
Supplementary material: Ian S. Howard & Piers Messum, PLOS ONE 2014 
Learning to pronounce first words in three languages: an investigation of 
caregiver and infant behavior using a computational model of an infant  
 
Appendix S1: Extended methods of the Elija 
computational model of an infant 
We model an infant as a computational agent, Elija, who has no a priori 
articulatory or perceptual knowledge of speech [1]. The main features of Elija’s 
motor system are shown in Fig. 5A. Elija has a speech production capability 
based on a modified Maeda articulatory synthesizer [2,3]. This is driven by a 
motor system in which representations of motor actions are akin to the gestural 
score used in the Task Dynamics model [4]. A motor pattern is a sequence of 
articulatory targets for the synthesizer’s control parameters. A controller assumes 
that the articulator movements follow 2nd order critically damped trajectories and 
interpolates between these targets. The resulting sequences of time-varying 
parameter vectors drive the synthesizer. This can lead to acoustic output played 
out via a loudspeaker.  
A schematic of Elija’s perceptive system is shown in Fig. 5B. Elija’s hearing 
system receives input from a Rode Podcaster USB microphone. Autocorrelation 
analysis is applied directly to the input waveform to estimate the fundamental 
frequency F0. An auditory filter bank provides initial pre-processing of the input 
[5]. Our implementation is based on the gammatone-like spectrograms 
implemented by Ellis [6]. 
Analysis of Elija’s own acoustic output is carried out directly on the digitized 
signal from the synthesizer although in principle this could also be achieved by 
passing acoustic output back from the loudspeaker via the microphone.  
We note here that the potential for bone-conducted sound to impair an infant’s 
ability to compare his own production to that of his caregivers is a potential 
problem for acoustic matching theories, as discussed in [7], but is not a problem 
with the Elija paradigm. In the sound discovery process, Elija uses a measure of 
acoustic diversity, with motor, tactile and acoustic metrics. This partly uses 
acoustic comparisons of Elija’s output with his former output. However this 
constitutes only basic spectral comparison. The mechanism would operate 
similarly in the presence of bone-conducted speech.  
Further processing estimates signal salience, which is used as a component in 
Elija’s reward mechanism. Pre-processed input can be recorded in auditory 
memory and also compared against past memories using a speech sound 
recognizer that is based on Dynamic Time Warping (DTW) [8]. This enables Elija 
to discriminate different speech sounds.  
 
Maeda articulatory synthesizer 
Elija has a vocal apparatus based on the Maeda articulatory synthesizer [2,3] 
and we include a short review of the Maeda model here for the convenience of 
the reader. The model represents the cross sectional profile of the vocal tract in 
2-dimensions along the mid-sagittal plane. The parameters in the model were 
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estimated by Maeda using factor analysis of an x-ray dataset consisting of cine-
radiographic vocal tract profiles and labiofilm frontal lip shape recordings of 2 
female French speakers producing 10 French sentences. The images were 
recorded at 50 frames per second and in total there about 1000 frames of data 
were analyzed. The vocal tract was divided up into 3 sections – lip opening, 
principal vocal tract and pharynx. The principal vocal tract was measured in 
semi-polar coordinates, the lips by an elliptical opening and the larynx by its 
height. A jaw model [9] was then invoked to explain the dataset in terms of six 
parameters: jaw, tongue-body, tongue-tip, lip height, lip width and larynx height. 
Vocal tract shape was assumed to arise from a linear combination of the state of 
these elementary articulators and a directed factor analysis was used to describe 
vocal tract shape in terms of these parameters. This method allowed the 
contribution of a particular elementary articulator to be subtracted from the 
dataset using linear regression, making it possible to explain the input data in 
terms of the pre-defined elementary articulators. This would not be the case if 
standard factor analysis had been used, in which case there would have been no 
simple interpretation of the action of the factors. The contributions of control 
parameters were subtracted in a specific order to find orthogonal parameters. 
Thus - starting with jaw height - jaw, lip and tongue control parameters were 
estimated. 
In our implementation of the Maeda articulatory synthesizer [2,3], ten parameters 
are used to control the vocal apparatus, the first seven being articulatory: P1 Jaw 
position, P2 Tongue dorsum position, P3 Tongue dorsum shape, P4 Tongue 
apex position, P5 Lip height (aperture), P6 Lip protrusion, P7 Larynx height. In 
addition, an LF voice source model was added to give control over a voiced 
excitation model [10]. (LF, named after the authors Liljencrants and Fant, is a 
four-parameter model of glottal flow.) This makes use of two additional 
parameters: P8 Glottal area, and P9 Fundamental frequency. In the original 
VTCALCS implementation a velo-pharyngeal port was added to the basic model 
and its opening can also be controlled using parameter P10 Nasality. Thus the 
Maeda synthesizer enabled Elija to produce both oral and nasal sounds. After 
the vocal tract profile is specified by the elementary articulator parameters, an 
equivalent digital filter is computed and used to filter the excitation from the voice 
source and other noise sources. Fricatives are simulated in the model by 
injecting noise at locations in the vocal tract where turbulent airflow is predicted.  
In our experiments, the synthesizer operated with an output-sampling rate of 24 
kHz. To approximate an infant vocal tract adequately for the purposes of these 
experiments, the model’s default physical dimensions, which originally reflected 
the sizing of an adult female vocal tract, were scaled down by a factor of 0.8. (We 
note that there are other differences between adult and infant vocal tracts. For 
example, this scaling does not reflect some other differences in the size of the 
pharynx [11]). 
Similarly, the mid-range of the fundamental frequency was shifted from 210 Hz to 
400 Hz. We added proprioceptive feedback of lip and tongue contact, which was 
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generated at times when the vocal tract tube cross-sectional area reached zero. 
Elija  was implemented in C++ and all other analyses were written in Matlab 
(Mathworks Inc, Natick MA, USA) running on a PC. Acoustic output was played 
to the caregiver from the PC’s inboard DAC output via a pair of active 
loudspeakers. 
 
