S3 Details on fiber radius measurement with AFM

Figure D AFM scan of a fiber. a): 'Left', 'Top' and 'Right' are cross-sections used for calculation of the mean diameter. D-period is not visible only due to scale. b): Cross-section profile. The red and blue lines correspond to Height Trace and Height Retrace, respectively.

To calculate the diameter of the fiber we use the following formula:

$$
\text { Fibril diameter }=\overline{\text { Top Height }(l)-\frac{\text { Left Height }(l)+\text { Right Height }(l)}{2}}
$$

Here l is the coordinate along the fiber.

Additional way of checking the AFM settings is performing a deconvolution of the profile shape using the geometry of AFM tip (Figure E).

Figure E Olympus TR400PSA AFM tip geometry (a) and dimensions (b). (Data from http://www.asylumresearch.com/ProbeStore)

Figure F To AFM scan profile deconvolution
Based on simple geometrical model we derived the theoretical dependence of a relation between width (H) and height (D) of the cross-section profile (Figure $\mathrm{D}, \mathrm{b})$ on the angle between the fiber and horizontal axis α :

$$
\frac{W}{D}=\frac{1}{\cos \alpha} \frac{1}{\tan \left(\frac{(\pi / 2)-\tan ^{-1}(\tan (7 \pi / 35) \cdot(\sin \alpha+\cos \alpha))}{2}\right)}
$$

Eq. I

For vertical fiber $(\alpha=0)$ the ratio is $W / D=1.921$.

