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Abstract

There is increasing evidence to suggest that splicing decisions are largely made when the nascent RNA is still associated
with chromatin. Here we demonstrate that activity of histone deacetylases (HDACs) influences splice site selection. Using
splicing-sensitive microarrays, we identified ,700 genes whose splicing was altered after HDAC inhibition. We provided
evidence that HDAC inhibition induced histone H4 acetylation and increased RNA Polymerase II (Pol II) processivity along an
alternatively spliced element. In addition, HDAC inhibition reduced co-transcriptional association of the splicing regulator
SRp40 with the target fibronectin exon. We further showed that the depletion of HDAC1 had similar effect on fibronectin
alternative splicing as global HDAC inhibition. Importantly, this effect was reversed upon expression of mouse HDAC1 but
not a catalytically inactive mutant. These results provide a molecular insight into a complex modulation of splicing by
HDACs and chromatin modifications.
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Received December 16, 2010; Accepted January 8, 2011; Published February 2, 2011
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Introduction

Pre-mRNA splicing is an essential step in eukaryotic gene

expression and its regulation vastly increases the coding potential

of our genome. Splicing is catalyzed by the spliceosome which

consists of spliceosomal small ribonucleoproteins (snRNPs) and

additional splicing factors [1]. The critical step in splicing is intron

recognition; this is achieved through the association of the splicing

machinery with pre-mRNA via RNA-RNA and protein-RNA

interactions. Interestingly, there is an increasing body of evidence

suggesting that these interactions are not the only determinants of

the splice-site definition [2].

There are many examples of a close coupling between

transcription and splicing ([3,4] reviewed in [5,6]). Several splicing

factors interact with RNA polymerase II (Pol II), which is

important for their recruitment to pre-mRNA and through the

combination of Pol II processivity and promoter identity, splice-

site selection is influenced ([7,8,9,10] reviewed in [11]). This

regulation involves a co-transcriptional definition of splice-sites,

spliceosome assembly and splicing [12,13]. Indeed, the major

regulators of splicing, snRNPs and SR proteins, are found at the

site of active transcription [14,15,16,17,18], demonstrating that

the splicing machinery assembles while the pre-mRNA is still

associated with the DNA template. Such an observation suggests

that chromatin modification might potentially play a regulatory

role in splicing.

In yeast, the histone acetyltransferase found in the SAGA

complex, Gcn5 is involved in co-transcriptional recruitment of the

U2 snRNP [19]. In higher eukaryotes, the SWI/SNF chromatin

remodeling complex associates with pre-mRNA and regulates

alternative splicing of endogenous genes [20,21] and treatment

with histone deacetylase inhibitor trichostatin A (TSA) affects

minigene alternative splicing [8]. Additionally, splicing factors

interact directly with modified histones, although the significance

of these interactions for splicing regulation remains unclear

[22,23]. Recently, genome-wide nucleosome mapping revealed

that nucleosome localization correlates with exon positioning and

may be involved in exon recognition [24,25,26,27]. The role of

nucleosome packing was supported by finding that siRNA-induced

formation of heterochromatin influenced alternative splicing [28].

H3K36 tri-methylation differs at alternative and consecutive exons

and affects alternative splicing through splicing factor recruitment

[29,30,31,32]. In addition, cell membrane depolarization resulted

in altered RNA polymerase II transcription and chromatin

modifications, correlating with alternative splicing changes [30].

In this study we examined whether enzymes catalyzing histone

deacetylation can modulate alternative splicing of human genes.

Results

HDAC activity regulates alternative splicing
In order to explore the effects of HDAC activity on alternative

splicing we treated cells with the potent HDAC inhibitor, sodium

butyrate (NaB) and monitored splicing changes by exon arrays.

The analysis revealed that the splicing of 683 genes (out of 17,771

human genes included in the analysis) was altered upon HDAC

inhibition (Table S1). Targeted genes are mainly involved in

signaling (transmembrane transporters and receptors), transcrip-

tion regulation, apoptosis, cell cycle and cell organization, all

processes that regulate cell fate and differentiation (Fig. 1a).

Interestingly, one of the target genes was encoding the Tau

protein, which is abundantly expressed in central nervous system
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and enhanced inclusion of exon 10 causes neurodegenerative

diseases as frontotemporal dementia with Parkinsonism linked to

chromosome 17 (FTDP-17) [33]. The NaB treatment reduced

expression of the splice variant that is upregulated during the disease

(Fig. 1c). Exons with high splicing change ($3 fold) were further

analyzed with respect to their inclusion or exclusion (Fig. 1b). While

we found a partial preference for overall exon inclusion (389

included/294 excluded) there was a strong correlation between

increased gene expression and alternative events with a partial bias

towards exon exclusion in up-regulated genes. Recently, a similar

relationship was observed when a smaller set of genes was analyzed

after UV irradiation [34]. These data suggest that HDAC inhibition

did not only alter transcription but also substantially affected

splicing pattern. To confirm exon-array results 16 target genes were

further analyzed by conventional RT-PCR. Thirteen genes

exhibited alternative splicing changes predicted by exon-arrays.

Splicing pattern of nine of them is shown in Fig. 1c together with

two control exons with no splicing change (Fig. 1d).

