Browse Subject Areas

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Multi-Neuronal Refractory Period Adapts Centrally Generated Behaviour to Reward

Figure 2

Spike-sorted multi-neuronal activity.

A. Each row shows the firing pattern of a single neuron. The rows are organized so that neurons reflecting the intermittent bursting activity of the feeding CPG are shown in red in the upper rows and the near-continuous activity of extra-CPG neurons are shown in blue in the lower rows. Orange triangles above indicate fictive feeding cycles. Four spontaneously generated fictive feeding cycles are shown in A. B. Two spontaneously generated feeding cycles are followed by twelve cycles induced by a food stimulus (green bar). C. A dopamine antagonist (red bar) prevents sucrose-evoked high-frequency feeding. D. A single spontaneous feeding cycle is followed by thirteen feeding cycles induced by dopamine (blue bar). E. Inter-cycle interval (ICI) distribution for 159 spontaneously generated pairs of feeding cycles recorded in 37 preparations. F. ICIs of 41 food-induced feeding cycle pairs recorded in 8 preparations. G. ICIs of 54 dopamine-induced feeding cycle pairs recorded in 8 preparations.

Figure 2