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1 Speech Processing and Automatic Speech Recognition

In this section we introduce the technical details about the speech signal processing components in
the proposed empathy prediction system, including Voice Activity Detection (VAD), Diarization,
Automatic Speech Recognition (ASR), and speaker role matching.

1.1 Voice Activity Detection

Voice Activity Detection (VAD) aims to separate regions of the audio signal that contain speech from
those that do not contain speech (e.g., silences and environmental noises). The present research
employed the VAD module developed by Van Segbroeck et al. [1]. The module uses a variety of
spectral and acoustic features extracted from the audio signal, including: (I) spectral shape, (II)
spectro-temporal modulations, (III) periodicity structure due to the presence of pitch harmonics,
and (IV) the long-term spectral variability profile. After extracting the raw features, we normalize
each feature dimension by the variance.

Using training data that are already manually annotated into speech and non-speech regions,
we train a neural network model for the VAD task. The parameters of the VAD system are
optimized on a separate set of audio signals referred to as the development set. Both the training
and development data are independent of the data used for the evaluation of our system (i.e.,
predicting empathy codes) described in the body of this work. The two sets employ a sample
of 67 sessions drawn from the MI randomized trials, totaling 5.2 hours and 2.6 hours in length,
respectively.

The output of the VAD model is in a form of voicing probabilities from 0 to 1. We transform
this to a segmentation format as follows: Initially, we set a threshold of 0.5 in voicing probability
to convert the continuous probabilities into 0 or 1 speech labels. To eliminate long speech segments
that are difficult to handle in later steps, and are not likely to happen in dyad, we adaptively
increase the initial threshold of 0.5 until all speech segments are below a maximum length of 60
seconds. Moreover, very short breaks of speech segments may not be necessary, and could break
the continuity of utterances. We merge two consecutive speech segments if the gap is below 0.1
seconds and the combined segment length is still below 60 seconds. Finally, we drop stand-alone
short segments, which are less than 1 second and likely to be noise in speech detection. This gives
the initial VAD output. For further details on the VAD models, please see [1].
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1.2 Diarization

The corpora used in the current work were collected using a single, far-field mic, and hence, the
therapist and patient voices are contained in a single recording and audio file. The diarization
module aims to separate the speech of the therapist from the patient. Since it is based on acoustics
only, it can separate the two speakers, but it is unable to assign their roles (i.e., it can separate
speakers but not say who is therapist and who is patient), which is handled in a separate step. We
can employ diarization information to (1) enable the ASR module to adapt the acoustic models in
an unsupervised fashion to the speaker patterns thus improving transcription accuracy, (2) identify
what each speaker said after the ASR module, and (3) in coordination with the ASR transcript
identify the role of each speaker.

Given the application scenario, we assume the number of speakers in the audio recording is
known as two speakers — the therapist and the patient. Thus the diarization mainly includes two
steps: segmenting speech into speaker homogeneous segments, and clustering these segments by
assigning a speaker label (speaker #1 or speaker #2) to each one.

We consider two diarization methods, and run the processing for two iterations, described as
follows.

1. We employ the method in [2], which takes the VAD results and Mel-Frequency Cepstrum Co-
efficients (MFCC) as inputs, segments the speakers by Generalized Likelihood Ratio (GLR),
and clusters the speakers by agglomerative clustering (results denoted as D-1). In parallel,
we employ the method in [3], which takes the same input and GLR speaker segmentation
approach, but uses Riemannian manifold method for speaker clustering (results denoted as
D-2).

2. Apply the ASR based on the diarization result of the latter approach (D-2) and obtain the time
alignment information from the best decoding path. Extract speech vs. non-speech timing
information from the alignment and regard that as a new type of VAD, while disregarding
the decoded text.

3. Employ the ASR derived VAD information and the MFCC features, run the method in [3]
again, with the setting of slicing speech to a finer degree of 1 minute long segments, which is
shown in [3] to improve the accuracy (diarization results denoted as D-3).

The diarization approaches employed in this work do not have a pre-trained model, but learn
from the data in an unsupervised manner. We use a rule-based fusion process to exclude erroneous
results in D-3 while trying to recover from D-2 and D-1. We employ the following session-level
features for the fusion: (I) percentage of speaking time by each speaker; (II) longest duration of
a single speaker’s turn. Our rules are based on the intuitive assumption that it is unlikely in
counseling that one speaker keeps speaking for very long time. Thus, we define outliers as session-
level features that are three times the standard deviation away from the mean value. The final
fusion of diarization results based on these rules is as follows.

