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1 A model of emotional contagion

Let yit be the emotional expression of individual i at time t. Let aijt be the
strength of the relationship from individual i to individual j at time t. Note
that aijt need not be symmetric (i may perceive a stronger relationship with
j than j does with i), and it allows for temporal variations. Let δit =

∑
j aijt

be the degree of individual i at time t.

In the simplest case, aijt can take binary values, 1 designating that a rela-
tionship between i and j exists at time t, 0 designating that it does not.
Under this assumption, δit is simply the number of her social contacts of i
at time t.

Suppose there are three kinds of exogenous factors that affect emotion.
First, there are factors that are time-varying and affect everyone equally
(like holidays, for example). We denote these with a fixed effect θt for each
time period t. Second, there are factors that are time-invariant and specific
to an individual (such as a person’s baseline personality). We denote these
with a fixed effect fj for each individual j. Third, some factors are both
time-varying and specific to an individual (like the weather). We denote
these by xjt for each individual j and time period t.

In addition, suppose there is an endogenous factor that affects the emotion
of each individual in proportion to the strength of the relationship between
j and her social contacts. That is, each individual j is affected by the
specific emotion on day t of each individual i to whom she is connected.

Assuming a memoryless model where individuals influence each other only
within a time period t and not across time periods, we can specify a linear
model for the emotion y of individual j on day t:

yjt = θt + fj + βxjt + γ
1

δjt

∑
i

aijtyit + εjt, (1)

where β indicates the strength and direction of influence of the time-varying
exogenous factor, γ indicates the strength and direction of social influence,
and εjt is a normally distributed error term with mean zero and variance
σ2 that is independent and identically distributed (i.i.d.) across both indi-
viduals and time.
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Observe that the model in equation (1) assumes that influence is averaged
over all social contacts and therefore inversely proportional to the cumu-
lative weight δjt of all j’s relationships. If aijt takes binary values, then
this implies that the influence from i to j is inversely proportional to the
number of j’s social contacts. This assumption is based on the idea that an
individual with many social contacts is less likely to be influenced by each
single contact i than an individual with few social contacts.

We are interested in estimating the value of the influence factor γ, which
is difficult due to the inherent feedback present in the process of emotional
contagion. Correlation in emotions may not only the result from pairwise
mutual influence, but also from cycles in the social network. For exam-
ple, i might influence k’s emotional expression, which in turns affects j’s
emotional expression, and so on. We address the inherent endogeneity of
contagion in Section 5 by using instrumental variable regression [2].

A second difficulty here is the large size of our data set. We would like to
apply our model to the longitudinal content generated by millions of users
with billions of friends over hundreds of days. We address this difficulty
in Section 2, where we propose a method to estimate the individual-level
parameter γ using aggregated data. A key to this method is to identify a
unit of analysis in which many individuals within the same subpopulation
are affected by the same exogenous variables. For example, individuals i
and j may be in the same city g and therefore experience the same weather,
traffic conditions, sporting event outcomes, and so on. Or they may be in
different cities g and h, in which case their different exposures to exogenous
factors may help us to identify how one person affects another. In our
aggregated model, we leverage these between-unit social ties to consider
how a factor in city g affects individual i, which in turn affects individual
j who was not exposed directly to that factor because she is in city h. In
other words, if it rains on you in New York, does it make your friends in
San Diego less happy?
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2 Aggregating the model

The model in equation (1) can be computationally demanding in big data
sets, since there is one observation for each individual-time pair. We there-
fore simplify the model further by averaging equation (1) over all ng indi-
viduals in a given subpopulation Sg who are in city g.

1

ng

∑
j∈Sg

yjt =
1

ng

∑
j∈Sg

(
θt + fj + βxjt + γ

1

δjt

∑
i

aijtyit + εjt

)
. (2)

We can change the notation to make things clearer.

Let ȳgt = 1
ng

∑
j∈Sg

yjt be the average emotion at time t for all individuals

in subpopulation Sg.

Let f̄gt = 1
ng

∑
j∈Sg

fj be the average individual fixed effects for all individ-

uals in subpopulation Sg (this is therefore a city-level fixed effect).

Let x̄gt = 1
ng

∑
j∈Sg

xjt be the average exogenous variable at time t for

all individuals in subpopulation Sg (this is therefore a city-level exogenous
variable).

Let Ȳgt = 1
ng

∑
j∈Sg

1
δjt

∑
i aijtyit. We can exchange the ordering of the

summations and write

Ȳgt =
∑
i

yit
1

ng

∑
j∈Sg

1

δjt
aijt

Observe that the term 1
ng

∑
j∈Sg

1
δjt
aijt represents the average strength of the

relationship between i and an individual in city g. Therefore, Ȳgt represents
the average emotional influence at time t on an individual in city g.

The model in equation (2) can now be written as

ȳgt = θt + f̄g + βx̄gt + γȲgt + ε̄gt (3)

where ε̄gt = 1
ng

∑
j∈Sg

εjt is a city-specific error for all individuals j who

are in city g. Since the error is a mean of normally distributed variables,
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ε̄gt will also be normally distributed with mean 0, but it will have a city-
specific variance σ2/ng. Notice that this indicates the variance is inversely
proportional to the number of individuals in a city. As we describe below, we
can use the equation for the variance explicitly to weight each observation
in the model.

3 Data

Our period of observation starts on January 1st 2009 and ends on March
31st 2012, for a total of 1185 consecutive days. Data for five days of 2009
(March 4th, June 24th, August 15th, September 13th, November 11th) was
not available at the time of analysis, so we consider the remaining 1180
days.

Data were collected from the Facebook online social network, and data were
analyzed in aggregate within Facebook’s data centers. Researchers did not
access any personal information.

For each day in the period of observation, we consider all Facebook users
in the 100 most populous US cites, and their status updates. Table 1
reports the list of the cities, each paired with the corresponding three-letter
code used in the figures (airport codes in most cases). In particular, the
subpopulation of Facebook users in a given city contains all users that (i)
chose English as the language in which they view the website, (ii) selected
United States as Country in their profile settings, (iii) can be matched to
city g by IP-based geographic location. We build separate user pools for
different days to allow us to take user mobility into account, since on any
particular day a user might travel or move to a new city.

For each Facebook user, we measured emotion using all status updates as
explained in the next section. We used only status updates, which can be
viewed as personal self-expression, and did not consider more directed forms
of communication on Facebook (e.g., chat, private messages, comments).
We also measured social contacts for each day in the observation period,
letting aijt = 1 for all pairs of users i and j who were “friends” with one
another on day t, and 0 otherwise.
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Table 2 summarizes our sample size by showing mean and standard devia-
tion of the daily number of users, number of status updates, and friendship
ties.

4 Variables of the model

4.1 Emotion variables

For user i and day t, let Uit be the set of status updates posted by i on day
t, and let uit = |Uit| be its cardinality. Let u

(p)
it be the number of status

updates in Uit that contain at least one word from the “positive emotion”
category defined by LIWC 2007 [1]. Similarly, let u

(n)
it be the number of

status updates in Uit that contain at least one word from the “negative
emotion” category.