Histone H4 acetylation correlates with alternative
splicing

One of the genes most affected by HDAC inhibition was

fibronectin (FN1). Given that fibronectin’s alternative splicing

variants are well described and have been extensively studied

[35,36,37], we decided to use this gene to further characterize the

role of HDACs in alternative splicing. As a model we analyzed

exon 25 (called EDB or EDII) that was influenced by HDAC

inhibition and exon 33 (called EDA or EDI) that did not alter

splicing pattern upon NaB treatment. Moreover, one of the major

advantageous is that proteins regulating splicing of the EDB exon

were identified. It was shown that SR proteins, in particular

SRp40, and PTB are important for EDB inclusion [38,39,40,41].

To test a potential mechanism via HDACs influence alternative

splicing we first analyzed whether HDAC inhibition affected

expression of general splicing proteins (namely snRNP specific

proteins) and splicing regulators (SR proteins or PTB) (Fig. 2a,b).

Using the monoclonal antibody m104 that recognizes a set of

Figure 1. HDAC inhibition induces global changes in alternative splicing. HDAC activity was inhibited by treating cells with sodium butyrate
(NaB) and splicing changes monitored by exon arrays. The splicing pattern of over 680 genes was changed (see Table S1). (A) Gene ontology analysis
was performed with genes from the microarray annotation file as a background, enrichment score is the -log (p-value) of the chi-square test.
Functional groups of over-represented genes with enrichment score .3 are shown. (B) Exons with high change ($3-fold) were analyzed with respect
to their inclusion or exclusion and divided into three groups according to the expression of a gene where the alternative exons are localized. (C)
Several genes identified as top hits by microarray were confirmed by RT-PCR. Alternative exons were skipped after NaB treatment in three genes
(CACNA1G, FN1 –exon 24 and MAPT). In KREMEN1 alternative 59splice site was used and in CAPN5, RFX2, ITGB4, PLTP and CACNA1H alternative exons
were included after HDAC inhibition. A graphic illustration of microarray data representing the same genomic loci as RT-PCR is shown next to the gels
(non-treated cells - grey line; NaB treatment - black line). Exon array data show expression of individual alternative exons and neighboring
constitutive exons. Relative decrease of the signal from alternative exon probes indicates alternative exon skipping, e.g. CACNA1G alternative exon
signal from control cells (grey line) is higher compared to the surrounding constitutive exons than signal from NaB treated cells (black line). Although
CACNA1G gene expression is elevated in NaB treated cells, the expression of alternative exon decreased, because this exon is preferentially skipped.
(D) Two control exons that did not change splicing pattern upon NaB treatment.
doi:10.1371/journal.pone.0016727.g001
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phosphorylated SR proteins including SRp40 [42] we showed that

HDAC inhibition did not significantly alter the level of

phosphorylated SR proteins (Fig. 2a). In addition, we used a

HeLa cell line stably expressing SRp40-GFP from a bacterial

artificial chromosome (BAC) that preserved endogenous SRp40

regulatory elements [43]. No change in SRp40-GFP expression

was observed following the NaB treatment (Fig. 2b). Moreover, we

did not observe any difference in expression of PTB, Pol II or core

spliceosomal components hSnu114, hPrp4, U5-40K and SmB. It

was shown recently that several splicing regulators including

SRp40 are acetylated [44]. Therefore, we probed acetylation level

of SRp40 before and after HDAC inhibition but did not find any

significant changes in SRp40 acetylation status (Fig. 2c).

To further test whether the HDAC inhibition caused overex-

pression of other splicing factors that may potentially regulate

fibronectin alternative splicing, cellular protein synthesis was

inhibited in conjunction with HDAC activity. The inhibition of

protein synthesis itself did not have any significant effect on EDB

splicing. Further, we did not observe any differences in the splicing

of the EDB exon whether cells were treated in combination with

the ribosomal and HDAC inhibitors or HDAC inhibitor alone

(Fig. 2d). These data indicated that NaB treatment did not

influence splicing via altered expression or modification of

regulatory proteins.

Next, we performed a detailed analysis of chromatin marks

along the FN1 gene including the EDA exon where we did not

detect any change in alternative splicing after NaB treatment. First

we determined the level of acetylated histone H3 and H4.

Acetylation of histone H3 was maximal at the promoter and

dropped in the body of the gene. HDAC inhibition resulted in

decreased H3 acetylation at the promoter (likely reflecting

clearance of the promoter; see Fig. 3h) and partial increase within

the gene (Fig. 3a). In non-treated cells general H4 acetylation was

highest at the promoter. After HDAC inhibition, general H4

acetylation was more uniform and high all over the gene (Fig. 3b).

Interestingly, the increase of H4 acetylation was significantly

higher at the EDB exon than at the EDA exon, whose splicing did

not respond to HDAC inhibition. Notably, different lysine residues

within histone H4 contributed differently to the general H4

acetylation with highest increase at the lysines 8 and 12 (Fig. 3c–f).

