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Abstract

There are strong evidences that Mycobacterium tuberculosis survives in a non-replicating state in the absence of oxygen in
closed lesions and granuloma in vivo. In addition, M. tuberculosis is acid-resistant, allowing mycobacteria to survive in acidic,
inflamed lesions. The ability of M. tuberculosis to resist to acid was recently shown to contribute to the bacillus virulence
although the mechanisms involved have yet to be deciphered. In this study, we report that M. tuberculosis resistance to acid
is oxygen-dependent; whereas aerobic mycobacteria were resistant to a mild acid challenge (pH 5.5) as previously reported,
we found microaerophilic and hypoxic mycobacteria to be more sensitive to acid. In hypoxic conditions, mild-acidity
promoted the dissipation of the protonmotive force, rapid ATP depletion and cell death. Exogenous nitrate, the most
effective alternate terminal electron acceptor after molecular oxygen, protected hypoxic mycobacteria from acid stress.
Nitrate-mediated resistance to acidity was not observed for a respiratory nitrate reductase NarGH knock-out mutant strain.
Furthermore, we found that nitrate respiration was equally important in protecting hypoxic non-replicating mycobacteria
from radical nitrogen species toxicity. Overall, these data shed light on a new role for nitrate respiration in protecting M.
tuberculosis from acidity and reactive nitrogen species, two environmental stresses likely encountered by the pathogen
during the course of infection.
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Introduction

Two billion individuals worldwide are currently infected with

Mycobacterium tuberculosis, the etiological agent of human

tuberculosis (TB) [1]. Among these, only 10% suffer from

active TB, implying that the majority of M. tuberculosis infections

result in latent disease which may be reactivated under certain

circumstances, including co-infection with HIV and other

immuno-suppressive conditions [2]. Latent TB has been defined

as an asymptomatic phase of the disease during which

mycobacteria remain dormant. However, recent evidences

indicate that rather than a binary distribution between active

and latent disease, tuberculosis should be seen as a wide

continuous spectrum of infection outcomes characterized by a

range of lesions that provide different microenvironments with

different abilities to support bacterial replication, persistence or

killing [3].

The location of latent bacilli remains to be formally

demonstrated; current paradigm is that quiescent bacilli reside

within fibrotic granulomatous lesions in the lung where M.

tuberculosis has become dormant in response to hypoxic conditions

[4–6]. The physiology of hypoxic non-replicating M. tuberculosis

has been studied in vitro in the Wayne model of persistence in

which mycobacterial cultures are subjected to self-generated

oxygen depletion in sealed containers [7]. In this model,

mycobacteria undergo drastic changes in their energetic and

metabolic status [8,9]. However, the molecular mechanisms

involved in the survival of non-replicating hypoxic mycobacteria

remain largely unknown. The DosR/DosT two-component

system has been shown to be essential for the adaptation of

mycobacterial cells to survive under anaerobic conditions [10,11],

although the role of the DosR regulon in the adaptive response of

M. tuberculosis to hypoxia has recently been reassessed [12]. In

addition to hypoxia, M. tuberculosis is exposed and responds to

many other environmental stresses including nutrient depriva-

tion, iron restriction, mild acidity, and reactive nitrogen and

oxygen species [3]. Studies have shown that mycobacterial

transcriptional responses to these environmental cues often

PLoS ONE | www.plosone.org 1 October 2010 | Volume 5 | Issue 10 | e13356



involve overlapping gene sets [13–16], calling for cautious

interpretation of data when analyzing the role of a specific

exogenous stimulus in the disease progression.

Acidity is believed to be an important environmental parameter

encountered by M. tuberculosis during its host infection, in

particular in inflamed lesions where necrotic activated macro-

phages release substantial amounts of their acidic phagolysosomal

content. This view is supported by the high in vivo killing activity of

pyrazinamide, an antitubercular drug only active at acidic pH

[17]. M. tuberculosis is capable of responding transcriptionally to

acidic pH in vitro [16] and has the means to resist to acidity,

although the molecular mechanisms have yet to be elucidated

[18]. A recent work has identified a membrane-bound protein

directly involved in M. tuberculosis intrabacterial pH maintenance,

and established for the first time a link between acid resistance and

virulence [19].