Note that a single status update might contain both a negative word and
a positive word, therefore contributing to both u

(p)
it and u

(n)
it . Moreover,

our analysis simply considers raw matching of positive and negative words,
without making any attempt to identify expressions like negations or sar-
casm.

We measure emotion in two ways based on these definitions: (i) the rate
of status updates that contain words, (ii) the rate of status updates that
contain negative words.

Consider a user i and a day t such that uit 6= 0. The positive rate of user i
on day t is defined as

y
(p)
it =

u
(p)
it

uit
,

that is, the fraction of status updates with at least one positive word. Note
that 0 ≤ y

(p)
it ≤ 1.

Similarly, the negative rate of user i on day t is defined as

y
(n)
it =

u
(n)
it

uit
,
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that is, the fraction of status updates with at least one negative word. Note
that 0 ≤ y

(n)
it ≤ 1.

By averaging these quantities over all users in city g, we obtain the average
positive rate and negative rate of that city. Let Sg be the set of ng users i
in city g such that uit 6= 0. That is,

ȳ
(p)
gt =

1

ng

∑
i∈Sg

y
(p)
it ,

ȳ
(n)
gt =

1

ng

∑
i∈Sg

y
(n)
it ,

Table 3 shows mean values for each of these emotion variables.

The variables Ȳ
(p)
gt and Ȳ

(n)
gt of the model in equation (3) are given by

Ȳ
(p)
gt =

∑
i

y
(p)
it

1

ng

∑
j∈Sg

1

δjt
aijt,

Ȳ
(n)
gt =

∑
i

y
(n)
it

1

ng

∑
j∈Sg

1

δjt
aijt.

4.2 Meteorological variables

For each day in the period of observation, meteorological data for the 100
US cities under observation were made available by the US National Cli-
matic Data Center (NCDC, http://www.ncdc.noaa.gov). For each city, we
consider the data from the NCDC station closest to the airport or to the
city center.

For each city g and day t we consider a binary indicator variable x̄gt equal
to 1 if it rained in city g on day t and equal to 0 otherwise. Table 4 shows
the number of rainy days in each city, during the period of observation.

For the instrumental variable regression described below we will make use
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of the variable

X̄gt =
∑
i

xit
1

ng

∑
j∈Sg

1

δjt
aijt. (4)

In particular, if user i is in city h then xit = x̄ht (the user’s own weather is
the same as the average weather of all users in the same city).

5 Model estimation

We are interested in estimating the parameters of the model in equation (3),
which is simply an aggregated restatement of the individual-level model in
equation (1). To recap, this model is:

ȳgt = θt + f̄g + βx̄gt + γȲgt + ε̄gt,

and we are primarily interested in estimating the effect of emotional con-
tagion (γ). The dependent variable ȳgt is the average emotion of users in
city g on day t, the independent variable Ȳgt is the average emotion of the
friends of these users, x̄gt is a binary indicator variable for rainfall in city
g, and θt and f̄g are fixed effects for each day and each city.

Note that we can estimate γ for contagion of either positive and negative
emotion, and we can also see if these two emotions tend to inhibit one an-
other by estimating the effect of friends’ positive emotion on users’ negative
emotion and vice versa.

An observation period of 1180 days and a set of 100 cities results in a
model with 118, 000 observations, each corresponding to a city-day pair.
The parameters that need to be estimated are the coefficients β and γ,
1180 fixed effects for the days, and 100 fixed effects for the cities.

Since one of the explanatory variables of the model in equation (3), Ȳgt,
is an endogenous variable (i.e. it is correlated both to the dependent vari-
able ȳgt and to the error term ε̄gt), ordinary least squares regression would
yield biased coefficient estimates. We therefore use instrumental variable
regression [2].
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Instrumental variable regression is an estimation method that can produce
consistent and unbiased estimates when one of the explanatory variables is
correlated with the error terms in the model equation. This is the case when
there is reciprocal causality from the dependent variable to an explanatory
variable (in our case, users affect their friends and vice versa), when one or
more relevant explanatory variables are omitted from the model, or when
the covariates are affected by measurement errors. If an instrument is avail-
able that predicts the endogenous variable, then consistent and unbiased
estimates can be obtained. In a linear model, an instrument for an en-
dogenous explanatory variable v is a variable z that does not appear in
the model equation, is correlated with v (conditional on all the exogenous
explanatory variables) and is not correlated with the error term. [2]

In our model, an instrument for the endogenous explanatory variable Ȳgt
is an exogenous variable z that is not correlated to the error term in equa-
tion (3), that is Cov(z, ε̂gt) = 0, and is partially correlated to Ȳgt when
controlling for the other exogenous explanatory variables. In the context of
our model, we can write:

Ȳgt = θ′t + f̄ ′g + β2x̄gt + β1z + νgt, (5)

where νgt is an error term not correlated to any regressors and θ′t and f̄ ′g
are separately estimated time and subpopulation fixed effects.

Equation (5) can be seen as the linear projection of Ȳgt on the space of all
the exogenous variables. Substituting equation (5) into equation (3) yields:

ȳgt = (θt + γθ′t) + (f̄g + γf̄ ′g) + (β + γβ2)x̄gt + γβ1z + ε̄′gt, (6)

where the error term is uncorrelated with all the explanatory variables.

We use the variable X̄gt defined in equation (4) as the instrument (z) for Ȳgt,
as it is uncorrelated with the error term in equation (3) and it is partially
correlated to Ȳgt (see Tables 5 to 8 for details). Specifically, we utilize
rainfall experienced by the friends of users in city g to predict the emotion
of those friends since it directly affects their mood.

The procedure above is equivalent to estimating the model in equation (3)
using two stage least-squares (2SLS) regression. The first stage regression
estimates a model of the form

Ȳgt = θ′t + f̄ ′g + β1X̄gt + β2x̄gt + ε′gt. (7)
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The second stage regression uses the predicted values Ȳ pred
gt from the first

stage to estimate the model

ȳgt = θt + f̄g + βx̄gt + γȲ pred
gt + ε̄gt. (8)

Finally, recall that the variance of the ε̄gt error term is proportional to 1
ng

where ng is the number of individuals in a city. We therefore weight each
observation by the corresponding value of ng.

A key assumption of instrumental variables regression is the exclusion re-
striction – the instrument must not directly influence the dependent vari-
able. In our case, some of the users’ friends are experiencing the same
weather as the users because they are in the same city. Therefore, in order
to break any possible correlation between friends’ rainfall X̄gt and users’
rainfall x̄gt, we only consider observations for city-day pairs (g, t) such that
x̄gt = 0 (that is, it did not rain in city g on day t). This results in dropping
30, 300 observations, for a total of 87, 700 remaining observations. Condi-
tional on x̄gt = 0, equations (7) and (8) can be respectively written as

Ȳgt = θ′t + f̄ ′g + β1X̄gt + ε′gt, (9)

ȳgt = θt + f̄g + γȲ pred
gt + ε̄gt. (10)

Note that since x̄gt = 0, there is no rainfall for either the user or the user’s
friends who are in the same city. This means that the instrument X̄gt now
depends only on friends who are in different cities (not in city g).