Next, we analyzed the level of lysine 36 tri-methylation at histone

H3 as this modification was recently described as a marker of exon

associated chromatin that influenced alternative splicing

[30,31,32]. H3K36 tri-methylation increased partially within the

gene body, including the alternative exon (Fig. 3g). At the same

time no change was found in general nucleosome occupancy

within the body of the gene (Fig. 3h). Together, these data show

that HDAC inhibition has a global effect on chromatin

modifications within the FN1.

As the maximal changes observed were in the acetylation of

histone H4, we tested whether this modification correlated with

alternative splicing. First, we measured the dynamics of H4

acetylation after HDAC inhibition in HeLa cells (Fig. 4a). Histone

acetylation rapidly increased after 3 h of treatment and reached

maximal levels within 6–9 h. However, little splicing effects were

observed within this time period (Fig. 4b and data not shown).

This discrepancy could be caused by mRNA being synthesized

and spliced before HDAC inhibition. Thus, the presence of this

mRNA might delay the detection of any splicing changes. To

reduce the effect of mRNA spliced before HDAC inhibition, cells

were incubated for 6 h with DRB, a reversible inhibitor of Pol II.

Following this incubation, the Pol II inhibitor was removed and

the cells were treated with NaB for an additional 6 h and EDB

inclusion analyzed (Fig. 4b). The subsequent results show that as

soon as 6 h post HDAC inhibition, the splicing of de novo

synthesized pre-mRNA was altered. To further test the correlation

between histone H4 acetylation and FN1 splicing, we analyzed H4

acetylation in a retinoblastoma derived cell line Y79 that almost

exclusively included the alternative exon (Fig. 4c). Using three

different loci of the fibronectin gene, we show that general histone

H4 acetylation is reduced in Y79 cells with respect to HeLa cells

(Fig. 4d).

Pol II processivity changes after HDAC inhibition
Our data suggest a link between alternative splicing and H4

acetylation. It was previously shown that H4 acetylation was

associated with Pol II processivity [45]. Moreover, there have been

several observations that suggested a close relationship between

Pol II dynamics and alternative splicing [7,46]. Based on these

observations we decided to analyze whether HDAC inhibition

affects Pol II processivity. We probed Pol II processivity at several

FN1 gene loci by measuring the ratio between two pre-mRNA

fragments as described previously [30] (Fig. 5a). Our results

Figure 2. HDAC inhibition does not alter phosphorylation,
acetylation or expression of SRp40. (A) HeLa cells or (B) HeLa cells
stably expressing SRp40-GFP from BAC were treated for 15 h with NaB
and levels of SR proteins were analyzed by Western blotting with the
m104 antibody recognizing an SR protein phospho-epitope (A) or anti-
GFP antibody (B). In addition, HDAC inhibition did not alter expression
of several splicing proteins or RNA polymerase II. (C) SRp40-GFP was
immunoprecipitated from SRp40-GFP stable cell line before and after
HDAC inhibition and acetylation assayed by anti-acetyl lysine antibody.
No significant change was observed after six hours NaB treatment.
Representative Western blot and the average of three independent
experiments is shown. (D) Inhibition of protein synthesis does not affect
alternative splicing of the EDB exon in the FN1 gene. Cells were treated
for 9 h with cycloheximide (CHX), sodium butyrate (NaB) or both and
EDB splicing assayed by RT-PCR and RT-qPCR (graph). Inhibition of
HDAC by NaB had a similar effect on EDB skipping after CHX treatment.
A representative RT-PCR (gel) and the average of three independent
quantitative RT-PCR experiments (graph) are shown including SEM,
** indicates p#0.01 of the t-test with respect to non-treated cells.
doi:10.1371/journal.pone.0016727.g002
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showed the highest increase of Pol II processivity in proximity of the

EDB exon that was excluded but only small change at the alternative

EDA exon that did not change splicing after HDAC inhibition.

Next, we determined the distribution of total Pol II as well as

Pol II phophorylated at the C-terminal domain along the

fibronectin gene after HDAC inhibition (Fig. 5b–d). Consistent

with elevated levels of fibronectin mRNA (,5-fold, see Table S1),

we observed an increased occupancy of total Pol II and Pol II

phosphorylated at Ser-5 at the promoter indicating a higher

frequency of transcription initiation (Fig. 5b,c). Surprisingly, we

found lower Ser-2 phosphorylation along the gene upon HDAC

inhibition with EDB exon as the only exception, which likely

reflects accumulation of total Pol II at the EDB exon (Fig. 5d). In

addition, we observed accumulation of total Pol II at the EDB

exon and the intronic sequence downstream of the EDB exon.

Together with measurements of Pol II processivity these data

indicated that HDAC inhibition resulted in increased Pol II

processivity at upstream and downstream introns and slow down

at the EDB exon. HDAC inhibition thus had a complex effect on

Pol II distribution, phosphorylation and processivity along the

fibronectin gene.