Modeling motor patterns and articulator dynamics 
As in a previous implementation of Elija [1], motor actions were modeled in a way 
akin to the gestural score used in the Task Dynamics model [4] and movement of 
Elija’s articulators between targets was implemented by assuming 2nd order 
dynamics that follow critically damped trajectories [12]. In this work we extend 
our former approach and the dynamic properties of different vocal tract 
articulators are now no longer all grouped together. Rather they are given 
individual properties (see below). We note that other approximations to articulator 
movements could also be made, e.g. using a minimum jerk trajectory, which is 
often used to describe human arm movements [13]. 
In Elija, a motor pattern can be a sequence of up to three different sub-patterns. 
Each sub-pattern specifies parameters needed to control the vocal apparatus 
and contains a 10-element target vector, a 10-element starting time vector and a 
10-element duration time vector specifying how long a target is maintained. 
There is also a single overall transition speed scaling parameter β. Thus each 
sub-pattern consists of 31 elements. 
Each component target vector gives rise to movement of the articulators from 
their current state towards their new target values. As stated above, such 
articulator movement follows a critically damped trajectory, leading to articulator 
movement towards their targets without overshoot [15]. We compute the 
trajectory of each control parameter using the equation: 

x(t) = xe + xs − xe( ) 1+ βt( )e−βt  
Where x(t)  is the parameter value at time t , xs  is the starting point, xe is the end 
point (target value), the constant β  is given by the relation β 2 = k m , where k  is 
the spring constant and m  is the associated mass of the dynamical system. 
The value of 𝛽 associated with the different vocal tract articulator parameters is 
matched to their dynamic properties. For movements of the articulators during 
vocalic, sonorant and fricative sound generation, a value of 𝛽 = 40 is used, since 
it matches typical human articulation speeds well. However, during plosive sound 
generation transitions are much faster due to the rapid release of air pressure at 
the point of vocal tract closure. To account for this phenomenon, transitions 
following closure have their associated 𝛽 value increased to 160. This leads to 
the generation of more realistic plosive sounds

   
Unsupervised sound discovery 
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Elija’s discovery of sound-generating motor patterns under developmentally 
plausible influences is formulated as an optimization problem that operates 
without caregiver involvement, and is an extension of previous work [14]. The 
modeling of autonomous exploration has recently become an area of interest for 
several researchers, including those working in the field of developmental 
robotics [15-20]. We note that Elija uses both intrinsic and extrinsic 
reinforcement, as described by Warlaumont [21], during his sound discovery and 
refinement process. 
 
The objective function 
Elija uses rewarded exploration of the vocal tract parameters to find motor 
patterns that generate vocal actions. This discovery process is formulated as an 
optimization problem. Optimization is a computational technique that can find the 
set of parameters of a function that specify its maximum (or minimum) value. 
Simple gradient ascent (hill climbing) is an iterative process, in which steps are 
taken in the direction of the gradient. In Newton’s method, a Taylor expansion is 
used in the estimation of the steps needed, which makes use of the curvature of 
the objective function. This involves computing the second derivative, or Hessian, 
of the objective function. For computational reasons, quasi-Newton optimization 
algorithms are often used in practice, which avoids directly computing such 
second derivatives. In our experiments the parameters to be optimized are those 
that define the motor patterns, and we use quasi-Newton gradient descent to find 
values, which maximize their associated objective function or ‘reward’, as 
described below. 
 

Computing reward 
In our model, the objective function for the optimization of motor patterns 
includes terms that encourage salience and diversity and discourage motor 
effort. In addition, we now include a term that discourages the discovery of 
‘sensitive’ motor patterns, as explained below. The continuous scalar reward 
value 𝑅 computed in objective function of the algorithm is given by; 

𝑅 =    (𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑒 + 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 − 𝑒𝑓𝑓𝑜𝑟𝑡 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 

 
Salience 
The salience term encourages Elija to find motor patterns that generate sensory 
consequences. Sensory salience was estimated by combining several 
components: averaged weighted low and weighted high frequency power over 
the duration of the motor pattern and the average touch signal.  
Specifically, we compute a weighted sum of speech power, ratio of low to high 
frequency power (above and below 6 kHz), ratio of high to low frequency power 
(above and below 6 kHz) and high pass filtered touch contact (frequency cut-off = 
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1 Hz). Second order Butterworth filters were used to implement all the low and 
high pass filters. We compute salience as: 

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑒 =   𝑊!".𝑃𝑜𝑤𝑒𝑟! +   𝑊! .𝑇𝑜𝑢𝑐ℎ +𝑊!!"! .𝑃𝑜𝑤𝑒𝑟!!"!   +𝑊!"!! .𝑃𝑜𝑤𝑒𝑟!"!!
 where 

𝑊!"  represents the weighting term for acoustic power 
𝑊!  represents the weighting term for touch 
𝑊!!"!  represents the weighting term for the ratio of high frequency power to low 
frequency power,  
The individual terms for acoustic power, touch and spectral balance are 
computed by averaging the time waveforms for these quantities over the length 
of each vocal action. 
We assume that a human infant can and does selectively focus his attention on 
these different aspects of sensory feedback. Elija does so by changing the 
relative contribution of the components of salience. Attending to acoustic power 
at lower frequencies will favor the discovery of configurations that lead to vowel 
production, while attending to acoustic output with a dominant high frequency 
component will favor the discovery of fricatives. Attending to touch will favor 
configurations used in consonants, such as where the lips are closed or the 
tongue makes contact with the teeth or the roof of the mouth.  
 
Pattern Diversity 
The diversity term is included in the objective function to encourage the discovery 
of a range of motor patterns that lead to different sensory consequences. That is, 
it encourages the discovery of novel patterns that are different from the previous 
ones found. Diversity was computed as the weighted sum of three components in 
acoustic, tactile and motor pattern space. In each of these spaces, the minimum 
distance arising from the current motor pattern to all previous motor patterns was 
calculated. The weighting affected the class of motor patterns discovered. A 
strong tactile weighting biased the optimization to the discovery of distinct plosive 
articulations, whereas a strong acoustic weighting biased the optimization to the 
discovery of acoustically distinct vocalic and fricative sounds. We note that such 
explicit weighting is not strictly necessary, since the diversity term will by its very 
nature result in active exploration. However its inclusion does speed up the 
computational process.  We compute diversity as: 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =   𝑊!"#.𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦!"#"$ +   𝑊!" .𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦!"#$! +  𝑊!" .𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦!"#$%&'" 

where 
 
𝑊!"#  represents the weighting term for motor diversity term  
𝑊!"   represents the weighting term for tactile diversity term  
𝑊!" represents the weighting term for sensory diversity term  
and 
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𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦!"#"$ =   min!""  !"##$%& 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑜𝑡𝑜𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛 − 𝑝𝑎𝑠𝑡𝑀𝑜𝑡𝑜𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛   
𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦!"#$! =   min!""  !"##$%& 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑎𝑐𝑡𝑖𝑙𝑒𝐷𝑎𝑡𝑎 − 𝑝𝑎𝑠𝑡𝑇𝑎𝑐𝑡𝑖𝑙𝑒𝐷𝑎𝑡𝑎   
𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦!"#$%&'" =   min!""  !"##$%& 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐𝐷𝑎𝑡𝑎 − 𝑝𝑎𝑠𝑡𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐𝐷𝑎𝑡𝑎   
 
where the difference from the current motor pattern and its tactile and acoustic 
sensory consequences are computed for each of the previously discovered 
motor pattern and their tactile and acoustic sensory consequences.  
 