In this work, the mechanisms contributing to acid-resistance

were investigated. We show that the ability of M. tuberculosis to

resist acid stress is oxygen-dependent. In the absence of an efficient

terminal electron acceptor, mild acidic conditions promoted the

dissipation of the protonmotive force, rapid ATP depletion and

cell death. Survival under hypoxic acidic conditions was restored

in the presence of nitrate that is acting as an effective terminal

electron acceptor (TEA) for anaerobic respiration. In addition, we

show that nitrite, a toxic by-product of nitrate respiration, was

largely secreted in the extracellular milieu rather than being

detoxified intracellularly by the bacillus. Lastly, nitrate respiration

was found equally important in protecting M. tuberculosis against

reactive nitrogen species which are likely to be encountered by the

pathogen in the infected host.

Materials and Methods

Bacterial cells, culture conditions and growth media
M. tuberculosis H37Rv (ATCC # 27294), derived-mutant and

complemented strains were maintained in Dubos complete

medium which consists of Dubos broth (Difco) supplemented with

0.05% (v/v) Tween-80, and 10% Dubos Medium Albumin

(Difco). The pH of the medium was adjusted by addition of pre-

determined volumes of 1.25 M tri-sodium citrate buffer and 10 M

hydrochloric acid. Where indicated, the culture medium was

supplemented with exogenous nitrate or nitrite by addition of

sodium nitrate or sodium nitrite solutions, respectively. When

appropriate, hygromycin and kanamycin were added at 80 ug/ml

and 20 ug/ml, respectively.

Enumeration of bacteria was performed by plating on

Middlebrook 7H11 Agar (Difco) containing 0.5% (v/v) glycerol

and the number of colony-forming units (CFU) was determined

after 16 days incubation at 37uC.

Anaerobic shift-down assay
Aerated pre-cultures in Dubos complete medium were harvest-

ed at mid-log phase, washed twice in phosphate-buffered saline

(PBS) supplemented with 0.05% Tween-80 (PBS-T), and resus-

pended in Dubos complete medium at a final OD600nm of 0.1. The

bacterial suspension was then distributed in 24-well tissue culture

plates (1 ml/well). Methylene blue (1.5 ug/ml) was added as an

indicator of oxygen depletion in control wells. The plates were

incubated in air-tight anaerobic jars (BioMerieux) with Anaerogen

and Campygen gas packs (Oxoid), to generate anaerobic and

microaerophilic atmospheric conditions, respectively. Atmospheric

oxygen depletion was indicated by the anaerobic indicator strip

(BD Diagnostics). Hypoxia was typically achieved within 24 hours

after incubation under anaerobic conditions, as witnessed by the

complete decolorization of the oxygen sensor methylene blue.

Survival was monitored by CFU count up to 10 days after

methylene decolorization. Each experimental sample consisted of

triplicate wells.

Generation of DnarGH and DnirBD M. tuberculosis
mutants

The DnarGH and DnirBD mutants were generated in the H37Rv

background by homologous recombination using suicide plasmid

backbone pYUB854 and as described previously [20]. Briefly,

regions flanking the target genes were amplified by PCR and

cloned into pYUB854 containing the PacI-digested lacZ/sacB

insert from pGOAL17 [21]. M. tuberculosis H37Rv bacteria were

electroporated with 1 ug of the UV-irradiated plasmid solutions as

described previously [9]. Hygromycin resistant white colonies were

selected and correct deletion was verified by PCR and southern

blot analysis. Complementation of the DnarGH mutant was

performed by introducing the narGHJI operon cloned into the

integrative plasmid pMV306 [22].