Tables 5 to 8 report the estimates (with standard errors, t-statistics, 95%
confidence intervals, and diagnostic statistics) for the first and second stage
of the 2SLS regression for the model in equation (3) (fixed effects estimates
are not reported due to their number). The estimates of the emotional
transmission parameter γ from the second stage regression are always sig-
nificantly different than zero, and the two positive coefficients support the
hypothesis of contagion. When users’ friends post positive status updates,
it increases their own positive updates. When users’ friends post negative
status updates, it increases their own negative updates. At the same time,
the two negative coefficients for γ support the idea that opposite moods
have an inhibitory effect. When users’ friends post positive status updates,
it decreases their own negative updates. When users’ friends post negative
status updates, it decreases their own positive updates.
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In order to assess the quality of the estimates obtained via instrumental
variable regression, we also compute diagnostic statistics.

First, we need to verify that the model is not underidentified. The Kleinbergen-
Paap rk LM statistic allows to test the null hypothesis of underidentifica-
tion [3], and all of our tests reject the null (test statistics are reported in
the caption underneath each table).

Second, we need to verify that the instruments are good predictors of the
endogenous explanatory variable in the first-stage regression (otherwise the
instruments are considered weak). Weak instruments would cause poor
predicted values in the first-stage regression (for example, little variation)
and presumably poor estimation in the second-stage regression. To ensure
the instruments are not weak, the Cragg-Donald Wald F statistic must
exceed the critical threshold suggested by Stock and Yogo [5].

For robustness, we also tested a version of the model in equation (3) that
only considers observations for city-day pairs (g, t) such that x̄gt = 1 (that
is, it rained in city g on day t). This results in dropping 87, 700 observa-
tions, for a total of 30, 300 remaining observations. Tables 9 to 12 report
the estimates (with standard errors, t-statistics, 95% confidence intervals,
and diagnostic statistics) for the first and second stage of the 2SLS regres-
sion, which are substantially the same as the ones in Tables 5 to 8, with
overlapping 95% CI. These results suggest that the users’ own experience
of rainfall does not affect emotional contagion online.

5.1 Simulation with Synthetic Data

Before applying the estimation strategy to empirical data, we run sim-
ulation to examine the validity of our approach. We generate synthetic
data on a 2-dimensional geographical space in a manner to incorporate
realistic properties of meteorological data and friendship networks. For
simplicity, we assume invariant equilibrium behavior at a single snapshot
observation. Each individual is located on a vertex of a grid on the ge-
ographical space, (d1i, d2i) ∈ [0, 1] × [0, 1]. The 1-dimensional exogenous
variable x is defined continuously over the geographical space drawn from
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Fig. S1: (A) The exogenous variable x is a z-scored Gaussian mixture distribution
defined over the 2-dimensional geographical space. (B) Each individual is located
on a vertex of a grid structure in the geographical space. For an individual i who
is located on (d1i, d2i), xi = x(d1i, d2i). Each circle represents an individual
and the blue lines between individuals are existing social ties in A. Red lines
are borders of groups. (C-E) Each histograms is the frequency distribution of
γ and β obtained from 2SLS regression throughout 1,000 trials of simulation.
Red dashed lines indicate true values of coefficients. To ensure the robustness
of the results, we vary the distant-dependency level α of A while preserving the
connection density of the networks by adjusting ρ. The ratio of the number of
existing links to the number of all possible connections, connection density, is set
to ∼ 0.02. N = 961 and n = 100. α = 16 (C), α = 26 (D) and α = 36 (E). The
extent of geographical clustering also affects the level of topological clustering
measured by average clustering coefficient, the ratio of the number of connected
triads to the number of all possible combinations. Average clustering coefficient
of the networks grows from 0.14 to 0.37 as α increases.
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a multidimensional Gaussian mixture distribution. The value of x affect-
ing individual i corresponds to x at i’s location, xi = f(x; d1i, d2i) where
f(x; d1, d2) =

∑10
j=1N (µj ,Σj) and µj ∈ d1 × d2 and Σj = cI2 share the

same geographical space with the individuals. µj is randomly drawn from a
2-dimensional uniform distribution defined over [0, 1]× [0, 1] and c is drawn
from a uniform distribution defined over (0, 0.2). N ×N adjacency matrix
A is an undirected binary network generated by using a stochastic distant-
dependent attachment model [4]. The probability that individual i projects
an undirected link to another individual j is ρe−αDij where Dij is the Eu-
clidean distance between i and j. Non-negative coefficient α is a factor
determining the level of distance dependency and coefficient ρ ∈ [0, 1] de-
termines the density of the resulting network. As α increases the network
is more likely to have proximal connections than distant connections.

We simulate the endogenous variable y using x, A and the model equa-
tion (1). With a little calculation, we obtain the explicit expression y =
(I − γW )−1(βx + ε) where Wij =

aij

δi
(there is a slight notational change

due to the matrix and vector representation). ε is drawn from N (0, 0.012).
Ground truth value of γ is set to 0.01 and, for simplicity, β = 1− γ = 0.99.
Our challenge now is to recover β and γ using equations (7) and (8) by
observing y, x and A. Each individual is assigned to one of n (n < N)
groups whose size is about the same to each other.

Figure S1 shows that 2SLS regression using equations (7) and (8) accurately
recover the true values of coefficients in most cases. For networks with
different level of geographical and topological clustering, we conduct 1,000
simulations for each setting. Standard deviation of coefficients in the pooled
data is 0.0027 (γ) and 0.0024 (β) respectively around the true values. In
total, more than 95% of individual coefficient estimates exhibit p < 0.01.

5.2 Placebo test

If our procedure is correctly estimating social influence, we would not ex-
pect to be able to predict users’ emotion using future friends’ weather and
emotion. Here, we test a placebo model by using the same instrumental
variables procedure described above to estimate the effect of future friends’
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rainfall on users’ emotion today. We arbitrarily choose t+ 30 as a point in
time far enough in the future that friends’ rainfall then will not be corre-
lated with friends’ rainfall at time t. We then modify the equation in (3)
to shift the independent variable forward by 30 days:

ȳgt = θt + f̄g + βx̄gt + γȲg,t+30 + ε̄gt, (11)

We conduct instrumental variable regression using X̄g,t+30 as an instrument
for Ȳg,t+30. Tables 13 to 16 report the estimates (with standard errors, t-
statistics, 95% confidence intervals, and diagnostic statistics) for the first
and second stage of the 2SLS regression. The estimates of γ from the second
stage regression are not statistically significant and they are much lower in
magnitude than those estimated for the model in equation (3).