Effort 
The effort required to execute the motor pattern makes a negative contribution to 
the objective function. Effort was determined by a combination of the cost of 
movement and the loudness of the voiced excitation. The cost of movement was 
calculated as the weighted sum of articulator speeds over the duration of the 
motor pattern. Loudness of the voiced excitation was estimated by summing the 
voicing contribution to Maeda parameter P8 over the duration of the motor 
pattern. The effort term is important because if no penalty is included for voicing 
loudness, the optimization generally finds a solution with the voicing parameter 
set to maximum, because this always maximizes sensory salience.  
Thus Effort is given by: 

𝑒𝑓𝑓𝑜𝑟𝑡 =   𝑊!" . 𝑒𝑓𝑓𝑜𝑟𝑡!"#$%&'!"#$% +   𝑊!" . 𝑒𝑓𝑓𝑜𝑟𝑡!"#$#%&
 where 

𝑊!"   represents the weighting term for articulator effort and 
𝑊!"   represents the weighting term for voicing effort 
We note that the effort term could be enhanced, for example by incorporating 
‘toil’ (relating to the deformation of the vocal tract) as defined by Yoshikawa et al 
[22].  
 
Sensitivity 
A sensitivity term is included in the objective function to penalize the discovery of 
motor patterns that create sounds that can only be generated by very accurate 
articulations. More specifically, motor pattern sensitivity relates to how much the 
acoustic output of a given articulation changes when the motor pattern is subject 
to local perturbations: 
Sensitivity = (change in acoustic output) / (change in articulatory targets) 
Sensitivity issues affect the discovery of vowels. Given that some variability is 
found in speech production and is a feature of the learning process, insensitive 
articulations will more reliably lead to an acceptable intended acoustic output 
than sensitive ones. There is reason to believe that very sensitive articulator 
configurations are not utilized in speech production, as addressed in Steven’s 
Quantal Theory [23] and Gunnilstam’s Theory of Local Linearity [24]. Both 
hypothesize that preferred regions of articulation in speech production exist and 
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that there are, for example, regions of articulator space that provide a natural 
location for vowel sounds. The sensitivity of the acoustic realization of a given 
motor pattern was computed by first individually positively perturbing the 
parameters P1 to P5. A perturbation corresponding to 5% of the full parameter 
range was used (i.e. a value of 0.1 was added to each Maeda parameter). All 
other parameters were set to constant values across all motor pattern vectors to 
avoid added variability in acoustic output. The output time waveforms for the 
unperturbed motor pattern and for each of the 5 perturbed motor patterns were 
generated using the Maeda synthesizer and were then analyzed using the 
auditory filter bank. The distance between the auditory representation of each 
perturbed motor pattern and that of the unperturbed pattern was computed. The 
overall sensitivity for the given motor pattern was then taken as the square root 
of the sum of squares of the 5 components. The perturbed patterns were only 
used to assess the sensitivity of the pattern under investigation and were not 
stored in memory. 
 
Running motor pattern discovery 
In the Elija model, motor pattern discovery starts by setting the elements of the 
motor pattern to random values drawn from a uniform distribution over their valid 
range (-1 to 1). Motor pattern solutions are then found using 3 iterations of a 
Quasi-Newton gradient descent algorithm, as implemented by the Matlab 
function fmincon (which finds a constrained minimum). 
Since this study investigated sound and subsequent word learning, several steps 
were employed to ensure that Elija discovered a wide range of suitable motor 
patterns within a reasonable time. Using single target motor patterns, separate 
optimization runs were employed with an emphasis on low frequency power (for 
vowels), high frequency power (for fricatives) and touch (for plosives). To 
increase the variety of sounds, voicing was explicitly enabled or disabled in each 
plosive and fricative articulation (that is, this operation was not carried out 
automatically by the optimization procedure). Similarly, closures were generated 
with or without opening of the velo-pharyngeal port, creating nasals or plosives 
respectively. We note that during motor pattern discovery active learning was 
always present. Therefore, although the a priori biasing was used to reduce 
exploration times, if the motor pattern discovery process had been allowed to run 
for long enough it would have found a comparable final set of consonants and 
vowels autonomously, without making such interventions, as was achieved in our 
previous study [1]. 
 
Consolidation of motor patterns 
To limit the overall number of motor patterns, clustering was used to reduce the 
occurrence of articulations that were similar. Such clustering maintained variety, 
but limited redundancy and ensured that there was no subsequent combinatorial 
explosion of C and V configurations when sequences were generated (see 
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below). The clustering of plosive configurations was performed directly on motor 
patterns using a standard K-means algorithm. Vocalic and fricative sounds were 
clustered acoustically using a modified version of the same algorithm, using 
dynamic time warping (DTW) as its metric of similarity [1]. The total number of 
motor pattern clusters and categories were set by hand to limit their number. 
Again we note that clustering would be unnecessary if long interaction times with 
caregivers were acceptable. Ideally, all the raw motor patterns discovered by the 
optimization search would have been used and evaluated by the caregiver, but 
this would have required much longer periods of interaction.  
The number of vocalic sounds discovered was limited to 15, the number of 
plosives was limited to 15 and the number of fricatives limited to 10. As a result, 
the subsequent interaction experiments could be carried out within 2 - 3 hours 
per caregiver. 
 