HDAC inhibition decreases the association of SRp40 with
the FN1 gene

The EDB exon is regulated by several cis-regulatory elements. A

couple SRp40 binding sites were found within the EDB exon and

the downstream intron, while PTB sites were identified upstream

of the alternative exon. It was reported that EDB exon is

recognized and spliced co-transcriptionaly [12] and that SR

proteins directly associate with the nascent RNA at the

transcription site [17]. Therefore, we decided to test whether

HDAC inhibition influenced the interaction of SRp40 or PTB

with the nascent RNA at the transcription site. To detect SRp40 at

the transcription unit, we used a recently developed system that

utilizes GFP tagged SR proteins and chromatin immunoprecip-

itation (ChIP) [17]. This report showed that GFP tagged SR

proteins are expressed at the same or at lower levels than the

Figure 4. H4 acetylation correlates with EDB exon skipping. (A) The dynamics of histone H4 acetylation was assayed by Western blotting at
different times after NaB treatment. A representative blot and the average of three experiments are shown including SEM. (B) EDB splicing was
assayed six hours after HDAC inhibition. To reduce the possible effects of mRNA synthesis before HDAC inhibition, cells were treated with the Pol II
inhibitor, DRB before the addition of HDAC inhibitor (NaB). The same amount of total RNA was used in each reaction. Following Pol II inhibition
changes in EDB splicing were detected six hours post NaB treatment. A representative RT-PCR (gel) and the average of three independent
quantitative RT-PCR experiments (graph) are shown including SEM. (C) EDB inclusion was analyzed in two different cell lines (Hela and Y79) using RT-
PCR. (D) Histone H4 acetylation in HeLa and Y79 was assayed by chromatin immunoprecipitation at the EDB exon and the surrounding regions (see
graphical representation of the gene loci below the graph). The average of three experiments is shown including SEM, ** indicates p#0.01 and
* p#0.05 of the t-test.
doi:10.1371/journal.pone.0016727.g004

Figure 3. HDAC inhibition induces histone acetylation along the FN1 gene. Chromatin immunoprecipitations were performed 6 h after
HDAC inhibition with NaB using antibodies against (A) acetylated H3, (B) acetylated H4, (C) acetylated H4 lysine 5, (D) acetylated H4 lysine 8, (E)
acetylated H4 lysine 12, and (F) acetylated H4 lysine 16. In addition, (G) tri-methylated lysine 36 histone H3, and (H) total H3 were probed. Probes
detecting gene loci around alternative EDB exon are shaded. The average of at least three experiments is shown including SEM, ** indicates p#0.01
and * p#0.05 of the t-test.
doi:10.1371/journal.pone.0016727.g003
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endogenous protein and that the behavior of this tagged variant is

indistinguishable from its endogenous counterpart. Our results

revealed that SRp40 association with the FN1 gene decreased upon

HDAC inhibition, with the most significant decrease at the alternative

EDB exon (Fig. 6a). The observed decrease was not a result of overall

reduction of SRp40 protein level because HDAC inhibition did not

alter SRp40 expression (Fig. 2b). In contrast, we did not detect any

significant changes in association of PTB or general splicing Sm

proteins over the alternative EDB exon indicating that changes in

SRp40 interaction were not due to general changes in gene accessibility

(Fig. 6b,c). These data indicated that HDAC activity influenced co-

transcriptional association of SRp40 with the EDB exon.

HDAC1 activity modulates fibronectin alternative splicing
To test whether the observed effects on alternative splicing were

specific for NaB or whether it was a general property of HDAC

inhibitors we reduced HDAC activity using three different

inhibitors - TSA, valproic acid (VPA) and NaB and determined

their effect on splicing of the fibronectin exon EDB. TSA is a pan-

HDAC isoform inhibitor that in vitro displays nM potency against

HDAC classes I (HDAC 1, 2, 3 and 8) and II (HDAC 4, 5, 6, 7, 9

and 10) with the exception of HDAC8, which is in the low mM

range [47]. VPA is an established drug in the long-term therapy of

epilepsy. It is a class I selective HDAC inhibitor, which in vitro

inhibits HDAC 1, 2, 3 and 8 in the mM range [48]. Finally,

Figure 5. Pol II processivity correlates with exon skipping. (A) Pol II processivity was determined as a ratio of two pre-mRNA sequences (B:A)
along several regions of the FN1 gene. The abundance of given pre-mRNA locus was determined by quantitative PCR. The increased ratio after NaB
treatment indicates higher Pol II processivity over the assayed region. Pol II exhibited high processivity increased significantly upstream and
downstream of the EDB exon but not over consecutively spliced intron or alternative EDA exon that was not affected by NaB treatment. The average
of three experiments is shown including SEM, * indicates p#0.05 the t-test. (B-D) HDAC inhibition affects Pol II distribution. HDAC activity was
inhibited by NaB for six hours and distribution of (B) total Pol II, (C) Pol II phosphorylated at the C-terminal domain Ser-5, and (D) Pol II
phosphorylated at the C-terminal domain Ser-2 was assayed along the gene by chromatin immunoprecipitation. Probes detecting gene loci around
alternative EDB exon are shaded. The tested gene loci are the same as in fig. 3. The average of three experiments is shown including SEM, ** indicates
p#0.01 and * p#0.05 of the t-test.
doi:10.1371/journal.pone.0016727.g005
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sodium butyrate, a short-chain fatty acid sodium salt, primarily

inhibits class I HDACs, but also HDAC 10 [47]. Following the

treatment of cells with each HDAC inhibitor we observed the

exclusion of the EDB exon in all cases, albeit with differing

efficiencies, which might reflect the fact that targets of these

inhibitors were not fully overlapping (Fig. 7a). The effect on

alternative splicing was detectable after 12 h of HDAC inhibition

and sustained for an additional 12 h. The smallest exclusion was

observed after VPA treatment and Western blot analysis of H4

acetylation revealed that VPA had the smallest effect on H4

acetylation (data not shown). These results correlated with

previous finding that different inhibitors regulated acetylation of

core histones with different efficiencies [44].