ATP, nitrite production and membrane potential
Mycobacterial suspensions were centrifuged at 4uC and the

bacterial pellets were resuspended in 200 ul Dubos complete

medium. Intracellular ATP production was measured using the

BactTiter-Glo Microbial Cell Viability Assay kit (Promega) as

described before [9]. Intracellular and extracellular nitrite

production was quantified using the Griess reagent kit (Molecular

Probes) following the manufacturer’s instructions. Briefly, 130 ul

water, 150 ul sample (cell lysate or supernatant) and 20 ul Griess

reagent were combined in each well of a 96-well tissue culture

plate and the reaction was incubated for 30 min before

absorbance reading at 548 nm. Absorbance readings were

extrapolated to absolute nitrite concentrations by reference to a

nitrite standard curve (ranging from 12.5 to 100 uM). Membrane

potential of M. tuberculosis cells was measured using the BacLight

Bacterial Membrane Potential Kit (Molecular Probes) as described

previously [9]. Briefly, cells were harvested, washed with PBS-T,

and incubated with 3, 39-diethyloxacarbocyanine iodide (DiOC2)

for 30 min. The membrane potential of positive control samples

was collapsed by the addition of the ionophore carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) for 30 min prior to the addition

of DiOC2. The green and red mean fluorescence intensities (MFI)

were measured by flow cytometry using FACS Calibur (BD

Biosciences) and data were analyzed using CellQuest Pro (BD

Biosciences). The cell membrane potential was defined as the ratio

of red to green MFI values.

Statistics
Statistical significance was assessed by the Student’s t-test, and

two-tailed p values of less than 0.05 were considered statistically

significant.

Results

M. tuberculosis acid resistance is oxygen-dependant
M. tuberculosis resistance to acidity was studied under aerobic,

microaerophilic and hypoxic conditions. M. tuberculosis H37Rv was

inoculated into 24-well plates containing culture medium buffered

at neutral (6.6) or mild acidic (5.5) pH and exposed to aerobic,

microaerophilic or hypoxic atmosphere, the latter being typically

achieved within 24 hours.

At neutral pH, hypoxic and microaerophilic mycobacteria did

not multiply but survived without significant viability loss for up to

10 days (Fig. 1). Instead and as expected, the bacterial cells

Nitrate Respiration in TB
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multiplied more than 10-fold at neutral pH in the presence of

oxygen. In mild acidity (pH 5.5), mycobacteria still multiplied

efficiently in the presence of oxygen, illustrating M. tuberculosis acid

resistance property previously described [18,19] (Fig. 1). However,

under anaerobic conditions, M. tuberculosis was found to be

exquisitely sensitive to acid with only 1% of the original inoculum

recovered at 10 days post-inoculation at pH 5.5 (Fig. 1).

Interestingly, a similar phenotype was observed under microaero-

philic conditions. These observations thus indicated that M.

tuberculosis ability to cope with acidity is oxygen-dependant, linking

the respiratory functions to acid resistance.

Collapse of the membrane potential precedes cell death
in hypoxic acidic M. tuberculosis

To further characterize the link between respiration and acid

resistance in M. tuberculosis, the energetic status of the bacterial cells

was determined at neutral and mild acidic pH under hypoxic

conditions. Membrane potential and intracellular ATP level were

measured as early as 4 days after the anaerobic shift-down, where

M. tuberculosis viability at both pH is still comparable (Fig. 2A). The

membrane potential of hypoxic mycobacteria incubated at pH 5.5

was largely dissipated when compared to cells incubated at pH 6.6

(Fig. 2B). In addition, the intracellular pool of ATP was reduced by

more than 80% (Fig. 2C). These data indicated that in absence of

oxygen and at mild acidic pH, the membrane potential of M.

tuberculosis is compromised, thereby resulting in disruption of the

protonmotive force and in reduced ATP production through

respiration.

The availability of an efficient exogenous alternate
terminal electron acceptor protects hypoxic M.
tuberculosis from acid-mediated killing

In absence of oxygen, bacteria use alternative terminal electron

acceptors (TEAs) whose nature varies depending on the compo-

sition of the culture medium and on the microorganism species.

With a relatively high redox potential, nitrate represents the most

efficient TEA after oxygen for a variety of facultative anaerobes,

including M. tuberculosis [23]. We thus investigated whether

through anaerobic respiration, exogenous addition of nitrate helps

protect hypoxic M. tuberculosis from an acid challenge. Increasing

concentrations of nitrate were added to the culture medium, and

M. tuberculosis viability was determined at 10 days post-inoculation.

At pH 5.5 and under hypoxia, exogenous addition of 2.5 mM

NO3 and above resulted in cell viability comparable to that

observed at neutral pH (Fig. 3A). Moreover, addition of exogenous

nitrate significantly enhanced cell viability across a range of

increasing acidic pH conditions (Fig. 3B).