Implementation of pattern clustering 
As described above, after Elija has acquired a set of motor patterns in an 
experimental run he uses clustering to consolidate them. Elija can consolidate 
speech utterances either on the basis of their motor properties or acoustic 
properties. For the latter, the utterance is analyzed using an auditory filter bank. 
Motor patterns are clustered directly using a standard K-means algorithm, as 
available in Matlab. For acoustic clustering of utterances, which will vary in length 
(different utterances from Elija will typically have different time durations, as will 
the caregiver’s utterances), the standard K-means algorithm is not appropriate, 
since it requires a fixed pattern length (see the K-means implementation in 
NETLAB for further details [25]). Therefore we perform clustering using a 
modified version of the standard algorithm, which we call DTW K-means. This is 
similar to the standard K-means algorithm except that 1) it represents a cluster 
using the best exemplar rather than its mean and 2) it uses a DTW distance 
metric. It operates in two steps. Let us assume we have already decided on the 
number of clusters, K. First the algorithm randomly chooses a best exemplar 
pattern to define each of the K clusters. It then begins an iterative loop. It 
processes each utterance in the dataset, assigning them to their nearest cluster 
exemplar. In standard K-means, a Euclidian distance metric is often used to 
directly compute distance. However, in the DTW K-means algorithm, dynamic 
time warping is used to determine the distance between utterances (as described 
in section 3.12). After all utterances have been assigned to a cluster, we then 
use all the utterances within each cluster to re-compute the best exemplar, where 
this is defined as the utterance that is on average closest to all other utterances. 
It is found simply by adding up the distances to all other utterances for each 
utterance in turn, and choosing the utterance with the minimum summed 
distance. Then we once again assign each utterance to the closest exemplar. 
The assignment/re-computation process is repeated until no further change of 
assignment occurs. 
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Motor and sensory memory  
As motor patterns are discovered, they are recorded in Elija’s current motor 
memory. When Elija uses a vocal action to generate a speech-like sound to 
which his caregiver responds, her corresponding acoustic response is retained in 
current sensory memory. In addition, an association is formed between these 
motor and sensory patterns, which is also retained during clustering. Motor 
patterns that generate no response are discarded. 
 
Expanding motor pattern variety 
By concatenating the simple motor patterns discovered by the optimization 
procedure, Elija can generate more complex utterances that are potential speech 
sounds. Single articulations were combined to generate VVs (sounding similar to 
true diphthongs), CVs, CVVs and VCs. More specifically, Elija generated CV 
(CvV, CuV, FvV, FuV, NV), VC (VCv, VCu, VFv, VFu, VN) and VV tokens, where N 
= voiced nasal consonant, Cv = voiced consonant, Cu = unvoiced consonant, Fv = 
voiced fricative, Fu = unvoiced fricative. Longer sequences were in principle 
possible, but not used in the current study. Again we note that the combination of 
simple motor patterns into complex motor patterns was only performed to reduce 
the time needed to discover motor patterns. If the motor pattern discovery 
process had been allowed to run longer and to find multiple target motor 
patterns, the complex motor pattern discovery process could operate fully 
autonomously as in our previous study [1]. 
After the authors removed implausible sounds by hand (for example, synthesizer 
artifacts such as clicks), Elija had discovered 927 motor patterns, which could be 
used for the first response experiments. 
 
Implementing utterance recognition 
Elija has no a priori phonetic or phonological knowledge but he must learn to 
discriminate sounds in his environment.  
To implement this mechanism, Elija used a template-based dynamic time 
warping (DTW) recognizer [26], running with an auditory gamma tone filter bank 
front-end [5]. The DTW recognizer uses the caregiver’s responses as its sound 
templates.  
This algorithm aligns and locally warps the input speech utterances to account 
for differences in timing between them. It compares each frame in the input data 
with the corresponding ones in a set of reference templates that comprise the 
vocabulary of the recognizer, and returns a metric of similarity for each. By using 
dynamic programming (DP), this procedure can be computed efficiently. DP has 
formed the basis for many speech recognition systems [27]. The implementation 
of the DP used in our experiments was due to Ellis [8]. Although this algorithm 
was originally used for music recognition [26], it is equally suitable for speech 
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recognition since the underlying DP algorithm required is the same in both cases. 
As mentioned above, the DTW algorithm is also used as the similarity metric in 
the DTW K-means algorithm. 
Since words could contain several basic speech sounds concatenated together, 
a segmentation mechanism was used to present them individually to the 
template-based recognizer. This required that the caregiver spoke with pauses 
between syllables. 
 
Recognizing caregiver sounds 
A two-stage procedure was used to recognize caregiver reformulations. This 
identifies the category of an input sound produced by the caregiver based on 
acoustic similarity and then the best matching sound within that category. This 
first required the caregiver reformulations to be partitioned into 100 clusters, a 
value chosen by experimentation. This was performed using the DTW K-means 
algorithm described above. The associations with vocal motor patterns were 
maintained during clustering, so that identification of a reformulation also 
identified Elija’s corresponding motor pattern.  
During sound recognition, the DTW recognizer first uses the best exemplars in 
each cluster as the templates to identify the sound category. The recognizer then 
uses the members of the best category as templates, to identify the best specific 
matching sound.  
 

Experiments 
The first experiment investigated caregiver responses in three different 
languages using all 8 subjects. We examined variability of responses within the 
speakers of the same language. The second experiment investigated the 
variability of the responses from a single English speaker over 4 sessions. The 
third experiment investigated word learning by Elija through serial imitation and 
made use of 6 of the subjects (2 in each language), each of whom had previously 
responded to Elija’s output in Experiment 1. 
 
Experiments 1 & 2: First caregiver interactions with Elija 
The first experiments investigated caregiver responses to Elija’s 927 motor 
patterns. The caregivers were instructed to close their eyes and to imagine that 
they were interacting with a human infant. They were not given any information 
about the child’s age, or shown a picture of an infant. They were asked to either 
respond or not respond ‘naturally’ to what they heard.  
The caregivers prompted Elija to generate an utterance by pressing a key on the 
keyboard. Elija then executed a motor pattern, which generated a sound to which 
his caregiver might respond. Elija listened for 3 seconds after each of his 
productions and recorded any vocal response the caregiver chose to make. Elija 
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detected if the caregiver responded using a simple speech detection mechanism. 
This involved determining if the short-term power in any acoustic response 
exceeded background noise level. When a response was detected, the motor 
pattern responsible was retained and an association between the response and 
the motor pattern was created (Fig. 2). When a caregiver ignored a sound, the 
underlying motor pattern disappeared from Elija’s motor pattern repertoire. Fig. 6 
shows how this process forms associations between motor and auditory 
memories: immediately after executing a motor pattern, Elija captures any 
response from the caregiver in auditory memory, retains the motor pattern in 
motor memory and builds an association between the two. 
We note that Elija did not change his motor patterns as a result of interaction with 
his caregivers (the same approach as taken by Miura et al. [28]). They were only 
optimized during the initial self-supervised learning stage. This study compared 
the behavior of different caregivers and it was therefore important that all 
caregivers heard the same sounds so that comparisons of their responses could 
be made. 
 