To further investigate the role of HDACs in alternative splicing,

two highly expressed enzymes from the HDAC class I family,

HDAC 1 and 2, were knocked-down by RNAi (Fig. S1). Similar to

HDAC inhibition, depletion of HDAC1 but not HDAC2 had a

strong effect on fibronectin splicing, resulting in EDB skipping

(Fig. 7b). To demonstrate the splicing effect of the RNAi treatment

was specific to HDAC1, we used RNAi-resistant mouse HDAC1,

which reverted the EDB splicing pattern (Fig. 7c and Fig. S1a).

The requirement for HDAC1 activity was further supported by

expression of HDAC1 mutant carrying an inactivating mutation

within the active site [49], which was unable to rescue the splicing

phenotype after RNAi treatment. These results together with

HDAC inhibition data demonstrate that the enzymatic activity of

HDAC1 is important for the regulation of fibronectin alternative

splicing.

Discussion

There is an increasing amount of evidence to show that

chromatin modifications play a vital role in pre-mRNA splicing.

However, little is known about the mechanism and factors

involved in this coupling. In this study, we show that alternative

splicing of a hundreds of genes is regulated by HDAC activity.

Recently published in vitro data indicate that several HDAC

inhibitors work by stalling the splicing reaction, suggesting that

protein acetylation might have a role in regulating splicing activity.

However, Kuhn and his co-workers did not identify a potential

protein target, leaving the mechanism of HDAC inhibitor action

on splicing open [50]. In our study, we did not observe any

Figure 6. HDAC inhibition reduces SRp40 association with the EDB exon. (A) SRp40-GFP stably expressed from a BAC cell line was
immunoprecipitated using an anti-GFP antibody. SRp40 interaction with the FN1 gene was measured in cells treated for 6 h with NaB and in control
cells. No changes in distribution of another splicing regulator PTB (B) or general splicing factors Sm proteins (C) were detected. Probes detecting gene
loci around alternative EDB exon are shaded. The average of 3-5 experiments is shown, including SEM, ** indicates p#0.01 and * p#0.05 of the t-test.
doi:10.1371/journal.pone.0016727.g006

Figure 7. HDAC1 depletion affects EDB splicing. (A) Cells were
treated with three different HDAC inhibitors (trichostatin A - TSA,
valproic acid - VPA and sodium butyrate - NaB) for 12 h and 24 h. Their
effect on fibronectin alternative EDB exon splicing was analyzed by RT-
PCR (gel) or quantitative RT-PCR (graph). DMSO and non-treated cells
served as negative controls. (B) HDAC1 and HDAC2 were down-
regulated using siRNA and the resulting EDB splicing assayed. Depletion
of HDAC1 but not HDAC2 resulted in EDB exon skipping. For knock-
down efficiency see Fig. S1. (C) Endogenous HDAC1 was knocked-down
by siRNA. The EDB skipping phenotype was rescued by expressing the
mouse HDAC1 homologue (mHDAC1) but not an inactive mouse
HDAC1 mutant (D174H). NC - negative control siRNA, control plasmid -
GFP transfected cells. Expression of endogenous human (hHDAC1) and
ectopically expressed mouse HDAC1 (mHDAC1) is shown below the
graph. Graphs represent the average of three independent experiments
measured by quantitative RT-PCR including SEM, ** indicates p#0.01
and * p#0.05 of the t-test.
doi:10.1371/journal.pone.0016727.g007
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decrease in global mRNA production indicating that general

splicing was not inhibited after HDAC inhibition with NaB. Thus,

it remains to be clarified whether the observed in vitro effects of

HDAC inhibitors apply to in vivo as well. Interestingly, about half

of the proteins found in the spliceosome are acetylated but the

functional role of these acetylations in splicing is yet to be

established [44]. In addition, Mathias Mann and his colleagues

tested two different HDAC inhibitors (SAHA targeting both

HDAC classes I and II and MS-275 targeting class I) and found

surprisingly low overlap of proteins with enhanced acetylation (43

out of 1750 proteins). Interestingly, histones were among the

common targets and their acetylation increased after treatment

with both drugs [44]. Here, we showed that at least two different

inhibitors had the same effect on fibronectin splicing suggesting

that both act via increased acetylation of histones as shared targets

of different HDAC inhibitors. Moreover, we analyzed acetylation

of the splicing regulator SRp40 but did not detect any changes

upon HDAC inhibition. Despite that we cannot absolutely rule out

the possibility that HDACs affect splicing via deacetylation of

splicing proteins.

Recently it was shown in yeast that histone acetyltransferase

Gcn5 affects co-transcriptional recruitment of U2 snRNPs [19].