The levels of intracellular ATP were measured in mycobacteria

grown in the presence or absence of exogenous nitrate. At pH 6.6,

the level of intracellular ATP was found nitrate-independent

(Fig. 4A&B). In contrast, the level of intracellular ATP measured

at pH 5.5 in the presence of nitrate was comparable to that

observed at neutral pH (Fig. 4A&B), correlating with the enhanced

cell viability observed. Consistently, the membrane potential was

significantly improved in the presence of exogenous nitrate at

pH 5.5, although not fully restored when compared to the

membrane potential measured at neutral pH (Fig. 4C). These

data thus suggested that partial restoration of the membrane

Figure 1. M. tuberculosis viability under hypoxic acidic condi-
tions. M. tuberculosis H37Rv bacteria were incubated under aerobic
(open bar), microaerophilic (grey bar) or anaerobic (black bar)
conditions in Dubos medium adjusted to pH 6.6 or 5.5 as indicated.
After 10 days incubation, bacterial cultures were plated for colony
counting. The dotted line represents the average number of bacteria
present in the inoculum at day 0. Results are expressed as the means of
Log10 CFU/ml 6 SD of triplicates.
doi:10.1371/journal.pone.0013356.g001

Figure 2. Membrane potential and ATP production in M. tuberculosis grown in hypoxic and mild acidic conditions. M. tuberculosis
H37Rv bacteria were incubated under hypoxia and at pH 6.6 (open bar) or pH 5.5 (black bar). After 4 days incubation at 37uC, the bacterial
suspensions were plated for colony counting (A), or were processed for (B) measurement of Dy as an indicator of the membrane potential, or (C)
determination of intracellular ATP. Results are expressed as the means 6 SD of triplicates. MFI, Mean fluorescence intensity; RLU, relative
luminescence units. *, p,0.005.
doi:10.1371/journal.pone.0013356.g002
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potential by exogenous nitrate at pH 5.5 is sufficient to lead to the

production of ATP levels and cell viability comparable to that

measured at neutral pH.

Altogether, these data demonstrated that the presence of

exogenous nitrate protected hypoxic mycobacteria from acid-

mediated killing, and correlated with the maintenance of high level

of intracellular ATP and partial restoration of the membrane

potential, strongly suggesting a role for nitrate in M. tuberculosis acid

resistance through anaerobic respiration.

Importantly, increased concentrations of nitrite (NO2), a by-

product of nitrate respiration, were detected in the nitrate-

supplemented culture media (Fig. 4C), further supporting the

hypothesis that nitrate acts as TEA for M. tuberculosis anaerobic

respiration in acidic condition.

The respiratory nitrate reductase is required for acid
resistance of hypoxic nonreplicating M. tuberculosis

M. tuberculosis expresses a respiratory membrane bound-nitrate

reductase [23,24]. A M. tuberculosis mutant deleted for the narGHJI

locus and its complemented counterpart were thus constructed.

The mutant, complemented and parental strains all displayed

comparable sensitivity to acid stress under hypoxic conditions

(Fig. 5A). However, the addition of exogenous nitrate failed to

protect the DNarGH mutant from acid-mediated killing, demon-

strating that the respiratory nitrate reductase is required (Fig. 5A).

Consistently, no increase in intracellular ATP concentration and

no nitrite production were detected in the culture medium of the

DNarGH mutant (Fig. 5B). In contrast, high CFU counts and ATP

levels (Fig. 5A), as well as production of nitrite in the culture

medium (Fig. 5B) were measured for the parental and comple-

mented strains in the presence of exogenous nitrate. Altogether,

these data demonstrated that under hypoxic acidic conditions,

reduction of nitrate into nitrite by the respiratory nitrate reductase

NarGHJI confers acid resistance to hypoxic M. tuberculosis through

anaerobic respiration.