Analysis of caregiver response criteria  
In order to compare sounds that were accepted with those that were rejected 
during interaction with Eljija, we constructed two datasets. In the first, we 
included the utterances to which all six caregivers (E1, E2, F1, F2, G1, G2) 
responded. In the second dataset, we included utterances to which three or 
fewer caregivers responded. We preferred this selection process over examining 
caregivers’ responses individually, since at least 3 caregivers had to agree for 
candidate sounds for inclusion in the rejection set, and all had to agree for 
inclusion in the acceptance set. This made the selection robust to noisy decisions 
made by the caregivers and lead to good exemplars in both categories. 
We analyzed the motor patterns corresponding to the sounds in both datasets in 
terms of their individual Maeda and voice source vocal tract control parameters.  
Each motor pattern was composed of 4 vectors, and the second and third played 
the main role in sound production (in fact in the CV and VC patterns, they played 
the entire role; only CVVs used the additional third target vector).  
For each pattern we calculated the difference between the second target value 
and first target value. We also computed overall motor efforts for the utterance 
(see Supplementary Material Appendix S2). 
The mean and standard error of these difference values were then calculated 
across motor patterns within each dataset. These results were then plotted.  
We performed a corresponding analysis of Elija’s output speech utterances in 
tams of total power, length, low-frequency power (< 4 kHz), high-frequency 
power (> 4 kHz), The filtering was carried out using a 2-pole Butterworth filter. 
 
Experiment 3: Word learning mechanisms in Elija 
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After Elija had learned the associations between his productions and adult forms 
made in response, he could attempt to imitate novel utterances made by the 
caregiver (Fig. 3). He parsed them in terms of previously heard responses and 
since these sounds had associations with his motor patterns, this process 
provided him with candidates for the reproduction of words by serial matching of 
their component sounds.  
To implement the recognition mechanism, Elija employed a template-based 
dynamic time warping (DTW) recognizer [26], running with an auditory gamma-
tone filter bank front-end [5]. Such DTW recognizers typically operate by 
matching spectral representations of input speech with another set of such 
representations that correspond to the vocabulary of the recognizer. The latter 
are simply ‘templates’ or good examples of the sounds in its vocabulary. The 
template that gives the closest match is then taken as being the classification of 
the input sound. In the Elija model, the DTW recognizer used the caregiver’s 
responses as its sound templates. However, since words could contain several 
basic speech sounds concatenated together, a segmentation mechanism was 
used to present them individually to the template-based recognizer. This required 
that the caregiver spoke with pauses between syllables. Segmentation into 
separate utterances was achieved by finding regions in which the short-term 
power of the signal exceeded the background noise level. 
In practice, a two-pass recognition scheme was used to ensure real-time 
operation, as explained above. In the first pass, the recognizer operated by using 
100 templates selected as the cluster centers of all responses. In the second 
pass, all the members of the best 5 clusters were used as templates. We note 
here that because Elija only matched caregiver speech with caregiver speech, 
there was no normalization problem for the classifier to solve.  
During this experiment, Elija played out the motor patterns he had identified by 
the recognition process. Elija was given the ability to produce an intonation 
contour on each word resembling that of the caregiver, which made his attempts 
at word imitation sound more natural. To achieve this, the fundamental frequency 
contour for each separate speech sound was computed and approximated to a 
straight line using linear regression. The start and end frequencies were 
extracted and then mapped onto the range of the Maeda synthesizer voice 
source F0 parameter by assuming a linear scaling between the (-0.9, 0.9) 
parameter range and a frequency range of either 100 Hz-300 Hz or 150 – 400 
Hz, for a male or female caregiver respectively. The duration of the speech 
sounds in the caregiver’s speech was estimated and the values were limited to 
fall within the range of 250 ms – 600 ms. The F0 and duration parameter values 
were then used to set the fundamental frequency and duration parameters in the 
appropriate motor patterns. All interactions, including Elija’s internal recognition 
process, were recorded to document the development of his pronunciation. 
The word-learning task was run on a PC and a graphical user interface provided 
the caregiver with a word from a list, generated from words typically spoken by 
young children in the caregiver's language. The caregiver first pressed the GO 
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button and spoke the word. Elija then repeated it using his serial imitation 
mechanism. He could have up to 4 attempts at imitation, each of which could be 
selected in the user interface. The caregiver accepted or rejected Elija’s 
responses by clicking on appropriate buttons. An important aspect of this infant-
caregiver interaction was that they could engage in repetitive loops (Fig. 4). The 
word spoken by the caregiver could be repeated, which sometimes provoked a 
better response. This could continue until Elija performed an acceptable 
production, or the caregiver chose to give up and try another word. 
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Appendix S2: Analysis of caregiver responses 
We investigated if differences in Elija’s utterances and their corresponding motor 
patterns could explain why they were responded to (i.e. selected) or ignored 
(abandoned), using data from the six caregivers (E1, E2, F1, F2, G1, G2). We 
note that we only used 2 of the 4 English speakers for this analysis because this 
subset of responses was used later for the final word imitation experiments.  
 
Methods 
We first examined all Elija’s utterances (927) in terms of the syllabic form of their 
motor patterns. We found there were 783 CVs, 111 VVs and 33 VCs. To make 
our results easier to interpret, we only analyzed characteristics of the utterances 
for the dominant CV subset of Elija’s utterances. This avoided averaging results 
across different structural forms, which could potentially hide trends in the data.  
Each CV motor pattern was composed of 4 sup-patterns, and the second and 
third characterized the sound production. For each pattern we calculated the 
difference between the third sup-pattern articulatory target values and second 
sup-pattern articulatory target values. We also computed the overall motor efforts 
for the utterance (see Elija Methods). 
A corresponding analysis was performed on Elija’s output speech for average 
power, average low-frequency power (< 4 kHz), average high-frequency power 
(> 4 kHz) and salience; the filters used for the low and high frequency analysis 
were both 2-pole Butterworth. 
We compared characteristics of CV utterances that were responded to by 
caregivers with those that were ignored. To do so, we first constructed three 
datasets. In the first, we included the utterances to which all six caregivers (E1, 
E2, F1, F2, G1, G2) responded. In the second, we included utterances to which 
three or more caregivers did not respond. We used this selection process rather 
than examining caregivers’ responses individually, since it gave datasets that 
strongly exhibited response/ignore tendencies. This made the selection process 
robust to noisy decisions made by the caregivers and ensured the inclusion of 
representative exemplars in both categories. The third dataset consisted of all 
CV utterances. 
 