5.3 Controlling for topic contagion

One concern is that our estimates of emotional contagion are actually esti-
mates of topic contagion. Friends who post more negatively when it rains
may be posting about the weather itself, and users may respond with their
own statuses about weather. This would not undermine our statistical re-
sults on contagion, but it might change our interpretation if we discovered
that topics were driving the similarity in word choice by users and friends.

To address this issue, we created a dictionary of weather terms based on a
meteorological glossary supplied by NOAA (http://www.erh.noaa.gov/box/glossary.htm).
We then crowdsourced this dictionary to approximately 100 students, post-
docs, and professors asking for additional suggestions. The resulting list is
not exhaustive, but we expect it will allow us to detect most status updates
that are on a weather-related topic. The full list of terms can be found in
Table 17.

Recall that Uit represents the status updates of user i on day t, and let u
(w)
it

be the number of status updates in Uit that contain at least one word from
our dictionary of weather terms. If uit 6= 0, let wit = u

(w)
it /uit be the fraction

of i’s status updates related to weather, and let w̄gt = 1
ng

∑
i∈Sg

wit be the

average over city g. We can now use this variable to control for the tendency
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to post status updates about the weather by adding it to equation (3):

ȳgt = θt + f̄g + λw̄gt + γȲgt + ε̄gt. (12)

Tables 18 to 21 report the estimates (with standard errors, t-statistics, 95%
confidence intervals, and diagnostic statistics) for the first and second stage
of the 2SLS regression. The negative estimates for λ suggest that increased
usage of weather words is generally associated with decreased emotional
expression. However, the relationships are weak and sometimes insignifi-
cant, and more importantly, the estimates for the emotional transmission
parameter γ remain substantially the same as the estimates from model (3)
without controls. These results indicate that posting on the topic of weather
is not driving the relationship in use of emotional words between users and
their friends.

6 Quantifying the total effect of a user on

her friends

Consider a user j and assume she posts a single status update during day
t. For presentation, we consider negative emotions and compare the case in
which j’s status update contains a negative word (yjt = 1) versus the case
it does not (yjt = 0). We estimate the additional number of negative status
updates posted by j’s friends conditional on yjt = 1 versus yjt = 0.

According to the individual level model (1), the emotional contagion from
j to i is given by cijt = γaijtyjt/δit for each user i who posted on day
t (we assume that each user i posted either one or zero status updates).
Conditional on yjt = 1 and on yjt = 0 respectively, this term is

c
(1)
ijt = γaijt/δit,

c
(0)
ijt = 0.

Summing over all users i who posted on day t, the total emotional contagion
of user j conditional on yjt = 1 is

C
(1)
jt =

∑
i

c
(1)
ijt = γ

∑
i

aijt/δit,
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while conditional on yjt = 0 it is C
(0)
jt = 0. The difference in number of

negative status updates posted by j’s friends conditional on yjt = 1 versus
yjt = 0 can be therefore quantified as

Fjt = C
(1)
jt − C

(0)
jt = γ

∑
i

aijt/δit = γAjt,

where Ajt =
∑

i aijt/δit constitutes a measure of how influential user j is. In
words, j’s cumulative effect on her friends is proportional to the coefficient
of emotional contagion γ and her influence Ajt.

Observe that Ajt can be computed exactly for each j and t. And note that
this measure is increasing in the number of friends (more friends means
more people might be influenced) and decreasing in the number of friends
those friends have (if a friend has more friends, the user will on average
have less influence on that friend).

The average user’s effect F̄t can be computed as the average individual effect
over all n users

F̄t =
1

n

∑
j

Fjt = γ
1

n

∑
j

Ajt = γ
1

n

∑
j

∑
i

aijt
1

δit

= γ
1

n

∑
i

1

δit

∑
j

aijt = γ
1

n

∑
i

1

δit
δit = γ.

The average user’s effect F̄t and 95% CI for all four choices of emotions
(user’s positive/negative rate, friends’ positive/negative rate) are shown in
Table 22, and correspond directly to the estimates of γ in Tables 5 to 8. In
other words, the γ coefficients themselves are estimates of the total effect a
user has on all her friends.

7 How rain affects friends in other cities

Here we compute the cumulative effect that rain in one city has on all
friends of users in that city who are in different cities. This allows us to
answer the question: if it rains in New York, how many additional users in
other cities post negative status updates as a result?

17



Consider the 2SLS model given by equations (9) and (10) for day t and city
g,

Ȳgt = θ′t + f̄ ′g + β1X̄gt + ε′gt,

ȳgt = θt + f̄g + γȲ pred
gt + ε̄gt.

Suppose that other cities are indexed by h 6= g and let X̄
(h,1)
gt , Ȳ

(h,1)
gt , ȳ

(h,1)
gt

respectively denote X̄gt, Ȳgt, ȳgt conditional on x̄ht = 1 (that is, rainfall in

city h). Similarly, let X̄
(h,0)
gt , Ȳ

(h,0)
gt , ȳ

(h,0)
gt be the same quantities conditional

on x̄ht = 0. Using this notation, we can derive the following relationships:

X̄
(h,1)
gt − X̄(h,0)

gt =
∑
i∈Sh

1

ng

∑
j∈Sg

1

δjt
aijt,

Ȳ
(h,1)
gt − Ȳ (h,0)

gt = β1

(
X̄

(h,1)
gt − X̄(h,0)

gt

)
= β1

∑
i∈Sh

1

ng

∑
j∈Sg

1

δjt
aijt,

ȳ
(h,1)
gt − ȳ(h,0)

gt = γβ1

(
X̄

(h,1)
gt − X̄(h,0)

gt

)
= γβ1

∑
i∈Sh

1

ng

∑
j∈Sg

1

δjt
aijt.

Observe that ȳ
(h,1)
gt − ȳ(h,0)

gt is the difference in emotion of the average user
in city g conditional on x̄ht = 1 verus x̄ht = 0. Assuming that each user
posts either one or zero status updates on day t, ng(ȳ

(h,1)
gt − ȳ

(h,0)
gt ) is the

additional number of negative status updates posted in city g conditional
on x̄ht = 1 verus x̄ht = 0, where ng is the number of users in city.

Fix a day t, let Īht be the cumulative number of negative status updates
posted in all cities different than h conditional on x̄ht = 1 versus x̄ht = 0,
that is the indirect of rain in city h. This can be computed by summing
the effect on each city g 6= h,

Īht =
∑
g 6=h

ng

(
ȳ

(h,1)
gt − ȳ(h,0)

gt

)
= γβ1

∑
g 6=h

ng
∑
i∈Sh

1

ng

∑
j∈Sg

1

δjt
aijt

= γβ1

∑
i∈Sh

∑
g 6=h

∑
j∈Sg

1

δjt
aijt = γβ1

∑
i∈Sh

∑
j /∈Sh

1

δjt
aijt.

For a user i in city h,
∑

j /∈Sh
aijt/δjt is the sum of the inverse degrees of i’s

friend who are in a different city, and represents a measure of i’s influence
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outside city h. The indirect effect or rain Īht is therefore proportional to
the total influence from users in city h to their friends in other cities.