The authors proposed that H3 acetylation at the promoter is

responsible for the association of splicing factors with Pol II,

resulting in their recruitment to the transcription unit. Our results

with HDAC inhibitors suggest that histone acetylation can play a

more direct role within the gene body. Histone acetylation around

alternatively spliced elements affects splicing through the alteration

of Pol II processivity that consequently modulates co-transcrip-

tional association of splicing regulators with the nascent RNA.

The coupling between the elongation rate and alternative splicing

was previously indicated by several studies. It was shown that the

mutation in Pol II affecting the speed of synthesis, introduction of a

pause site into the DNA template or depletion of transcription

elongation factors influence alternative splicing outcome of

transiently expressed reporter genes [7,11,28,30,46,51,52]. How-

ever, a direct molecular link between transcription dynamics and

alternative splicing has not been described. Karla Neugebauer and

her colleagues showed that reduction of RNA synthesis rate by

camptothecin increases association of general splicing factors with

the transcription unit indicating a kinetic coupling between RNA

synthesis and interaction of splicing factors with the nascent RNA

[16]. Here we describe that increase of Pol II dynamics in the

vicinity of the alternative EDB exon correlates with reduced co-

transcriptional recruitment of SRp40 supporting the model of

kinetic coupling between transcription and splicing. It was shown

that co-transcriptional association of SR proteins with the

transcription unit is RNA dependent and determined by the RNA

recognition domain [17]. Here we show that SR protein interaction

with the transcription unit also depends on HDAC activity. In

addition, SRp40 distribution does not correlate with Pol II

occupancy, indicating that SRp40 does not interact primarily with

Pol II.

More than 20 years ago it was hypothesized that splice-site

selection is accomplished within a short window after transcription

when RNA is naked and splicing factors can interact with target

sequences [53]. Since then, co-transcriptional recognition of

splice-sites was further supported by the study of Roberts et al.

[52] and the significance of co-transcriptional splice-site recogni-

tion was recently demonstrated using the EDB exon that is

recognized and spliced co-transcriptionally [12,13]. Here we

propose that co-transcriptional recruitment of splicing factor is

modulated by histone modifications and Pol II processivity, which

provides a link between chromatin modifications, transcription

and splicing. Because NaB treatment leads to exclusion as well as

inclusion of alternative exons we speculate that HDAC inhibition

reduces the interaction of splicing enhancers (in the case of exon

exclusion) or silencers (in the case of exon inclusion).

Our data also provide an example of how global changes in

chromatin structure can result in local changes within specific

genes. Global analysis of alternative splicing further revealed that

many genes whose alternative splicing is regulated by HDACs

belong to families of proteins that are involved in signaling and cell

organization; processes that are tightly connected with cell

differentiation. The dynamic interplay between chromatin struc-

ture, transcription and splicing might explain why some genes are

alternatively spliced in different cell types that contain the same or

a similar set of splicing regulators and as such might represent an

efficient method for global splicing regulation during development

and cell differentiation. In addition, many genes affected by

HDAC inhibitor are involved in regulation of membrane

potential, a process linked to signal transduction in neurons.

Thus, HDAC inhibitors (e.g. VPA) used in epilepsy treatment

might act via modulation of splicing pattern in patient neurons.

For example, misbalanced splicing of Tau protein is a primary

cause of frontotemporal dementias. Interestingly, Tau gene is on

the list of genes whose splicing is modulated by HDAC inhibition.

HDAC inhibitors thus might serve as a drug that acts via alteration

of splicing pattern, which can increase their therapeutic potential.

Materials and Methods

Cell culture and treatments
HeLa and HeLa-GFP-SRp40 cells were cultured in DMEM

supplemented with 10% fetal calf serum, penicillin and strepto-

mycin (Invitrogen) and treated with 50 mM DRB (5,6-Dichlor-

obenzimidazole 1-b-D-ribofuranoside), 5 mM sodium butyrate,

5 mM valproic acid, 330 nM trichostatin A (all from Sigma) or

cycloheximide (50 mg/ml, Calbiochem). Y79 human retinoblasto-

ma cells (ATCC HTB-18, a kind gift of Martina Zikova, IMG

ASCR) were cultured in RPMI with 10% fetal calf serum,

penicillin and streptomycin. HeLa-GFP-SRp40 cell line was a gift

from Ina Poser and Tony Hyman from (Max Planck Institute of

Molecular Cell Biology and Genetics, Germany).

Antibodies
The anti-RNA polymerase II H5 monoclonal antibody

(recognizing phosphoserine 2) and H14 antibody (recognizing

phosphoserine 5) were purchased from Covance, polyclonal

antibodies against acetylated lysine 16 histone H4, Pol II (clone

H-224) and mouse anti-GFP antibody (used for Western blotting)

were from Santa Cruz. Monoclonal antibodies specific for

HDAC1, polyclonal for acetyl-histone H4, acetyl-histone H3,

H4K5ac H4K8ac and H4K12ac were all purchased from Upstate.

Anti-H3, anti-H3K36me3 and 8WG16 anti-RNA polymerase II

antibody (used for chromatin immunoprecipitations), anti-

HDAC2 and anti-PTB antibodies were purchased from Abcam.

hSnu114, hPrp4 and U5-40K antiserum was a gift from R.