Protection against nitrite toxicity is mediated through
active export of nitrite outside the bacterial cell

Nitrite is a toxic by-product of nitrate respiration. In enterobac-

teria, NirBD is required to detoxify nitrite produced intracellularly

during nitrate respiration [25]. The M. tuberculosis NirBD homo-

logue has been proposed to catalyze the reduction of nitrite to

ammonium [26,27], and we hypothesized that such enzymatic

activity may help prevent the intracellular accumulation of toxic

levels of nitrite arising from nitrate respiration under hypoxia and at

acidic pH. A M. tuberculosis mutant deleted for the nirBD locus was

thus constructed (DNirBD mutant), and its resistance to acid was

tested under hypoxic conditions in the presence or absence of

exogenous nitrate. Both the wild type and DNirBD mutant strains

displayed comparable viabilities (Fig. 6A), indicating that the NirBD

complex is not required for nitrate-dependent protection from acid-

induced death under hypoxia. It also suggests that nitrite produced

upon nitrate reduction through the NarGH complex is not further

reduced into ammonium by the NirBD complex. Accumulation of

intracellular nitrite being potentially toxic for the bacterial cell, we

therefore hypothesized that nitrite may thus be excreted. To test this

possibility, the amount of extracellular and intracellular nitrite was

quantified. More than 90% of total nitrite produced was found in

the extracellular milieu (Fig. 6B), suggesting that in M. tuberculosis,

export of endogenous nitrite produced upon nitrate respiration

likely constitutes the main strategy to protect the bacterial cell from

nitrite toxicity.

Nitrate respiration protects hypoxic M. tuberculosis from
radical nitrogen species toxicity

Since nitrite does not seem to be significantly converted into

ammonium but rather excreted outside the bacterial cell, its rapid

conversion to nitric oxide (NO) at acidic pH [28] might still be

harmful to M. tuberculosis. We thus tested the resistance of hypoxic

M. tuberculosis to a NO stress at acidic pH. In this assay, nitrite,

which at acidic pH is stochiometrically converted into NO, was

used as a source of NO, as described elsewhere [28].

Under hypoxia and at neutral pH, addition of increasing

concentrations of nitrite did not affect significantly M. tuberculosis

viability (data not shown), consistent with the fact that at neutral

pH, nitrite is not efficiently converted into NO and is therefore not

toxic for the bacterial cell. In contrast, at pH 5.5, 0.1 mM nitrite

and above led to a significant drop in M. tuberculosis viability with

more than 95% cell death (Fig. 7). Interestingly, the presence of

exogenous nitrate prevented such viability loss (Fig. 7), implicating

that nitrate respiration protects hypoxic M. tuberculosis from NO

stress in hypoxic nonreplicating M. tuberculosis.

Discussion

Latent TB has been characterized by the presence of

nonreplicating tubercle bacilli which are resistant to most of the

Figure 3. Role of exogenous nitrate in M. tuberculosis viability under hypoxic and mild acidic conditions. (A) M. tuberculosis viability at
pH 5.5 (open bar) or pH 6.6 (black bar) in the presence of increasing concentrations of exogenous nitrates. (B) M. tuberculosis viability in the presence
(black cirle) or absence (open circle) of 20 mM of exogenous nitrate and at increasingly acidic pH. After 10 days incubation, the bacterial suspensions
were plated for colony counting. Results are expressed as the means of Log10 CFU/ml 6 SD of triplicates.
doi:10.1371/journal.pone.0013356.g003
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anti-tubercular drugs currently used to treat the active disease

[3,9]. A better understanding of how M. tuberculosis is able to persist

in its host, presumably in a hostile environment, for extended

periods of time, will thus certainly facilitate the development of

effective therapeutic strategies to eradicate latent tuberculosis.

Hypoxia and acidity are two major environmental parameters

encountered by the bacilli during the course of infection within

granulomatous, inflamed lesions, as well as in the phagolysosomes

of activated macrophages.

Whereas numerous studies have focused on M. tuberculosis

response to hypoxia, fewer reports are available on the capability

of M. tuberculosis to resist to acid. The isolation of acid-sensitive

mutants suggested that M. tuberculosis has the means to resist to acid

[18,19,29]. Such mutants displayed a defect in various cell wall

functions and biosynthesis, Mg2+ transporter, pore-forming

protein, and other membrane-bound proteins suggesting that the

cell envelope clearly plays an important role in M. tuberculosis

resistance to acid and maintenance of the intrabacterial pH.