Results 
The mean and standard error (standard deviation / square root of the number of 
samples) of the motor target difference values were calculated across motor 
patterns within each dataset. Statistical significance between the two conditions 
(responded/not responded) was determined using an unpaired two-sample t-test, 
since each of the two conditions contained a different numbers of data points 
(Matlab function ttest2); results were considered to be significant when p < 0.05. 
The results are plotted in Fig. S1A. 
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We performed the corresponding conditional analysis of Elija’s output speech 
utterances in terms of their power, duration, salient and effort. These results are 
shown in Fig. S1B.  
On the basis of the vocal tract articulatory target difference data (Fig. S1A) and 
the analyses of the utterance speech data, as well as effort (Fig. S1B), we make 
the following observations regarding preferences of caregivers to respond to 
Elija’s utterances.  
 
The following were highly significant (P < 0.001): 
P2: Tongue dorsum position (+ve moving backwards). Caregivers prefer to 
respond when Elija’s tongue is moving backwards. 
P4: Tongue apex position (+ve when tip going forward and body going up). 
Caregivers prefer to respond when the tongue is going backwards 
P5: Lip height (open lip is +ve). Caregivers prefer to respond when lips are 
opening 
P6: Lip protrusion (+ve outwards). Caregivers prefer to respond when the lips are 
moving towards protrusion 
P9: Fundamental frequency (higher frequency +ve). Caregivers prefer to respond 
when the intonation is falling 
P10: Nasality (+ve open). Caregivers prefer to respond when there is decreasing 
nasality 
Utterance power: Caregivers prefer to respond to utterances with higher overall 
power 
Utterance low-frequency power: Caregivers prefer to respond to utterances with 
higher LF power 
Temporal duration: Caregivers prefer to respond to utterances with shorter 
durations within the range that Elija generated. Utterances they responded to had 
a mean duration of 0.75 seconds whereas those they ignored had a mean 
duration of 0.85 seconds. Both durations are rather long for a syllable, so we 
speculate that the shorter durations were preferred because, other things being 
equal, they sounded more natural.  
Effort: Caregivers prefer to respond to CVs, which involve more effort (voicing 
and articulatory movement) 
 
The following was significant (P < 0.01): 
P1: Jaw position (–ve closing). Caregivers prefer to respond when the jaw is 
opening. 
 
The following were significant (P < 0.05): 
P7: Larynx height (up +ve). Caregivers prefer to respond when the larynx is 
moving down  
Utterance high-frequency power: Caregivers prefer to respond to utterances with 
more HF power 
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The following were not significant (P > 0.05): 
P3: Tongue dorsum shape (+ve when higher).   Had no significant effect. 
P8: Glottal area (+ve louder voicing).  Had no significant effect. 
Salience: (+ve more salient). Had no significant effect. This result may seem 
surprising and we speculate that it is because the salience of the utterances was 
already optimized during the discovery process, and all utterances had therefore 
already achieved a high level of salience. 
 
Conclusions 
On the basis of the highly significant results (p < 0.001), it can be seen that for 
the CV utterances examined, caregivers were more likely to respond if Elija’s 
mouth was opening and his lips were opening and protruding. This is 
unsurprising for a CV since a consonant generally involved some closure in the 
vocal tract, and a vowel is a more open configuration. Preference to reducing 
nasality is also understandable, since several consonants are nasalized, 
whereas fewer vowels are (only when followed by a nasal consonant in English 
and German). A preference for falling intonation was also observed, as was a 
preference for the tongue to move backwards during the utterance. Higher 
acoustic power, especially at lower frequency, was also preferred. Surprisingly, 
the salience measure was not a factor for preferential selection. A bias towards 
utterances that involved more effort on Elija’s part was also apparent. This 
suggests a preference for dynamically changing utterances that involved 
articulator movement.  
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Figure S1. Analyses of Elija’s CV utterances in terms of those responded to 
by all 6 caregivers and those ignore by at least 3 caregivers. Corresponding 
values for all CV utterances are also shown. A Plot of differences in the 3rd and 
2nd motor pattern target parameters. B Plot of sound output characteristics as 
well as overall articulatory effort. 
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Appendix S3a: English Words (n=219) 
 
hat 
fin-ger 
o-range 
tick tock 
bot-tle 
brush 
bis-cuit 
uh-oh 
ouch 
bowl 
meat 
duck-ling 
nose 
duck 
lion 
hair 
pigs 
goat 
house 
this 
mum-my 
box 
ba-nana 
wat-er 
hand 
moon 
tab-le 
cat 
look 
app-le 
egg 
name 
kit-ty 
where 
bee 
lamp 
cot 

grand-pa 
bath 
fish 
carr-ot 
frog 
out-side 
boot 
keys 
pia-no 
ma-ma 
sock 
pen-cils 
sit 
dad-dy 
sheep 
sun 
chick 
sky 
slide 
goose 
shoe 
train 
torch 
lips 
man 
mouse 
crane 
clean 
cow 
ice 
thread 
gi-raffe 
baa baa 
down 
pear 
tail 
shin-y 

poles 
foot 
bread 
tea 
yum-yum 
what 
fire-man 
mon-key 
cher-ries 
cup 
rug 
leg 
do 
on-ion 
two 
pic-ture 
moo 
read 
drink 
moun-tain 
boat 
tv 
light 
mouth 
spoon 
belly 
juice 
slip-pers 
play 
bubb-le 
spade 
ham-mer 
bye 
go 
pan 
tow-el 
eye 

shirt 
dish cloth 
bear 
plate 
tooth 
tree 
buy 
milk 
work 
chair 
clock 
ted-dy 
pret-ty 
pup-py 
lem-ons 
trac-tor 
fork 
grass 
toy 
ba-by 
cook-ie 
dol-ly 
la-dy 
sciss-ors 
drum 
no 
top 
lad-der 
dog-gy 
chest 
screws 
string 
dir-ty 
leaf 
rat-tle 
bye-bye 
paint brush 

owl 
glass-es 
car 
book 
bird 
truck 
cand-le 
wheel 
pen-guins 
brace-let 
ze-bra 
cloud 
cake 
stuck 
yawn 
win-dow 
toe 
paint 
blue 
pen 
glue 
chick-en 
drill 
cam-el 
dress 
blocks 
bun-ny 
hel-lo 
plane 
worm 
ear 
big 
flow-er 
bus 
wash 
iron 
bed 

three 
red 
all gone 
open 
boy 
grapes 
dog 
laugh 
horse 
knife 
up 
coat 
yuk-ky 
meow 
yel-low 
walk 
gran-ny 
arm 
ber-ries 
door 
snake 
tig-er 
cry 
eat 
salt 
broom 
need-le 
beak-er 
bal-loon 
comb 
cheese 
bead 
tyres 
green 
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Appendix S3b: French Words (n=219) 
 