Lührmann (Max Planck Institute of Biophysical Chemistry,

Göttingen, Germany), monoclonal m104 antibody recognizing

phosphorylated SR proteins was a gift from K. Neugebauer (Max

Planck Institute of Molecular Cell Biology and Genetics,

Germany), anti-tubulin antibody was kindly provided by Pavel

Draber (Institute of Molecular Genetics ASCR, Prague, Czech

Republic), goat anti-GFP antibody used for ChIP was received

from David Drechsel (Max Planck Institute of Molecular Cell

Biology and Genetics, Germany) and the monoclonal anti-PTB

antibody (BB7, used for chromatin immunoprecipitations) was

HDACs Regulate Alternative Splicing

PLoS ONE | www.plosone.org 8 February 2011 | Volume 6 | Issue 2 | e16727



provided by Douglas L. Black (Howard Hughes Medical Institute,

Los Angeles, USA). The anti-Sm antibody Y12 was produced

from a hybridoma cell line (a gift of Karla Neugebauer, Max

Planck Institute for Molecular Cell Biology, Dresden, Germany;

[54]) in the antibody facility at the Institute of Molecular Genetics

ASCR. The polyclonal pan anti-acetyl lysine antibody was

obtained from Immunechem. Nonspecific mouse IgG and anti-

mouse IgM were both purchased from Sigma.

Plasmids and siRNA transfection
Mouse HDAC1 cDNA (gift form Konstantinos Anastassiadis,

TUD, Dresden, Germany) was subcloned into EGFP-N1 with

SalI/NotI. The D174H mutation was introduced by PCR site-

directed mutagenesis as described previously [55]. List of primers

used in this study is listed in List S1. Plasmids were transfected

with FuGENE HD (Roche Applied Science) according to

manufacture’s protocol. Preannealed siRNA duplexes were

obtained from Ambion: HDAC1 59-GGGAUACUUUUAUG-

CAACCtt-39; HDAC2 59-GCCACUGCCGAAGAAAUGAtt-39;

The negative control 1 siRNA from Ambion was used as a

negative control. Oligofectamine (Invitrogen) was used for siRNA

transfection according to the manufacture’s protocol. Cells were

incubated for 48 h (78 h for rescue experiments) before further

treatment.

RNA isolation and RT PCR
Total RNA was purified with TRIzol (Invitrogen), reverse

transcribed using SuperScript III (Invitrogen) and cDNA amplified

by Taq polymerase (MBI Fermentas). Primers used for RT-PCR

and qPCR are listed in List S1.

Quantitative real-time PCR
The ratio of mRNA with EDB exon skipped/included was

calculated from relative Ct values of primers 41196 (FN1 exon 24)

and 42658 (FN1 exon 25, EDB) according to Rtreatment =

2(CtEDB – CtEDBupstream) and normalized to control cells (R

= Rtreated/Rcontrol). RNA polymerase II processivity was calculat-

ed from relative Ct values of primer pairs A (upstream) and B

(downstream) according to pre-mRNA ratiodistal/proximal =

2(CtA – CtB).

Exon arrays
HeLa cells were treated with 5 mM NaB for 15 h and their

RNA was isolated with TRIzol. For each sample, 1 mg of total

RNA was processed, amplified, and labeled according to the

Affymetrix GeneChip Whole Transcript (WT) Sense Target

Labeling Assay (P/N 701880 Rev. 5). This protocol resulted in

biotinylated sense strand cDNA samples, which were subsequently

hybridized to GeneChip Human Exon 1.0 ST Array (Affymetrix,

Inc., U.S.). Washing, staining, and scanning of the arrays was done

according to the Affymetrix GeneChip Expression Wash, Stain,

and Scan User Manual (P/N 702731) protocol. The data were

analysed with the Partek Genomics Suite 6.4 software (Partek

Incorporated, U.S.) using the RMA (Robust Multi-Array)

algorithm. Only probesets that were present in the ‘core’ meta-

probe list (17 800 RefSeq genes and full-length GenBank mRNAs)

were used to identify alternative splicing events with Alt-splice

ANOVA. A list of genes with alternative splicing was generated by

using alternative splicing p-values corresponding to the 0.005 FDR

criterion as a cutoff. To identify differentially expressed genes a p-

value of 0.05 FDR was used as a cutoff.

Changes in exon expression were normalized to the changes in gene

expression (NaBexon expression/NTexon expression)/(NaBgene expression/

NTgene expression) and all exons with values $3 were considered as

included, exons #1/3 as excluded. All data are MIAME compliant

and that the raw data has been deposited in a MIAME compliant

database (GEO, the accession numbers is GSE17397) available at the

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/info/linking.html).

ChIP assays
Y79 or Hela cells (treated with 5 mM NaB for 6 h) were washed

with PBS, crosslinked with 1% formaldehyde/PBS for 15 min at

room temperature and the reaction was stopped by the addition of

glycine (final conc. 125 mM). Cells were scraped into RIPA buffer

(150 mM NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS,

50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 0.5 mM PMSF,

complete protease inhibitor cocktail (Calbiochem), 50 mM NaF

and 0.2 mM sodium orthovanadate) and sonicated to generate

,500 nt chromatin fragments. The same total amount of protein

(1 mg or 0.3 mg for histone H3) was used for immunoprecipita-

tion. Immunoprecipitation with the appropriate antibodies (20 mg

anti-P-ser 2 and anti-P-ser 5 RNA Pol II, 5 mg anti-RNA pol II,

12 mg goat anti-GFP, 5 ml anti-PTB, 500 ml Y12 cell supernatant

and 3 mg anti-H3 per reaction) was performed at 4uC overnight.