For each city h, we let Īh be the average of T̄ht over all days t.

The confidence interval of Īh is computed from the confidence interval for
the product γβ1, as the other terms can be exactly computed. To compute
a confidence interval on the product γβ1 we cannot simply multiply the
estimates of γ and β1 in Table 6 derived from the model in equation (3)
using two-stage least-squares regression, because they might be correlated
We therefore use bootstrap sampling by independently generating 100 boot-
strap samples of our data set. Each bootstrap sample is generated by first
selecting 1180 days uniformly at random with replacement, and then se-
lecting 100 cities uniformly at random with replacement for each of the
1180 selected days. For each bootstrap sample, we estimate the model in
equation (3) using two-stage least-squares regression, and we compute the
product between β1 (from the first-stage regression) and γ (from the second-
stage regression). We them compute the mean and 95% CI of the estimates
of γβ1 from all bootstrap samples.

Tables 23 and 24 show the direct effect D̄h (with 95% CI) of rain in city
h on status updates posted by users in that city, computed by multiplying
the number of users nh by the coefficient β1 from the first stage in the 2SLS
regression. The tables also show the indirect effect Īh (with 95% CI) for
each city h of rain on status updates posted by users in other cities.

Similar results can be obtained by considering the effect on the number of
either positive or negative posts, and using positive or negative emotions
as the variable Ȳgt in the first stage regression. The size and direction of Īh
and D̄h would depend on the magnitude and sign of γβ1 and β1 respectively.
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List of US cities and codes

Code City Code City Code City

ABQ Albuquerque, NM GAR Garland, TX OKC Oklahoma City, OK
ANA Anaheim, CA GEU Glendale, AZ OMA Omaha, NE
ANC Anchorage, AK GKY Arlington, TX ORF Norfolk, VA
ATL Atlanta, GA GSP Greensboro, NC ORL Orlando, FL
AUR Aurora, CO HIA Hialeah, FL PDX Portland, OR
AUS Austin, TX HND Henderson, NV PHL Philadelphia, PA
AWO Arlington, VA HNL Honolulu, HI PHX Phoenix, TX
BFL Bakersfield, CA HOU Houston, TX PIE St Petersburg, FL
BHM Birmingham, AL HTS Huntington, WV PIT Pittsburgh, PA
BNA Nashville, TN ICT Wichita, KS PLA Plano, TX
BOI Boise, ID IND Indianapolis, IN RAL Raleigh, NC
BOS Boston, MA JAX Jacksonville, FL RDU Durham, NC
BTR Baton Rouge, LA JCY Jersey City, NJ RIV Riverside, CA
BUF Buffalo, NY LAS Las Vegas, NV RNO Reno, NV
BWI Baltimore, MD LAX Los Angeles, CA ROC Rochester, NY
CAK Akron, OH LBB Lubbock, TX SAN San Diego, CA
CHD Chandler, AZ LEX Lexington, KY SAT San Antonio, TX
CHI Chicago, IL LGB Long Beach, CA SBD San Bernardino, CA
CHU Chula Vista, CA LNK Lincoln, NB SCK Stockton, CA
CLE Cleveland, OH LRD Laredo, TX SDL Scottsdale, AZ
CLT Charlotte, NC MCI Kansas City, MO SEA Seattle, WA
CMH Columbus, OH MEM Memphis, TN SFO San Francisco, CA
COS Colorado Springs, CO MES Mesa, CA SJC San Jose, CA
CPK Chesapeake, VA MGM Montgomery, AL SMF Sacramento, CA
CRP Corpus Christi, TX MIA Miami, FL SNA Santa Ana, CA
CVG Cincinnati, OH MKE Milwaukee, WI SNP St Paul, MN
DAL Dallas, TX MOD Modesto, CA STL St Louis, MO
DEN Denver, CO MSN Madison, WI TOL Toledo, OH
DFW Fort Worth, TX MSP Minneapolis, MN TPA Tampa, FL
DTT Detroit, MI MSY New Orleans, LA TUL Tulsa, OK
ELP El Paso, TX NHE North Hempstead, NY TUS Tucson, AZ
EWR Newark, NJ NYC New York, NY VIB Virginia Beach, VA
FAT Fresno, CA OAK Oakland, CA WAS Washington, DC
FWA Fort Wayne, IN

Table 1
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Quantity Mean Standard Dev.

Number of users (daily) 9,903,993 3,447,776
Number of users who updated (daily) 2,042,996 775,162
Number of friendships (daily) 52,787,239 25,118,462

Table 2: For each day in the period of observation (a set of 1180 days from
January 2009 to March 2012) all Facebook users that are English-speakers and
geolocated within the 100 most populous US cities are included. Assuming that
each user posts either one or zero status updates on a day, the average number
of status updates per user per day is α = 0.206.

Summary of Emotion and Meteorological Variables

Mean Standard Deviation Minimum Maximum

Positive rate 0.407 0.0445 0.116 0.614
Negative rate 0.213 0.0329 0.0388 0.440
Weather posts 0.0653 0.0347 0 0.527

Rainfall indicator 0.257 0.437 0 1

Table 3: The summary statistics for each emotional and meteorological variable
are computed considering one observation for each city-day pair.

22



Summary of Rainfall in each City

City Num Rainy City Num Rainy City Num Rainy City Num Rainy
Code Days Days Code Days Days Code Days Days Code Days Days

ABQ 120 1180 CVG 379 1180 LEX 236 1180 PIT 378 1180
ANA 424 1180 DAL 257 1180 LGB 404 1180 PLA 386 1180
ANC 278 1180 DEN 217 1180 LNK 274 1180 RAL 94 1180
ATL 139 1180 DFW 350 1180 LRD 358 1180 RDU 241 1180
AUR 236 1180 DTT 566 1180 MCI 280 1180 RIV 84 1180
AUS 243 1180 ELP 132 1180 MEM 131 1180 RNO 377 1180
AWO 94 1180 EWR 217 1180 MES 303 1180 ROC 113 1180
BFL 438 1180 FAT 137 1180 MGM 102 1180 SAN 357 1180
BHM 303 1180 FWA 148 1180 MIA 446 1180 SAT 384 1180
BNA 207 1180 GAR 341 1180 MKE 558 1180 SBD 402 1180
BOI 344 1180 GEU 132 1180 MOD 132 1180 SCK 116 1180
BOS 460 1180 GKY 389 1180 MSN 408 1180 SDL 213 1180
BTR 420 1180 GSP 347 1180 MSP 257 1180 SEA 519 1180
BUF 226 1180 HIA 214 1180 MSY 450 1180 SFO 461 1180
BWI 207 1180 HND 519 1180 NHE 341 1180 SJC 370 1180
CAK 372 1180 HNL 84 1180 NYC 523 1180 SMF 443 1180
CHD 342 1180 HOU 373 1180 OAK 382 1180 SNA 183 1180
CHI 243 1180 HTS 323 1180 OKC 243 1180 SNP 177 1180
CHU 407 1180 ICT 153 1180 OMA 444 1180 STL 536 1180
CLE 131 1180 IND 256 1180 ORF 299 1180 TOL 196 1180
CLT 397 1180 JAX 267 1180 ORL 296 1180 TPA 305 1180
CMH 390 1180 JCY 414 1180 PDX 369 1180 TUL 334 1180
COS 388 1180 LAS 283 1180 PHL 92 1180 TUS 400 1180
CPK 365 1180 LAX 362 1180 PHX 311 1180 VIB 320 1180
CRP 562 1180 LBB 134 1180 PIE 154 1180 WAS 388 1180

Table 4
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Emotion measure: positive rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.0119 0.00207 -5.75 0.000 -0.0160 -.00781

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) 1.752 0.122 14.39 0.000 1.514 1.991

Table 5: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 25.507 (p = 0.0000) suggesting
the regression is not underidentified.[3] The Cragg-Donald Wald F statistic is
324.053, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.