4. If D-3 is not an outlier, we take D-3 as the final result; otherwise, if D-2 or D-1 is not an
outlier, we take them in turn as the final result. If both D-2 and D-1 are outliers as well, we
take D-3 as the final result.

1.3 Automatic Speech Recognition (ASR)

For the purposes of the present work, we designed an Automatic Speech Recognition (ASR) system
that incorporates a large vocabulary and is able to recognize continuous speech. The system is
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implemented using the Kaldi library [4] for both training and testing purposes. For the future
clinical deployment and real-time feedback, we are currently developing an online (i.e., real time)
version of the system using the Barista framework [5]. In the following we describe details of the
system in various aspects.

Feature We transform input audio recordings to 16kHz sampled, single channel waveform. We
then extract standard 13-dim MFCC features from the signal and append the first and second
order time differentials of the MFCC features to the complete feature vector.

Dictionary We employ the combined lexicon from the WSJ [6] and the Switchboard [7] corpora.
These dictionaries do not fully cover our domain. To improve coverage for the domain specific
words, we manually added pronunciations to the dictionary for the words that appeared over
8 times in the training data. For example, vicodin (a drug) and mm (a filler word) were
added to the combined dictionary. We ignored words from our dataset that were of low
frequency (appearing less than 8 times) as they are mostly misspelled (e.g., “quesitons”,
“uglly”, “somwhehere”, etc.) or made-up words (e.g., “twelvish”, “prereqs”, “worriness”)
due to errors in transcription and the oral conversation scenario. In total there were only 322
word tokens ignored, less than 3/10000 of all word tokens in the training data.

Text The manually derived transcripts need normalization to regulate the text format for training
the ASR. In the transcripts, overlapped speech regions are marked by a “<...|...>” format,
where the words before and after the bar “|” belong to the primary and secondary speakers,
respectively. In total there are 15895 instances of overlapped speech, compared to 36907 talk
turns (multiple overlaps may happen in one turn). However, since ASR is not able to decode
overlapped speech, we keep only the longer utterance in overlapped regions. We keep all the
repetitions and fillers as they are in the transcript. We normalize non-verbal vocalization an-
notations into two types including “[laughter]” and “[noise]”. Finally we replace underscores
by spaces, and remove punctuations and all special characters.

AM We train the Acoustic Model (AM) for several iterations. First, we train a GMM-HMM based
AM on short utterances with a mono-phone setting. This initial model is gradually expanded
to a tri-phone structure fitted to the entire training set. We then employ feature Maximum
Likelihood Linear Regression (fMLLR) and Speaker Adaptive Training (SAT) techniques to
improve the model. Finally, we train a Deep Neural Network (DNN) based AM following the
previous model.

LM A Language Model (LM), representing the probabilistic occurrence of sequences of words, is
critical for the accurate performance of the ASR. We train two tri-gram (i.e., 3-gram) LMs
using Kneser-Ney smoothing [8]. The first is a background model, trained on a large in-
domain text corpus of “General Psychotherapy” interactions (see description in [9]). With
more training data, this LM is better able to represent the probabilistic occurrence of language
usage, but it is of a more general nature and less matched to the interactions at hand (i.e., the
language in general psychotherapy is far more variable than that found within a corpus of MI
only). The second LM is trained on the MI randomized trials. Although the data is sparse,
the LM is able to better capture the specific language usage in MI since it better fits the type
of conversation compared to the background model. The two LMs are mixed together, with
a mixing weight optimized on a small sample held-out from the MI randomized trials corpus.
This produces the final LM for the ASR. For this process we employ the SRILM toolkit [10].
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We compare the performance in two settings: having manually labeled speaker boundaries and
speaker roles, or totally automatic using the signal derived diarization results. For the latter, we
employ the ASR twice. The additional first-pass ASR provides a rough transcript employed in the
3rd step of the diarization process as described above.

1.4 Speaker role matching

The diarization module only separates distinct speakers but does not associate speakers with their
roles in the interaction (i.e., which speaker is the therapist and which is the patient). In order to
model therapist language, we need to match the speakers with their roles automatically, based on
their specific language styles. For example, the therapist may ask more questions and use the word
“you” more often. The degree by which each speaker’s language matches language generated by
other speakers of the same role can be employed to identify the role of the speaker. The detailed
procedure is listed as follows.

1. Train therapist (T) and patient (P) specific language models, based on the labeled transcripts
of therapist and patient language in the training corpus (MI randomized trials). These two
models represent the speaking style of the two participants based on their roles. We train
those, as described above, as tri-gram LMs with Kneser-Ney smoothing, using SRILM.

