Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Ablation of the Id2 Gene Results in Altered Circadian Feeding Behavior, and Sex-Specific Enhancement of Insulin Sensitivity and Elevated Glucose Uptake in Skeletal Muscle and Brown Adipose Tissue

Figure 7

Glucose tolerance, insulin sensitivity and insulin release in Id2−/− females is unaltered.

A) GTT of young female Id2−/− and WT mice (RM-ANOVA: time (T), P<0.001; genotype (G), n.s.; interaction (I), n.s.). B) GTT of old female Id2−/− and WT mice (T, P<0.001; G, n.s.; I, n.s.). C) ITT of young female Id2−/− and WT mice (T, P<0.001; genotype, n.s.; I, n.s.). D) ITT of old female Id2−/− and WT mice (T, P<0.001; G, P<0.01; I, n.s.). E) Glucose-stimulated insulin release in young female Id2−/− and WT mice (T, P<0.001; G, n.s.; I, n.s.). F) Glucose-stimulated insulin release in old female Id2−/− and WT mice (T, n.s.; G, P = 0.055; I, n.s.). No effect of aging was observed in the glucose tolerance of either WT or Id2−/− females (RM-ANOVAs, n.s.). An aging effect of insulin sensitivity was observed for WT and Id2−/− females (T, P<0.001; age, P<0.001; I P<0.001). Values shown represent mean ± SEM. **p<0.01.

Figure 7

doi: https://doi.org/10.1371/journal.pone.0073064.g007