Emotion measure: negative rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.0116 0.00195 5.97 0.000 0.00776 0.0155

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) 1.288 0.0486 26.53 0.000 1.193 1.383

Table 6: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 24.598 (p = 0.0000) suggesting
the regression is not underidentified.[3] The Cragg-Donald Wald F statistic is
505.398, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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How friends’ positive rate affects users’ negative rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.0119 0.00207 -5.75 0.000 -0.0160 -0.00781

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) -1.255 0.227 -5.52 0.000 -1.701 -0.809

Table 7: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 25.507 (p = 0.0000) suggesting
the regression is not underidentified.[3] TheCragg-Donald Wald F statistic is
324.053, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.

How friends’ negative rate affects users’ positive rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.0116 0.00195 5.97 0.000 0.00776 0.0155

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) -1.798 0.271 -6.62 0.000 -2.330 -1.266

Table 8: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 24.598 (p = 0.0000) suggesting
the regression is not underidentified.[3] TheCragg-Donald Wald F statistic is
505.398, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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Emotion measure: positive rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00985 0.00268 -3.68 0.000 -0.0152 -0.00454

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) 1.794 0.233 7.70 0.000 1.338 2.251

Table 9: Observations such that x̄gt = 1 are considered (30,300 total observa-
tions). The Kleibergen-Paap rk LM statistic is 13.531 (p = 0.0002) suggesting
the regression is not underidentified.[3] The Cragg-Donald Wald F statistic is
78.189, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.

Emotion measure: negative rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00973 0.00281 3.47 0.001 0.00416 0.0153

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) 1.473 0.134 10.97 0.000 1.210 1.736

Table 10: Observations such that x̄gt = 1 are considered (30,300 total observa-
tions). The Kleibergen-Paap rk LM statistic is 11.333 (p = 0.0008) suggesting
the regression is not underidentified.[3] The Cragg-Donald Wald F statistic is
102.297, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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How friends’ positive rate affects users’ negative rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00985 0.00268 -3.68 0.000 -0.0152 -0.00454

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) -1.456 0.475 -3.06 0.002 -2.387 -0.524

Table 11: Observations such that x̄gt = 1 are considered (30,300 total observa-
tions). The Kleibergen-Paap rk LM statistic is 13.531 (p = 0.0002) suggesting the
regression is not underidentified.[3] TheCragg-Donald Wald F statistic is 78.189,
which exceeds the critical thresholds suggested by Stock and Yogo [5] to ensure
the instruments are not weak. All statistics are robust to heteroskedasticity,
autocorrelation, and clustering.

How friends’ negative rate affects users’ positive rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00973 0.00281 3.47 0.001 0.00416 0.0153

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) -1.816 0.550 -3.30 0.001 -2.895 -0.738

Table 12: Observations such that x̄gt = 1 are considered (30,300 total observa-
tions). The Kleibergen-Paap rk LM statistic is 11.333 (p = 0.0008) suggesting
the regression is not underidentified.[3] TheCragg-Donald Wald F statistic is
102.297, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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Model in Equation (11) (non rainy days)
Emotion measure: positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval

Friends’ emotion Ȳ
(p)
t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 -0.0118 0.00191 -6.19 0.000 -0.0156 -0.00804

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ
(p)
t+30 -0.112 0.177 -0.63 0.526 -0.459 0.235

Table 13: Observations such that x̄gt = 0 and x̄g,t+30 = 0 are considered (67,493
total observations). The Kleibergen-Paap rk LM statistic is 28.711 (p = 0.0000)
suggesting the regression is not underidentified.[3] The Cragg-Donald Wald F
statistic is 265.910, which exceeds the critical thresholds suggested by Stock and
Yogo [5] to ensure the instruments are not weak. All statistics are robust to
heteroskedasticity, autocorrelation, and clustering.

Model in Equation (11) (non rainy days)
Emotion measure: negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval

Friends’ emotion Ȳ
(n)
t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 0.0120 0.00188 6.42 0.000 0.00832 0.0158

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ
(n)
t+30 -0.185 0.126 -1.46 0.143 -0.432 0.0627

Table 14: Observations such that x̄gt = 0 and x̄g,t+30 = 0 are considered (67,493
total observations). The Kleibergen-Paap rk LM statistic is 26.552 (p = 0.0000)
suggesting the regression is not underidentified.[3] The Cragg-Donald Wald F
statistic is 458.685, which exceeds the critical thresholds suggested by Stock and
Yogo [5] to ensure the instruments are not weak. All statistics are robust to
heteroskedasticity, autocorrelation, and clustering.
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Model in Equation (11) (non rainy days)
Friends’ positive rate to users’ negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval

Friends’ emotion Ȳ
(p)
t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 -0.0118 0.00191 -6.19 0.000 -0.0156 -0.00804

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ
(p)
t+30 0.188 0.121 1.55 0.120 -0.0493 0.425

Table 15: Observations such that x̄gt = 0 and x̄g,t+30 = 0 are considered (67,493
total observations). The Kleibergen-Paap rk LM statistic is 28.711 (p = 0.0000)
suggesting the regression is not underidentified.[3] TheCragg-Donald Wald F
statistic is 265.910, which exceeds the critical thresholds suggested by Stock and
Yogo [5] to ensure the instruments are not weak. All statistics are robust to
heteroskedasticity, autocorrelation, and clustering.