2. For vocabulary consistence and robustness, mix the final ASR LM into each role-specific LM
with a small weight.

3. Let the speakers be S-1 and S-2. Compute the perplexities of the decoded utterances by S-1
and S-2 on the two role-specific LMs, respectively. Denote ppl1,T , ppl1,P as the perplexities
of S-1 on therapist and patient LMs, respectively; similarly obtain ppl2,T and ppl2,P by S-2.

ppl(w1 · · ·wm) = (P (w1 · · ·wm))−
1
m = e−

L(w1···wm)
m (1)

Here perplexity is defined as a metric based on normalized log-probability of the text, shown
in (1). w1 · · ·wm represents the word sequence of length m. P (w1 · · ·wm) and L(w1 · · ·wm) stand
for the likelihood and log-likelihood of the word sequence, respectively. A smaller perplexity is
associated with a higher likelihood, suggesting a better fit of the text to the LM.

ppl1,T ≤ ppl1,P & ppl2,P ≤ ppl2,T (2)

ppl1,P < ppl1,T & ppl2,T < ppl2,P (3)

4. We compare the perplexity results as follows.
If (2) holds, we match S-1 to therapist and S-2 to patient, because S-1 has the smaller
perplexity on the therapist LM, and similarly S-2 has smaller perplexity on the patient LM.
If (3) holds, we match S-1 to patient and S-2 to therapist.
If neither of (2) or (3) holds, we take both S-1 and S-2 as the therapist. We tend to incorporate
more utterances into therapist language. This compromises the transcript purity but ensures
that anything the therapist may have said is included in the transcript since our target is to
model the therapist’s empathy behavior.

5. Finally, we check if the diarization result is highly biased, i.e., if one speaker occurs more
than 10 times of the other speaker. In such cases the perplexity comparison might not
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be effective due to the sparsity of text input. The biased distribution may be due to an
erroneous diarization that may have clustered speech from both speakers against nonverbal
vocalizations. As a solution, we match the speaker assigned more utterances with the therapist
to ensure more complete coverage of therapist language.

2 Language Modeling for Empathy Prediction

2.1 Maximum Likelihood based N-gram Language Model

We train high vs. low empathy N-gram LMs based on the manual transcripts of high vs. low empathy
sessions in the CTT dataset, respectively. Mathematically, N-gram models are usually constructed
by estimating the conditional word probabilities following the Maximum Likelihood criteria. Such
an estimation is often implemented by a count-and-divide approach for the initial step and refined
by various smoothing techniques to improve the robustness against data sparsity [8]. Specifically,
the above LMs are again tri-gram LMs with Kneser-Ney smoothing, implemented with SRILM.
For robustness we again mix the final LM in ASR (that provides good language coverage) to high
and low empathy LMs with a small weight of 0.1.

For an utterance u containing a word sequence w1, w2, . . . , wm, the LM estimates the likelihood
of u being generated by the specified language model. A tri-gram model makes an assumption that
a word occurrence depends only on the previous two words occurring. For example, the probability
of generating utterance u by a LM is given by P (u), shown in (4). Following the rule of conditional
probability, P (u) is expanded to the form in (5) and (6). With the tri-gram assumption, further
dependencies are dropped so that P (u) becomes the form in (7). It is possible in practice to estimate
statistically robust P (wi|wi−1wi−2) from relatively large size text data, which can be used to derive
the likelihood P (u) of the entire utterance. Likewise, a bi-gram (i.e., 2-gram) model assumes a
word only depends on the previous one word; and a uni-gram (i.e., 1-gram) model assumes all
words are independent.

P (u) = P (w1w2 · · ·wm) (4)

= P (w1)P (w2|w1)P (w3w4 · · ·wm|w2w1) (5)

= P (w1)P (w2|w1)
m∏

i=3

P (wi|wi−1wi−2 · · ·w1) (6)

= P (w1)P (w2|w1)
m∏

i=3

P (wi|wi−1wi−2) (7)

We denote the likelihoods of generating u by the high vs. low empathy LMs as P (u|H) vs.

P (u|L), respectively. Following Bayes’ rule, we model the posterior probability P (H|u) by the
likelihoods as in (8), where we assume equal prior probabilities P (H) = P (L).