Subsequently, the beads were rinsed twice with RIPA, four times

with 100 mM Tris-HCl, pH 8.5, 500 mM LiCL, 1% Nonidet P-

40, 1% deoxycholic acid, twice again with RIPA and twice with

TE. Protein-DNA complexes were eluted with 1% SDS for 10

minutes at 65uC, decrosslinked in the presence of 200 mM NaCl

for 5 h at 65uC and treated with 20 mg proteinase K for 30 min at

45uC. DNA was phenol/chloroform extracted, precipitated and

amplified by quantitative real-time PCR on a LightCycler 480

System (Roche Applied Science). Data sets were normalized to

ChIP input values, and the relative proportions of gene fragments

obtained from ChIP with a nonspecific antibody were subtracted

from the values obtained from templates derived from ChIP with

the specific antibody: 2(Ct(input) – Ct(spec)) -2(Ct(input) – Ct(unspec)). To

measure the level of phosphorylated RNA pol II the signal

obtained for gene regions was further normalized to the value

obtained in non-treated cells with the primer pair FN1 65438. To

compare the level of acetylated histone H4 on FN1 in HeLa and

Y79 cells the signal obtained for FN1 was normalized to the primer

pair amplifying an intergenic region on chromosome 10 where no

annotated genes could be found [16].

Native ChIP assays
Hela cells (treated with 5 mM NaB for 6 h) were scraped into

PBS and resuspended in 0.3 M sucrose, 60 mM KCl, 15 mM

NaCl, 5 mM MgCl2, 0.1 mM EGTA, 0,2% NP-40, 15 mM Tris-

HCl, pH 7.7, 0.5 mM DTT, complete protease inhibitor cocktail

(Calbiochem) and 5 mM NaB. Nuclei were released by passage

through a 22 G needle and loaded on a sucrose gradient (1.2 M

sucrose, 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 0.1 mM

EGTA, 15 mM Tris-HCl, pH 7.7, 0.5 mM DTT, protease

inhibitors and 5 mM NaB) and centrifuged for 20 min at

2000 g, 4uC. Pellets were resuspended in Mnase digestion buffer

(0.32 M sucrose, 1 mM CaCl2, 4 mM MgCl2, 15 mM Tris-HCl

pH 7.7 and protease inhibitors) and digestion performed for 6 min

at 37uC (1U Mnase/30 mg chromatin). Reactions were stopped by

EDTA (final concentration 10 mM) and centrifuged. The

supernatant was taken and the pellet resuspended in 0.2 mM

EDTA, 1 mM Tris/HCl, pH 7.7, incubated for 1 h at 4uC,

centrifuged again and both supernatants mixed. ,100 mg of

chromatin was diluted in nChIP buffer (50 mM NaCl, 5 mM

EDTA, 50 mM Tris/HCl, pH 7.7) and incubated overnight at

4uC with appropriate antibody (10 mg anti-acetyl H3, 6 mg anti-
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H3K36me3, 4 mg anti-H4K16ac, 10 mg nonspecific IgG, 5 ml

anti-acetyl H4, 6 ml anti-H4K12ac and 5 ml anti-H4K5ac and

anti-H4K8ac). The beads were washed once with nChIP buffer,

then twice in the same buffer with increasing salt concentration

(75 mM NaCl, 125 mM NaCl, 175 mM NaCl). Complexes were

eluted with 1% SDS for 15 min at room temperature, treated with

20 mg proteinase K for 30 minutes at 45uC and DNA was

recovered with the QIAGEN PCR Purification Kit, quantified by

qPCR and signal compared to the input and non-specific

antibody: 2(Ct(input) – Ct(spec)) -2(Ct(input) – Ct(unspec)).

Western blotting and immunoprecipitation
Western blotting and immunoprecipitation was performed as

described previously [55]. Protein extraction from TRIzol after

RNA isolation was done according to manufacturer’s protocol.

Supporting Information

Figure S1 HDAC1 activity regulates fibronectin alternative

splicing. (A) Before cells were transfected with wild type mouse

HDAC1 or a control plasmid, endogenous HDAC1 was knocked-

down by siRNA. Subsequently, EDB splicing was analyzed by

RT-PCR. Expression of HDAC1 after siRNA treatment was

assayed by Western blotting. The anti-HDAC1 antibody cross-

reacted with mouse HDAC1, which resulted in an increased signal

in the last line. Snu114 served as a loading control. (B) Reduction

of HDAC2 expression after siRNA treatment. Total RNA and

proteins were isolated from cells treated with HDAC2 siRNA,

negative control siRNA or untreated. The relative amount of

HDAC2 mRNA was assayed by RT-qPCR and protein by

Western blotting.

(EPS)

List S1 Supplementary primer list.

(DOC)

Table S1 Alternative spliced genes decreased expression.

(XLS)
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