Browse Subject Areas

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Multi-Neuronal Refractory Period Adapts Centrally Generated Behaviour to Reward

Figure 3

Stimulation of a nerve mediating food-reward activates the CPG only when the extra-CPG population is active.

A. Schematic showing the spiking activity of neurons before during and after the generation of a feeding cycle. Electrical stimulation was applied randomly at one of three time points (1–3) during spontaneously generated activity recorded in 5 preparations. The preparations were allowed to recover for 1–2 minutes between each stimulus. The effects of stimulation at the different time points are shown in a representative recording from one preparation (B–D). B. Electrical stimulation during the quiescent period associated with a feeding cycle had no effect on population activity. C. When extra-CPG activity has only partially resumed following a feeding cycle, electrical stimulation elicits some additional extra-CPG activity but fails to activate the CPG. D. When all extra-CPG neurons have resumed spiking, electrical stimulation triggers a full feeding cycle.

Figure 3