Model in Equation (11) (non rainy days)
Friends’ negative rate to users’ positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval

Friends’ emotion Ȳ
(n)
t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 0.0120 0.00188 6.42 0.000 0.00832 0.0158

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ
(n)
t+30 0.110 0.172 0.64 0.521 -0.226 0.447

Table 16: Observations such that x̄gt = 0 and x̄g,t+30 = 0 are considered (67,493
total observations). The Kleibergen-Paap rk LM statistic is 26.552 (p = 0.0000)
suggesting the regression is not underidentified.[3] TheCragg-Donald Wald F
statistic is 458.685, which exceeds the critical thresholds suggested by Stock and
Yogo [5] to ensure the instruments are not weak. All statistics are robust to
heteroskedasticity, autocorrelation, and clustering.
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aerovane air airstream altocumulus altostratus anemometer anemometers anticyclone
anticyclones arctic arid aridity atmosphere atmospheric autumn autumnal balmy
baroclinic barometer barometers barometric blizzard blizzards blustering blustery
blustery breeze breezes breezy brisk calm celsius chill chilled chillier chilliest
chilly chinook cirrocumulus cirrostratus cirrus climate climates cloud cloudburst
cloudbursts cloudier cloudiest clouds cloudy cold colder coldest condensation contrail
contrails cool cooled cooling cools cumulonimbus cumulus cyclone cyclones damp damp
damper damper dampest dampest degree degrees deluge dew dews dewy doppler downburst
downbursts downdraft downdrafts downpour downpours dried drier dries driest drizzle
drizzled drizzles drizzly drought droughts dry dryline fall farenheit flood flooded
flooding floods flurries flurry fog fogbow fogbows fogged fogging foggy fogs forecast
forecasted forecasting forecasts freeze freezes freezing frigid frost frostier
frostiest frosts frosty froze frozen gale gales galoshes gust gusting gusts gusty
haboob haboobs hail hailed hailing hails haze hazes hazy heat heated heating heats
hoarfrost hot hotter hottest humid humidity hurricane hurricanes ice iced ices icing
icy inclement landspout landspouts lightning lightnings macroburst macrobursts maelstrom
mercury meteorologic meteorologist meteorologists meteorology microburst microbursts
microclimate microclimates millibar millibars mist misted mists misty moist moisture
monsoon monsoons mugginess muggy nexrad nippy NOAA nor’easter nor’easters noreaster
noreasters overcast ozone parched parching pollen precipitate precipitated precipitates
precipitating precipitation psychrometer radar rain rainboots rainbow rainbows raincoat
raincoats rained rainfall rainier rainiest raining rains rainy sandstorm sandstorms
scorcher scorching searing shower showering showers skiff sleet slicker slickers slush
slushy smog smoggier smoggiest smoggy snow snowed snowier snowiest snowing snowmageddon
snowpocalypse snows snowy spring sprinkle sprinkles sprinkling squall squalls squally
storm stormed stormier stormiest storming storms stormy stratocumulus stratus
subtropical summer summery sun sunnier sunniest sunny temperate temperature tempest thaw
thawed thawing thaws thermometer thunder thundered thundering thunders thunderstorm
thunderstorms tornadic tornado tornadoes tropical troposphere tsunami turbulent twister
twisters typhoon typhoons umbrella umbrellas vane warm warmed warming warms warmth
waterspout waterspouts weather wet wetter wettest wind windchill windchills windier
windiest windspeed windy winter wintery wintry

Table 17: Terms used to identify status updates on the topic of weather.
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Model in Equation (12) (non rainy days)
Emotion measure: positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00888 0.00199 -4.46 0.000 -0.0128 -0.00492
Users’ weather rate w̄ -0.0186 0.00322 -5.78 0.000 -0.0250 -0.0122

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) 1.205 0.0974 12.37 0.000 1.0140 1.396
Users’ weather rate w̄ -0.0399 0.00301 -13.25 0.000 -0.0458 -0.0340

Table 18: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 17.750 (p = 0.0000) suggesting
the regression is not underidentified.[3] The Cragg-Donald Wald F statistic is
169.315, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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Model in Equation (12) (non rainy days)
Emotion measure: negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00749 0.00175 4.29 0.000 0.00403 0.0110
Users’ weather rate w̄ 0.0252 0.00496 5.09 0.000 0.0154 0.0351

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) 1.509 0.0986 15.30 0.000 1.315 1.702
Users’ weather rate w̄ -0.0157 0.00305 -5.14 0.000 -0.0217 -0.00971

Table 19: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 15.799 (p = 0.0001) suggesting
the regression is not underidentified.[3] The Cragg-Donald Wald F statistic is
199.681, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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Model in Equation (12) (non rainy days)
Friends’ positive rate to users’ negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00888 0.00199 -4.46 0.000 -0.0128 -0.00492
Users’ weather rate w̄ -0.0186 0.00322 -5.78 0.000 -0.0250 -0.0122

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) -1.274 0.302 -4.22 0.000 -1.866 -0.681
Users’ weather rate w̄ -0.00134 0.0113 -0.12 0.905 -0.0234 0.0207

Table 20: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 17.750 (p = 0.0000) suggesting
the regression is not underidentified.[3] TheCragg-Donald Wald F statistic is
169.315, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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Model in Equation (12) (non rainy days)
Friends’ negative rate to users’ positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00749 0.00175 4.29 0.000 0.00403 0.0110
Users’ weather rate w̄ 0.0252 0.00496 5.09 0.000 0.0154 0.0351

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) -1.427 0.368 -3.88 0.000 -2.149 -0.706
Users’ weather rate w̄ -0.0264 0.0150 -1.76 0.078 -0.0557 0.00300

Table 21: Observations such that x̄gt = 0 are considered (87,700 total observa-
tions). The Kleibergen-Paap rk LM statistic is 15.799 (p = 0.0001) suggesting
the regression is not underidentified.[3] TheCragg-Donald Wald F statistic is
199.681, which exceeds the critical thresholds suggested by Stock and Yogo [5] to
ensure the instruments are not weak. All statistics are robust to heteroskedas-
ticity, autocorrelation, and clustering.
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Average user emotional contagion effect – estimates and 95% CI

User’s emotion Friend’s emotion D̄t Lo95% Hi95%
Positive rate Positive rate 1.752 1.514 1.991
Negative rate Negative rate 1.288 1.193 1.383
Positive rate Negative rate -1.255 -1.701 -0.809
Negative rate Positive rate -1.798 -2.330 -1.266

Table 22
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Indirect and direct effect of rain in a city – estimates and 95% CI
(Number of negative posts)

Population Indirect effect Direct effect
City Code (US Census 2010) Īg Lo95% Hi95% D̄g Lo95% Hi95%