P (H|u) =
P (u|H)P (H)

P (u|H)P (H) + P (u|L)P (L)
=

P (u|H)

P (u|H) + P (u|L)
(8)

We compute a session level empathy score αn as the average of utterance-level evidences as
shown in (9), where U is the set of therapist utterances, n is the order of the n-gram LM, and
Pn(H|u) is the posterior based on the n-gram LM.
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αn(U) =
1

K

K∑

i=1

Pn(H|ui), U = {u1, u2, . . . , uK}. (9)

Finally, due to data sparsity, we carry out the above analysis in a leave-one-therapist-out cross-
validation. That means we keep one therapist’s sessions out from the training, and train the high
vs. low empathy models on all other sessions in the CTT set. Once the models are obtained, we
test the left out sessions so as to predict the empathy codes. We then repeat this process for all
therapists. The final report of performance is based on the overall results of all iterations of the
cross-validation. For the 200 sessions in the CTT set, there are 133 therapists, so that we repeat the
LM training and testing for 133 times. In this way the prediction of empathy is always independent
to the therapist.

2.2 Fusion of Empathy Scores for Code Prediction

Given the methods just described, we have obtained empathy prediction in the form of averaged
posterior probabilities αn, n = 1, 2, 3. These cues may provide complementary information about
empathy. Therefore, we propose a fusion step using Linear Regression to integrate them into a single
predictor. Here we take the annotated MITI empathy code as dependent variable, and employ αn

as independent variables. Meanwhile, we predict the class of high vs. low empathy, using linear
Support Vector Machine (SVM) [11] implemented in the LIBSVM toolkit [12]. Here we take the
label of high or low empathy class as a binary target variable, and take the 3-dimensional scores of
αn as features.

The above analyses are under a leave-one-therapist-out cross-validation (i.e., (N − 1 training)
vs. (1 evaluation), for N times), where N is the number of distinct therapists. However, in order
to train the regression and SVM models, we need an adequate number of samples being tested
by the empathy prediction methods, but a single therapist has too few sessions to start training
the linear regression or SVM model. As a solution, we conduct an internal leave-one-therapist-out
cross-validation in each cross-validation round, within the training part of the data (i.e., [(N − 2
empathy model training) vs. (1 empathy model testing / SVM training when the
N − 1 iterations are finished)] vs. (1 evaluation), for a total of (N − 1) × N times). Such a
scheme allows training the regression and SVM models on the empathy scores in the internal cross-
validation ((N − 1)× term) , which are then tested on the empathy scores of the left out therapist
in the main cross-validation (×N term).

2.3 Data usage summary

As noted in the main text, three different corpora were used in the present models. We present a
summary of the data corpora usage in our work, as shown in Table 1.

3 Supplemental Results of Speech Processing

In this section we provide some additional results of the speech processing components. In Table 2
we list session-wise average false alarm (detecting non-speech as speech), miss (detecting speech as
non-speech), and total error rate for the initial VAD module. We also list average false alarm (non-
speech marked as speech), miss (speech marked as non-speech), speaker error rate (wrong speaker
label), and total error rate for the final diarization results. In the implementation, we evaluate
the VAD and diarization performances against manual annotations on speaking-turn level. The
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Table 1: Summary of data corpora usage
Corpus Phase VAD Diarization ASR-AM ASR-LM Role Empathy

MI randomized trials
Train X X X X

Test

General Psychotherapy
Train X X

Test

CTT
Train X

Test X X X X X X

timing marks ignored gaps, backchannels, and overlapped regions within turns. As a result there
are inherent errors in the reference data. However, these errors should not affect the conclusions
significantly, since their offset-times are small.

Table 2: VAD and diarization performance.
Results F.A. (%) Miss (%) Spk. err. (%) Tot. err. (%)

VAD 5.8 6.8 - 12.6

Diarization 4.2 6.7 7.3 18.1

In Table 3 we report session-wise average ASR performance in terms of substitution (replacing
a word with other word or words), deletion (missing a word or words), insertion (adding a word
or words), and total Word Error Rate (WER)for the cases of decoding with manual or automatic
diarization. The reference transcripts are generated by human annotators, and the speech recogni-
tion is based on the automated processes described above (ASR). The diarization however is done
in two different methods: through human annotations (manual; the human decides who is speaking
as indicated in the transcript) or through an automated machine process (automatic diarization).
Thus we have two specific error rates for ASR, one when diaraization is done by humans (manually
via the transcript), and the other automatically.

We see that in the automatic diarization case there is a slight increase in WER, which might be
a result of VAD and diarization errors, as well as the influence on speaker adaptation effectiveness.
For the fully automatic case, 151 sessions (75.5%) found a match of speaker roles, while 49 sessions
failed to find a match.

Table 3: ASR performance for manual and automatic diarization cases.
Condition Sub. (%) Del. (%) Ins. (%) WER (%)

Manual diarization 27.1 11.5 4.6 43.1

Automatic diarization 27.9 12.2 4.5 44.6
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