However, the actual molecular mechanisms involved in M.

tuberculosis acid resistance have yet to be deciphered. Interestingly,

the well-characterized mechanisms responsible for acid resistance

in Gram negative bacteria have yet to be described in M.

tuberculosis, including acid tolerance response (ATR), potassium-

proton antiporters, amino acid decarboxylases and F0F1 ATPases

[18].

Here, we provide evidence that M. tuberculosis resistance to acid

involves the respiratory activity. We showed that M. tuberculosis

resistance to acid is oxygen-dependent. Killing under hypoxia and

mild acidity (pH 5.5) correlated with depolarization of the cell

membrane and a drop of the intracellular ATP level. However, M.

tuberculosis survival was greatly enhanced in the presence of

exogenous nitrate, and paralleled with the maintenance of cell

membrane potential and high levels of intracellular ATP.

Furthermore, a mutant impaired in its respiratory NarGH nitrate

reductase activity was not rescued upon addition of exogenous

nitrate. Altogether, these data demonstrated that acid resistance in

M. tuberculosis is dependent on the respiratory activity, hence on the

protonmotive force, and that in absence of oxygen, nitrate acts as

an effective terminal electron acceptor (TEA) to protect hypoxic

mycobacteria from acid challenge.

In a previous work, we suggested that endogenous fumarate

may be used as a TEA in hypoxic nonreplicating mycobacteria at

neutral pH [9]. However, its low redox potential makes fumarate a

much less efficient TEA compared to oxygen; it is thus likely that

fumarate is not capable of maintaining effectively M. tuberculosis

membrane potential and generating sufficiently high ATP levels

under acidic conditions. These observations thus point to a role of

nitrate respiration in protecting hypoxic mycobacteria specifically

during acidic conditions.

The nitrate reductase system has been linked to M. tuberculosis

virulence before; high nitrate reductase activity has been

correlated with increased virulence of some M. tuberculosis lineages

and their evolutionary success [30]. Also, the narGH locus was

found actively transcribed in granulomas from the lungs of TB

patients [31]. However, we (this study, data not shown) and others

[32] did not find that a narGH KO M. tuberculosis mutant was

significantly attenuated upon nasal infection of immunocompetent

mice. This absence of phenotype is likely accounted for by the fact

that granulomatous lesions and cavities formed in M. tuberculosis-

infected mice are not anoxic [32], thereby preventing the bacilli to

be exposed to hypoxic conditions and possibly making anaerobic

(nitrate) respiration dispensable in this animal model of tubercu-

losis. Thus, despite some indirect evidences and correlations, the

role of the narGH locus in M. tuberculosis virulence remains to be

demonstrated, and the mechanism(s) involved to be deciphered.

Here, we propose that the NarGH-mediated nitrate reductase

activity is involved in M. tuberculosis virulence and persistence by

protecting hypoxic mycobacteria from acid killing, an environ-

mental stress encountered by the pathogen in inflamed granulo-

matous lesions and cavities [19]. A recent study reported by

Figure 4. ATP and nitrite production in the presence of
exogenous nitrate. M. tuberculosis viability (A), ATP production (B),
membrane potential (C) and nitrite production (D) were assessed under
hypoxic conditions at neutral (6.6) or mild acidic (5.5) pH, in the
presence (black bar) or absence (open bar) of 20 mM nitrate after 4 and
10 days incubation period. Results are expressed as the means 6 SD of
triplicates. RLU, relative luminescence units; MFI, Mean fluorescence
intensity. *, p,0.005.
doi:10.1371/journal.pone.0013356.g004
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Figure 5. Viability, nitrite and ATP production of a narGH KO mutant under hypoxic acidic conditions. (A) Viability profiles of the wild-
type (WT), DNarGH mutant and complemented (Comp) M. tuberculosis strains in the absence (open circle) or presence (dark circle) of 20 mM nitrate.
(B) Nitrite and (C) intracellular ATP production measured for WT, DNarGH and Comp strains at day 10 in the absence (2) or presence (+) of 20 mM
nitrate (NO3

2). Results are expressed as the means 6 SD of triplicates. RLU, relative luminescence units.
doi:10.1371/journal.pone.0013356.g005