cha-peau 
doigt 
o-range 
tic-tac 
bou-teille 
brosse 
bis-cuit 
oh-la 
aie! 
bol 
viande 
cane-ton 
nez 
ca-nard 
lion 
che-veux 
porc 
chevre 
mai-son 
ce-ci 
ma-man 
boite 
ba-nane 
eau 
main 
lune 
table 
chat 
re-gardes! 
pomme 
oeuf 
nom 
mi-nou 
ou 
a-beille 
lampe 
ber-ceau 

grand-pere 
bain 
pois-son 
car-rotte 
gre-nouille 
de-hors 
botte 
clef 
pia-no 
ma-ma 
chaus-sette 
cra-yon 
assieds-toi! 
pa-pa 
mou-ton 
so-leil 
pous-sin 
ciel 
glisses 
oie 
chaus-sure 
train 
torche 
levres 
homme 
sou-ris 
crane 
nette 
vache 
glace 
fil 
gi-rafe 
baa-baa 
en bas 
poire 
queue 
bril-lant 

poles 
pied 
pain 
the 
mmm 
quoi 
pom-pier 
singe 
ce-rises 
tasse 
ta-pis 
jambe 
fais le 
oi-gnon 
deux 
ta-bleau 
meu 
lis le 
bois 
mon-taigne 
ba-teau 
tele 
lu-miere 
bouche 
cuil-lere 
ventre 
jus 
pan-toufles 
jeu 
bulle 
pelle 
mar-teau 
au (re)voir 
vas 
poele 
ser-viette 
oeil 

che-mise 
tor-chon 
ours 
plat 
dent 
arbre 
ach(e)ter 
lait 
tra-vail 
chaise 
hor-lorge 
our-son 
jo-lie 
chiot 
ci-tron 
trac-teur 
four-chette 
pe-louse 
jou-et 
be-be 
ga-teau 
pou-pee 
dame 
sci-seaux 
tam-bour 
non 
en haut 
e-chelle 
 
poi-trine 
vis 
fi-celle 
salle 
feuille 
ho-chet 
bye-bye 
pin-ceau 

hi-bou 
lu-nettes 
voi-ture 
livre 
oi-seau 
ca-mion 
chan-delle 
rouÈ 
pin-guins 
brace-let 
zebre 
nu-age 
ga-teau 
coin-ce 
baille 
fe-netre 
or-teil 
peinte 
bleu 
sty-lo 
colle 
pou-let 
per-ceuse 
cha-meau 
robe 
cubes 
la-pin 
bon-jour 
a-vion 
ver 
o-reille 
grand 
fleur 
bus 
lave 
fer 
lit 

trois 
rouge 
fini 
ouvre 
gar-con 
rai-sins 
chien 
ri-gole 
che-val 
cou-teau 
en haut 
man-teau 
beugh 
miaou 
jaune 
marches 
me-mere 
bras 
baies 
porte 
ser-pent 
tigre 
pleures 
manges 
sel 
ba-lai 
ai-guille 
verre 
ba-lon 
peigne 
fro-mage 
perle 
pneus 
vert 
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Appendix S3c: German Words (n=237) 
 
Möh-re 
Sä-ge 
Trak-tor 
Zahn 
Wal 
Ze-bra 
du 
Bock 
Eli-ja 
Wurm 
Mil-ch 
Ei-sen 
Au-to 
pri-ma 
Han-dy 
Schnec-ke 
Ke-ks 
gross 
run-ter 
Ho-se 
Ti-ger 
Tee 
Band 
O-range 
Hu-tte 
Vo-gel 
Del-fin 
Ker-ze 
drau-ssen 
Blatt 
hun-ger 
Ma-ske 
Bett 
Draht 
Hase 
Pa-pi 
Schuh 
Boh-rer 
I-gel 
Sche-re 

Qual-le 
Bus 
Lö-we 
ach-tung 
e-ssen 
Rei-fen 
Kind 
Fla-sche 
Ku-chen 
Fuss 
Ko-ffer 
Bär 
Spiel 
Mund 
Bad 
Zwie-bel 
Gras 
Wol-ke 
Kä-fer 
Hemd 
Schirm 
Men-sch 
Vase 
Rol-ler 
Kuh 
Un-ter 
Tas-se 
Kat-ze 
Fin--ger 
Teller 
Be-sen 
Pfa-nne 
Gu-mmi 
Na-gel 
Mu-tter 
Fisch 
Bahn 
Ap-fel 
Yak 
Kle-ber 

Blume 
Schärf 
Stuhl 
Sac-ke 
Niko-laus 
Tisch 
lau-fen 
gut 
Schmut-zig 
Ge-schenk 
durst 
Do-se 
ja 
tschüss 
Ot-te 
Bein 
er 
Baum 
Brust 
Fenster 
wo 
Trommel 
Schlü-ssel 
Rech-ner 
Ge-tränk 
das 
Zelt 
was-chen 
A-ffe 
Stern 
Uh-le 
Ra-be 
Hammer 
ka-ffee 
toll 
Wal-ross  
Jo-ghurt 
Kamm 
Ente 
Schü-ssel 

nein 
Stahl 
Luf-t 
Ja-cke 
Bi-ene 
Schrau-be 
Hüh-ne 
Lam-pe 
Hand 
Maus 
Mond 
tun 
Zan-ge 
Ja-guar 
Au-ge 
Jan 
Jo-Jo 
Kis-te 
Nest 
Lö-ffel 
Ei 
Hi-mmel 
Zug 
Ka-nne 
Ki-ssen 
Streich 
Trau-ben 
Vul-kan 
Ohr 
Na-se 
Bla-sen 
Wür-fel 
Pin-guin 
Kran 
Erd-beer 
Tür 
Bir-ne 
Ka-mel 
Geh 
schlecht 

lek-ker 
Stift 
spiel 
Flug-zeug 
Ast 
Stie-fel 
Fern-zeher 
Saft 
In-sel 
Brot 
Wei-nen 
Kra-bbeln 
ich 
So-nne 
Knopf 
Lol-li 
Korb 
Buch 
Arm 
Fro-sch 
für 
Kleid 
Schwein 
al-le 
Mu-tti 
Stoff 
Bech-er 
Öl 
fahr-en 
Boot 
Clown 
Re-gen 
Bal-lon 
Piers 
Sie 
Spi-nne 
rut-chen 
Pfe-ffer 
Ga-bel 
Pu-ppe 

