Browse Subject Areas

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

The Syncytial Drosophila Embryo as a Mechanically Excitable Medium

Figure 2

Wavefront propagation and speeds.

a) -coordinate of nuclei at the onset of metaphase (blue diamonds) and anaphase (red pluses) vs. time for the wavefront shown in Figure 1. Both events show two clear wavefronts moving in from near the embryo poles (solid lines). b) Ratio of the speeds of the wavefronts as measured by the onset of anaphase () and metaphase (), for different embryos and cycles. Each embryo is indicated by a different symbol and color, with the closed and open symbols representing two different measurement sets. Ratios for a given cycle and different embryos are slightly separated horizontally. c) Wavefront speed vs. cycle. Two of the embryos contribute two waves per cycle (coming in from opposite poles, as in Figure 1a; blue squares and green diamonds). Although the actual propagation speeds vary significantly from one embryo to the next, they all follow the same trend, decreasing with successive cycles. d) Time interval between the onset of metaphase and anaphase vs. cycle. e) Log-linear plot of wavefront speeds vs. cycle, normalized by the speed of its first observed wavefront (if the first observed wave front is in cycle 10) or 0.71 times its first observed wavefront (if the first observed wavefront is in cycle 11). The black open circles connected by a dashed line corresponds to a scaling of 0.71 per cycle, showing that all embryos follow the same exponentially decaying trend. f) Average distance between nearest neighbors on a logarithmic plot. The dashed line corresponds to a dependence , where is the cycle number and . In Figures b–f, the same symbol/color corresponds to the same embryo.

Figure 2