Figure 6. Role of NirBD in nitrite detoxification. (A) Viability of wild-type (open bar) and DNirBD (black bar) M. tuberculosis strains under hypoxia
and at pH 5.5, in the presence of increasing concentrations of nitrate. Bacterial suspensions were plated after 10 days incubation for colony counting.
(B) Intracellular (left panel) or extracellular (right panel) concentrations of nitrite after 10 days incubation of wild-type H37Rv bacteria under hypoxic
mild acidic (pH 5.5) conditions, and in the absence (black square) or presence (black circle) of 20 mM nitrate in the culture medium. Results are
expressed as the means 6 SD of triplicates.
doi:10.1371/journal.pone.0013356.g006
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Sohaskey indicated that exogenous nitrate had no effect on M.

tuberculosis survival during gradual oxygen depletion (Wayne

model), whereas the NarGH-mediated respiratory activity was

found involved in M. tuberculosis survival during sudden anaero-

biosis (and neutral pH), where complete anaerobiosis was achieved

within 2 hours and was oxyrase-dependent [33]. In our anaero-

biosis model instead, similar to the Wayne model, oxygen

depletion is bacterial respiration-dependent and is therefore more

gradual since 24 hrs are necessary to achieve complete anaerobi-

osis, as indicated by methylene blue decoloration. Therefore, the

physiology of mycobacteria grown in the sudden anaerobiosis in

vitro model described by Sohaskey and in ours is likely to be very

different, which may not allow direct comparison of the data

obtained in both models. In contrast, consistent with Sohaskey’s

observations in the Wayne model, we found no difference in M.

tuberculosis survival during anaerobiosis at neutral pH (6.6) with or

without exogenous nitrate; the difference was only seen at mild

acidic pH (5.5), whereby the presence of exogenous nitrate

enhanced M. tuberculosis survival.

Nitrate respiration through NarGH activity leads to the

production of nitrite which we showed is toxic for the bacterial

cell at acidic pH where nitrite is stochiometrically and spontane-

ously converted into nitric oxide (NO), a potent antimicrobial

molecule [28]. To protect itself from nitrite toxicity at acidic pH,

we showed that M. tuberculosis does not rely on the NirBD nitrite

reductase activity for a further reduction of nitrite into

ammonium. Instead, nitrite produced upon nitrate respiration is

mostly exported outside the cell, likely through predicted nitrite

extrusion proteins including NarK3 and NarU [26].

Previous studies have shown that M. tuberculosis responds

transcriptionally and phenotypically by switching from active

division to a nonreplicating state when exposed to NO [8,14,17].

NO is a potent antimicrobial molecule that can affect DNA and

proteins, including a number of enzymatic activities, in particular

haem-containing enzymes, NADH dehydrogenase, succinate

dehydrogenase, some metallo-enzymes, and ribonucleotide reduc-

tase [34]. Our data show that the NarGH-mediated respiratory

activity protects mycobacteria from NO toxicity, thus suggesting

that NO does not impair NarGH functionality. Instead, nitrate

reductase activity, and hence nitrate respiration, was shown to be

upregulated upon NO exposure [35]. We propose that protection

against NO stress conferred by the nitrate respiration is mediated

by maintenance of the membrane potential and high levels of

ATP, the latter being required for nitrosylation-induced repair

mechanisms [36]. Alternatively or additionally, complete sequenc-

ing of the M. tuberculosis genome has revealed the existence of glbN

and glbO genes encoding for distantly related truncated hemoglo-

bins (trHb) N and O, respectively, which catalyze the conversion

of NO to nitrate [26]. Previous studies have indeed clearly shown a

role of M. tuberculosis and M. bovis BCG trHbN in NO

detoxification [37,38]. Thus trHb may reveal crucial for the

survival of M. tuberculosis during infection not only to protect

bacteria from NO attack but also to provide the pathogen with an

effective TEA for anaerobic respiration.

In conclusion, our work describes a new role for the nitrate

respiration and nitrate reductase activity, in protecting hypoxic M.

tuberculosis against a mild acid challenge. We show that nitrate acts

as an efficient TEA that allows hypoxic mycobacteria resist not

only to mild acidity but also to NO stress; with the appropriate

metabolic enzymes, M. tuberculosis appears well-equipped to utilize

any available nitrate source for respiration and energy production.
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