Uhr 
Hut 
Blei-stift 
Nas-horn 
Ball 
Gans 
Bürs-te 
Pferd 
lachen 
Fah-rrad 
Mantel 
Alu 
Haar 
Kä-se 
Salz 
oben 
set-zen 
Drei-rad 
Jun-ge 
Os-ter 
Amsel 
Hund 
Flö-te 
Was-ser 
mü-de 
Erb-se 
O-ber 
See 
Ted-dy 
Trich-ter 
Lipp-en 
spiel-en 
Kir-sch 
bit-te 
Schei-be 
ha-llo 
Me-sser 
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Appendix S4: Word imitation analysis 
 
Comparisons for all subjects between archiphoneme representations of 
caregiver target words and Elija’s imitations  
Fig. 13 in the main paper shows comparisons between the speech sounds in the 
caregivers’ word productions and the speech sounds in Elija’s imitations. The 
latter were already labeled previously since they were established during the first 
interaction experiment. The speech sounds were analyzed in terms of first 
vowels V1 and consonants C1. The results are presented individually for each of 
the 6 caregivers. This data is analyzed further here. 
The overall behavior of each caregiver is shown in Fig. S2. This indicates how 
many time the caregiver and Elija’s imitation had the same archiphoneme 
labeling. It can be seen that the archiphonemes representing Elija’s imitations 
were closer to the caregiver’s word productions for vowels (A) than consonants 
(B, apart from English speaker E1), particularly for the German speakers G1 and 
G2.  
The 95% confidence intervals on Fig. S2 are quite large due to the relatively 
small number of data counts in each condition. We note that the assumption of 
normal distribution was valid as there were 𝑛𝑝 ≥ 10  samples in each condition, 
with the exception of E2 (only 8 values). However we did not pursue this issue 
further and the error bar is displayed only to give a rough indication of the 
general variability of the data.  
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Figure S2. Comparisons for all subjects between archiphoneme 
representations of caregiver target words and Elija’s imitations. 
Comparisons between caregiver’s words and Elija’s imitations by A vowel and B 
consonant. The error bars show 95% confidence intervals 
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Appendix S5: Online Data repository 
 
All the experimental data arising from Elija and his interactions with caregivers is 
available online at: 
 
https://github.com/HowardLab/Elija-PlosOne-2014.git 
 
This repository is composed of the following directories: 
 
Elija927DiscoveredSounds: This contains all 927 of Elija's discovered sounds 
as WAV files 
 
ElijaMPs: This contains all 927 motor patterns for the discovered sounds saved 
as doubles in .txt files 
    
A motor pattern is a sequence of articulatory parameters to control the Maeda 
synthesizer. Each motor pattern consists of a file containing 138 floating-point 
values, although a few values are unused. It contains 4 sub-patterns, each 
consisting of 10 articulation target positions and their associated movement 
parameters; namely their starting times and durations. That is, there are 4 sets of 
10 x target values, 10 x starting times, 10 x durations (we note that the first two 
sub-patterns were often identical, so the motor pattern generally consisted of 
three different sub-patterns). In addition each sub-pattern has a critical damping 
beta scaling value.   
 
The ten articulatory parameters are ordered as follows: 
 
P1 Jaw position 
P2 Tongue dorsum position,  
P3 Tongue dorsum shape,  
P4 Tongue apex position,  
P5 Lip height (aperture),  
P6 Lip protrusion,  
P7 Larynx height.  
P8 Glottal area,  
P9 Fundamental frequency 
P10 Nasality 
 
After the motor parameters in a given .txt file are read into the linear array 
vtParams, using Matlab notation, they can be accessed as follows: 
 
The 4 sets of 10 x target values are given by: 
Target vector 1: vtParams(1:10);                
Target vector 2: vtParams(11:20); 
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Target vector 3: vtParams(21:30); 
Target vector 4: vtParams(31:40); 
   
 
The 4 sets of 10 x start times are given by: 
Start times vector 1: vtParams(51:60); 
Start times vector 2: vtParams(61:70); 
Start times vector 3: vtParams(71:80); 
Start times vector 4: vtParams(81:90);           
 
The 4 sets of 10 x durations are given by: 
Duration vector 1: vtParams(91:100);          
Duration vector 2: vtParams(101:110); 
Duration vector 3:  vtParams(111:120);      
Duration vector 4:  vtParams(121:130); 
 
The 4 sets of single beta scale components are given by: 
Beta scale vector 1: vtParams(131); 
Beta scale vector 2: vtParams(132); 
Beta scale vector 3: vtParams(133); 
Beta scale vector 4: vtParams(134); 
 
 
ElijaSoundInteractions: This contains data from Elija’s initial interaction with a 
caregiver. It consists of Elija's productions and their corresponding responses (if 
any) for each caregiver. Response data is identified by the subject description 
used in the main manuscript: E1, E2, E3, E4-1, E4-2, E4-3, E4-4. F1, F2, G1. 
G2.  
 
WordImitationExperiments: This contains WAV data from the word imitation 
experiments. This consists of the sound files of caregivers’ word production, how 
Elija recognized them in terms of reformulations, and also Elija's word imitation 
productions. Word learning data is identified by the subject description used in 
the main manuscript: E1, E2, E3, F1, F2, G1, G2 The English, French and 
German word lists are also included in this directory. 
 
 
PowerPoint presentation: ElijaOutputDemo2014.pptx is a PowerPoint 
presentation of some of the material. 
 
vtsynth: This contains a Windows VC++ project implementation of the vocal 
tract synthesizer that can be called from Matlab 7.1 running on Windows XP  
 
Elija_Matab : This contains Matlab files illustrating:  
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Vowel discovery process -  Main_RunActiveLearn_VOWEL_DEMO.m 
Running this script will lead to the discovery of vocalic sounds. 
 
Fricative discovery process  -  Main_RunActiveLearn_FRIC_DEMO.m 
Running this script will lead to the discovery of fricative sounds. 
 
Closure discovery process  -  Main_RunActiveLearn_CLOSURE_DEMO.m 
Running this script will lead to the discovery of vocal tract closures. 
 
The reformulative interaction experiment  - Main_RunInteractReformulations.m 
Running this script will use the set of 927 discovered utterances used in the 1st 
interaction excrement and the caregiver has the opportunity to either respond or 
ignore them. 
 
In addition, all the necessary Matlab functions called by these scripts are also 
included. 
 
Please note that no support from the authors is available for any of the 
online context. It is provided to assist readers to understand the Elija 
model and to demonstrate its underlying operation, and to provide 
examples of the interactions of Elija and the caregivers described in the 
main PLOSONE article. 
 
 


