Bawanglin, Hainan, China - JN164329 JN164350

Homalopsidae Enhydris chinensis Shaoguan, Guangdong, China - JN164347 JN164367

Viperidae Daboia russelii siamensis Shaoguan, Guangdong, China - JN164343 JN164364

Ovophis monticola Mengzhi, Yunnan, China yes JN164341 JN164361

Protobothrops jerdonii Tianquan, Sichuan, China yes JN164328 JN164349

Gloydius brevicaudus Shaoguan, Guangdong, China yes JN164330 JN164351

Crotalus atrox ---- yes GU562967 GU562968

Trimeresurus stejnegeri Yongzhou, Hunan, China yes JN164332 JN164353

Elapidae Naja atra Shaoguan, Guangdong, China - JN164339 JN164359

Bungarus multicinctus Shaoguan, Guangdong, China - JN164345 JN164366

Colubridae Ptyas korros Shaoguan, Guangdong, China - JN164335 JN164356

Xenochrophis piscator Shaoguan, Guangdong, China - JN164346

Elaphe prasina Mengzhi, Yunnan, China - JN164337 JN164358

Pseudoxenodon macrops Mengzhi, Yunnan, China - JN164331 JN164352

Oligodon lacroixi Mengzhi, Yunnan, China - JN164344 JN164365

Plagiopholis blakewayi boulenger Mengzhi, Yunnan, China - JN164336 JN164357

Pantherophis obsoletus lindheimeri ---- - GU562966

Amphiesma sp. Mengzhi, Yunnan, China - JN164333 JN164354

Iguania Anolis carolinensis ---- - ENSACAT00000014581 ENSACAT00000014065

Aves Gallus gallus ---- - ENSGALT00000025203 NM_204572

Taeniopygia guttata ---- - XM_002197822 XM_002195904

Mammalia Mus musculus ---- - NM_177781 NM_001001445

Canis familiaris ---- - XM_544123 NM_001003970

Bos taurus ---- - XM_581588 XM_002695751

Monodelphis domestica ---- - ENSMODT00000009119

Ornithorhynchus anatinus ---- - ENSOANT00000020090

Amphibia Xenopus tropicalis ---- - NM_001127962 ENSXETG00000005790

*assembled from the transcriptome data[5] using the rattlesnake (Crotalus atrox) TRPV1 as the reference.
doi:10.1371/journal.pone.0028644.t003
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acid alignments. The best-fitting models for the TRPA1 and

TRPV1 DNA alignments were separately selected by AIC and

implemented in MrModelTest2.3 [29]. The GTR+I+C model was

chosen as the best-fitting model for both the TRPA1 and the

TRPV1 genes. ML analyses were implemented using RAxML

7.0.3 [30] with 1000 rapid bootstrap replicates. Bayesian analyses

were performed in MrBayes 3.1.2 [31]. Two MCMC runs were

performed with one cold and three heated chains (temperature set

to 0.2) for 10 million generations and sampled every 500

generations. The first 25% of sampled trees were discarded as

the burn-in. Similar topologies and posterior clade probabilities

from the two runs were observed. We also analyzed the protein

alignments of TRPA1 and TRPV1 following the same method-

ology using the JTT+C as the amino acid substitution model.

Because TRPA1 is the receptor molecule in the pit organ, we

suspect it may experience natural selection within pit-bearing

snakes. To visualize selective variation among the different amino

acid sites of the TRPA1 gene, we performed a sliding window

analysis using the program SWAAP 1.0.2 [32], comparing pit-

bearing snakes with other non-pit snakes and vertebrates. The

window size and the step size were set at 150 bp and 15 bp,

respectively. Values of v were estimated following Nei and

Gojobori [33]. To test for evidence of positive selection in TRPA1

across certain groups, we implemented site models with the

CODEML program in PAML 4.4 [34], comparing Model M1a

with Model M2a using the LRT test. We also applied a two ratio

model test with CODEML to the entire TRPA1 dataset, with one

omega parameter assigned to all pit-bearing snake clades and the

other assigned to the remaining lineages (non-pit snakes and other

vertebrates), to detect if the TRPA1gene of all pit-bearing snake

species experienced divergent patterns of selection compared to

non-pit species and other vertebrates.

After finding evidence of significant variation in v of TRPA1

across different groups, we applied the GABranch method [35] to

investigate how this variation was distributed across the branches

of the TRPA1 tree. This analysis was conducted using download-

able HyPhy script (http://www.hyphy.org/gabranch/) imple-

mented in HyPhy version 1.0 [36]. The nucleotide model was

specified as GTR; otherwise, the default GABranch configuration

was used. Unlike the free-ratio model implemented in PAML, the

GABranch method does not calculate the v-value precisely for a

given branch but assigns it to a v-category, avoiding the

overparameterization problem of the free-ratio model (PAML

manual) [34]. Although the GABranch method is useful to assign

branches into similar selective categories, the estimated v-value is

not ideal. Therefore, for those branches assigned to v-categories

exceeding (or nearly exceeding) one by the GABranch method, we

used the branch models in PAML 4.4 to recalculate the v-value

and tested whether the v-value of a given branch was significantly

higher than one (evidence for positive selection). In addition, as a

‘‘negative control’’, we also applied the GABranch analysis to the

TRPV1 gene. Because TRPV1 belongs to the TRP channel

family, like TRPA1, but is not involved in infrared detection [5],

we had expected to observe a different pattern of selective pressure

variation across branches of the TRPV1 tree.

In order to identify amino acid changes that may be responsible

for infrared sensitivity in pit-bearing snake TRPA1 proteins, we

adopted the function-based method used by Yokoyama et al. [11].

This method aims to identify amino acid residues that are totally

conserved in the ‘‘control group’’ (functionally important) but

diverged to different states in the ‘‘target group’’ (functional

divergence). In this case, the control group is composed of the

TRPA1 proteins of all sampled non-pit snakes, which we assume

are not infrared-sensitive; the target group is the TRPA1 proteins

of all sampled pit-bearing snakes. Because the infrared sensitivity

of pit vipers is 5–10-fold higher than pythons or boas [6], we also

set the pit vipers as the target group, while all other snakes were set

as the control group, to identify amino acid changes that may

contribute to further enhancing infrared sensitivity.

Supporting Information

Figure S1 Protein Sequence Alignment of TRPA1 in-
cluding Snakes, Lizards, Birds, Mammals, and Amphib-
ians. Putative ankyrin repeats (ANK) and transmembrane

domains (TM) are indicated by black squares. The three amino

acid sites proposed by yokoyama et al. (2011) that seem convergent

in pit-bearing snakes are indicated by blue arrows.

(PDF)
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