NYC 8175133 712.14 626.23 806.32 1550.42 1023.81 2071.68
LAX 3792621 666.96 586.5 755.16 1136.34 750.37 1518.38
CHI 2695598 573.32 504.16 649.14 1637.96 1081.62 2188.65
WAS 601723 494.37 434.73 559.75 878.38 580.04 1173.7
ATL 420003 477.59 419.98 540.75 992.6 655.46 1326.32
DAL 1197816 445.36 391.63 504.25 714.63 471.9 954.89
HOU 2100263 352.2 309.71 398.77 881.18 581.88 1177.44
SAN 1307402 299.02 262.95 338.56 536.04 353.97 716.26
AUS 790390 283.22 249.05 320.67 443.31 292.74 592.35
SFO 805235 278.62 245.01 315.47 419.23 276.84 560.18
ORL 238300 262.76 231.06 297.51 530.92 350.59 709.42
PHX 1445632 252.38 221.94 285.76 432.45 285.57 577.85
PHL 1526006 250.07 219.9 283.14 831.29 548.94 1110.77
BOS 617594 226.16 198.87 256.07 678.99 448.37 907.27
LAS 583756 215.53 189.53 244.03 367.55 242.71 491.12
TPA 335709 203.99 179.38 230.96 407.76 269.26 544.85
CLT 731424 202.33 177.92 229.09 441.28 291.4 589.65
BWI 620961 201.65 177.32 228.32 510.88 337.36 682.64
SEA 608660 199.65 175.57 226.05 450.34 297.38 601.75
MSP 382578 189.01 166.21 214 487.64 322.01 651.58
MIA 399457 184.1 161.89 208.44 511.4 337.7 683.34
BNA 601222 181.93 159.98 205.99 340.53 224.87 455.02
SAT 1327407 180.27 158.52 204.11 402.74 265.95 538.14
DEN 600158 174.49 153.44 197.57 342.77 226.35 458.01
DTT 713777 169.29 148.86 191.67 722.21 476.91 965.02
CMH 787033 165.41 145.45 187.28 385.78 254.75 515.48
VIB 437994 164.3 144.48 186.03 261.33 172.57 349.19
RAL 403892 155.61 136.84 176.19 331.11 218.64 442.43
PDX 583776 151.09 132.86 171.07 368.13 243.1 491.9
IND 820445 145.44 127.89 164.67 426.14 281.4 569.42
STL 319294 140.84 123.85 159.47 428.03 282.65 571.94
PIT 305704 138.34 121.65 156.63 423.86 279.89 566.36
JAX 821784 128.47 112.97 145.46 313.3 206.88 418.63
CVG 296943 125.75 110.58 142.38 349.55 230.82 467.07
MKE 594833 123.44 108.55 139.76 356.36 235.32 476.17
CLE 396815 121.64 106.97 137.73 290.14 191.59 387.69
MCI 459787 121.57 106.9 137.64 361.38 238.64 482.88
MSY 343829 119.4 104.99 135.18 217.86 143.86 291.1
DFW 741206 114.47 100.66 129.6 143.96 95.06 192.36
SMF 466488 109.26 96.08 123.7 259.26 171.2 346.42
MEM 646889 101.05 88.86 114.41 281.99 186.21 376.8
COS 416427 85.02 74.76 96.26 164.61 108.7 219.95
TUS 520116 85 74.74 96.24 183.67 121.29 245.42
OKC 579999 82.09 72.19 92.95 197.24 130.25 263.55
BHM 212237 80.15 70.48 90.74 206.74 136.52 276.25
ROC 210565 79.8 70.18 90.36 231 152.54 308.66
GSP 269666 79.29 69.72 89.77 148.43 98.02 198.34
BUF 261310 78.59 69.11 88.99 240.16 158.59 320.91
OMA 408958 77.38 68.04 87.61 198.7 131.21 265.51
HNL 337256 76.94 67.66 87.11 146.49 96.73 195.74

Table 23
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Indirect and direct effect of rain in a city – estimates and 95% CI
(Number of negative posts)

Population Indirect effect Direct effect
City Code (US Census 2010) Īg Lo95% Hi95% D̄g Lo95% Hi95%

MSN 233209 75.29 66.21 85.25 157.48 103.99 210.42
TUL 391906 73.27 64.43 82.96 182.92 120.79 244.42
LGB 462257 70.16 61.7 79.44 82.38 54.4 110.08
BTR 229493 69.06 60.73 78.19 144.26 95.26 192.76
GKY 365438 68.67 60.38 77.75 77.07 50.89 102.98
ORF 242803 66.44 58.43 75.23 69.23 45.72 92.51
SDL 217385 64.1 56.37 72.58 56.15 37.08 75.03
SJC 945942 63.62 55.95 72.04 124.93 82.5 166.93
LEX 295803 62.26 54.75 70.49 166.71 110.08 222.76
MES 439041 58.33 51.29 66.04 70.82 46.76 94.63
SNP 285068 58.13 51.12 65.82 56.62 37.39 75.65
AWO 207627 58.11 51.1 65.79 48.02 31.71 64.16
CAK 199110 54.97 48.34 62.24 127.26 84.03 170.04
ICT 382368 53.72 47.24 60.82 172.3 113.78 230.23
OAK 390724 52.66 46.31 59.62 63 41.6 84.17
PLA 259841 52.58 46.23 59.53 51.25 33.84 68.47
TOL 287208 52.5 46.17 59.44 139.47 92.1 186.36
ABQ 545852 51.48 45.27 58.29 124.55 82.25 166.42
LNK 258379 48.66 42.79 55.09 113.83 75.17 152.11
LBB 229573 45.6 40.1 51.63 83.81 55.34 111.98
CPK 222209 44.53 39.16 50.42 48.25 31.86 64.47
CHD 236123 42.98 37.8 48.67 44.24 29.21 59.11
FAT 494665 40.7 35.79 46.08 114.99 75.94 153.66
JCY 247597 40.27 35.41 45.6 79.44 52.46 106.15
FWA 253691 39.61 34.83 44.85 112.57 74.33 150.42
ELP 649121 38.59 33.94 43.69 89.57 59.15 119.68

MGM 205764 38.23 33.62 43.29 83.39 55.07 111.43
CRP 305215 36.17 31.81 40.95 72.06 47.58 96.28
BOI 205671 34.14 30.02 38.66 98.93 65.33 132.19
ANC 291826 33.83 29.75 38.3 82.87 54.72 110.73
PIE 244769 33.8 29.72 38.27 36.59 24.16 48.89
HND 257729 33.54 29.49 37.97 32.71 21.6 43.71
RNO 225221 30.89 27.16 34.97 67.57 44.62 90.29
BFL 347483 27.67 24.33 31.33 84.18 55.59 112.49
RIV 303871 25.28 22.23 28.62 48.15 31.79 64.33
GAR 226876 23.98 21.08 27.15 26.58 17.55 35.52
SCK 291707 19 16.71 21.51 40.11 26.49 53.6
HTS 189992 18.27 16.07 20.69 49 32.36 65.48
ANA 336265 18.18 15.99 20.59 30.24 19.97 40.41
CHU 243916 17.9 15.74 20.27 18.21 12.03 24.34
MOD 201165 15.42 13.56 17.46 37.16 24.54 49.65
GEU 226721 14.99 13.18 16.97 13.86 9.15 18.52
EWR 277140 13.44 11.81 15.21 27.85 18.39 37.21
HIA 224669 11.27 9.91 12.76 12.02 7.94 16.06
LRD 236091 9.46 8.31 10.71 27.13 17.92 36.25
SNA 324528 8.65 7.61 9.8 17.44 11.52 23.31
SBD 209924 7.51 6.6 8.5 15.98 10.55 21.36
NHE 226322 5.35 4.71 6.06 6.01 3.97 8.03
RDU 228330 1.22 1.07 1.38 28.31 18.69 37.82
AUR 325078 0.31 0.27 0.35 3.87 2.55 5.17

Table 24
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