Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Multi-Neuronal Refractory Period Adapts Centrally Generated Behaviour to Reward

Figure 1

Spike sorting of MEA data.

A. Photomicrograph of the buccal ganglia on the multi-electrode array. The black dots are electrodes. Two neuronal cell bodies are highlighted in green. B. Voltage data recorded on the numbered electrodes in A. C. Spike sorting was performed using triangulation (see text). The coloured dots represent the amplitude (colour bar 20–300 µV) and estimated spatial origin of spikes detected on the numbered electrodes in A. Two spike clusters are indicated by ellipses. Note that their location corresponds to the two neurons highlighted in A. Their spike-sorted rasters are shown in D and E. D. and E. Spikes in the two clusters highlighted in C correspond to identically timed spike patterns recorded on multiple electrodes, which are presumed to originate in individual neurons. The sorting process distinguishes spikes generated by different neurons that are recorded on the same electrode. For example, the spikes in the voltage data recorded on electrode 13 indicated by a red arrow and bracket in fact originate at electrode 7, as evidenced by their higher amplitude there.

Figure 1

doi: https://doi.org/10.1371/journal.pone.0042493.g001