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Figure S5.  Modeling of kinesin-1 turnover in neuronal processes 
 
Part 1. The Diligent Worker and Loose Bucket Brigade models 
 
1A. Diligent Workers 
 
This model assumes that cargo-bound kinesin-1 motors bind to a microtubule at its minus end in 
the cell body and move actively all the way to the plus end of the microtubule in the axon 
terminal where they unbind from both cargo and microtubule and diffuse back.  That is, 
anterograde motors move only by active transport at v= 0.78 µm/s [1] whereas retrograde motors 
move only by diffusion at D=4.08 ± 0.46  µm2/s (Figure S4).  Binding of kinesin-1 motors (kon) 
to the microtubule track occurs only at the minus ends in the cell body whereas unbinding from 
the track (koff) occurs only at the plus ends in the axon terminal.  
   
Let U and B denote the local fractions of unbound and bound motors, respectively.  Their steady-
state distributions along a neurite are described by the following equations: 
       
The solutions are: 
     and ,  
where U-  and U+ are the fractions of the unbound motors at the minus and plus ends, 
respectively, and L is the axon length.  Thus, using the equation 
                  (1) 
demonstrates that the Diligent Worker mechanism results in a linear distribution of the total 
kinesin-1 density along the axon (Figure S5A, left panel).    
 
The constant values U-, U+ , and B0  in Eq (1) are determined from boundary conditions based on 
the following assumptions.  First, the diffusive flux of kinesin-1, , must balance the active 
flow,  (D and v are the diffusion coefficient and the average velocity, respectively), yielding  

   .   

Second, the fraction of kinesin-1 motors bound to cargo must be constant in time.  That is, the 
rate of binding at the minus end, , should balance the rate of unbinding at the plus end,  

   :   

Finally, the total number of kinesin-1 motors in the neurite must be conserved, , 

resulting in .   

Eq (1) then takes the form:   

 
The recycling of kinesin-1 motors is described by two characteristics, the steady-state turnover 
rate R and the time per kinesin-1 cycle τ.  
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   ,  

    .    

Whereas Diligent Workers are effective in targeting cargos produced in the cell body to the 
neurite tips, their turnover rate R slows down for longer axons.  For axonal lengths greater than 

~ 10 µm, diffusion becomes a rate limiting factor: .  Still, for axonal lengths ~ 
60-70 µm, the time of recycling is only ~10 min which is within the time frame of kinesin-1-
1dependent transport events [2].  However, in processes longer than ~ 100 µm, diffusion of 
kinesin-1 motors within the Diligent Worker model limits the rate of kinesin-1 recycling. 
 
 
1B. Loose Bucket Brigade 
 
This model assumes that both anterograde and retrograde motors participate in active transport 
and diffusion.  Binding/unbinding of kinesin-1 motors to/from the microtubule track occurs 
throughout the axon.  In this scenario, the cargo frequently “changes hands”, as the driving motor 
spontaneously unbinds from the cargo and microtubule, undergoes a period of diffusive 
movement, and then reattaches to a cargo and reactivates.  Thus, this model is termed a “bucket 
brigade”.  
  
As in the Diligent Worker model, the motor bound to a cargo actively moves along a 
microtubule in the plus end direction with velocity v= 0.78 µm/s.  Upon random unbinding 
characterized by frequency koff, the motor undergoes free diffusion in the cytoplasm with the 
diffusion coefficient D=4.08 ± 0.46  µm2/s.  The diffusive motion, in turn, is randomly 
interrupted by binding events.  We assume that the frequency kon of binding events is constant 
throughout the axon, i.e. cargo is in constant and uniform supply along the axon. 
 
In this model, which is equivalent to a two-state model earlier used to analyze kinesin 
distributions in in vitro microtubule assays [3], the steady state of the system is described by the 
following differential equations: 

       (2) 

with the notation as above.  
  
To solve Eqs (2), we first sum up Eqs (2) and take into account that the net flux of the motors is 
zero. This yields  
     ,      (3) 
and the problem reduces to determining U(x).  The equation for U(x) is obtained by substituting 
Eq (3) back  into the first of Eqs (2):  
                                                 .  
The general solution of this equation is  
                                                     ,                        (4) 
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where  and  are the solutions of the 
characteristic equation   
 
Here , is a “diffusion length” between the consecutive events of unbinding and 
binding and  is the average run length of the motor on MT.  
 
Eq (4) is dominated by the first term, .  Then with the account of Eq (3), the 
total concentration of active and inactive kinesin is 
   , 
where the pre-factor can be expressed in terms of the average concentration of 
total kinesin (active and inactive) in the system.  Indeed, given that the total number of kinesins 

is conserved, ,   

 
Overall, the steady-state spatial profile of total kinesin for the “bucket brigade” with constant 
frequency of activation is described by the following equation, 

.    (5) 

Using Eq (5) we find that in agreement with [3], the Loose Bucket Brigade mechanism yields an 
exponential steady-state profile of kinesin-1 motor distribution along the axon (Figure S5A, right 
panel). 
 

The corresponding turnover rate, , increases with axonal 

length, and the time per cycle becomes essentially independent of L for long axons:   

    for .   

 
While the turnover parameters of the bucket brigade are better than those of the diligent workers, 
the bucket brigade loses to diligent workers in targeting cargos in the cell body.  Specifically, the 

fraction of the total flux made up by the cargos from the cell body, , becomes 

exponentially small for long axons.  For , for example, this fraction is only 4.5x10-3 %.  
This is due to the sloppiness of the bucket brigade: upon dissociation from the cargo and MT, the 
motor does not necessarily return to where it was activated but rather can diffuse in either 
direction.   
 
The spatial profile in the bucket brigade scenario, Eq (5), is largely defined by the parameter 
which depends both on the association/dissociation rate constants kon and koff and the transport 
parameters D and v (see the equations that follow Eq (4)).  For , the distribution profiles 
along an axon are very different for kinesin-1 motors as diligent workers versus in bucket 
brigade (Figure S5A) with the same set of parameters:  v = 0.78 µm/s, D = 4.08  µm2/s, kon = 
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1.22 s-1, koff  = 2/3 s-1, and .  However, if , the profiles in the two scenarios 
become similar.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S5A.  Predicated distribution of the total fraction of kinesin-1 motors along an axon in the 
Diligent Worker scenario (left panel) versus Loose Bucket Brigade scenario (right panel). 
 
 
 
Part 2. Experimental determination of the KHC spatial distribution is consistent with a 
Loose Bucket Brigade mechanism of kinesin recycling. 
 
To determine the spatial distribution of the total kinesin-1 in neuronal cell processes, CAD cells 
and primary hippocampal neurons were stained with a monoclonal antibody (H2) that recognizes 
a sequence in the stalk domain of all three KHC-encoding gene products (KIF5A, KIF5B, 
KIF5C) regardless of their conformation (autoinhibited versus active) ([4] and data not shown).  
CAD cells were chosen as a “simplified” neuron as they generate one or more neurites that 
appear equal in their kinesin-1-dependent transport.  Primary hippocampal neurons were used to 
verify the CAD cell results in true axons.  Primary hippocampal neurons grown for 2 days in 
vitro (2DIV) generate a single axon and several minor neurites whereas cells grown for 9DIV 
contain a single axon and several dendrites that have begun to synapse with axons of adjacent 
cells [5].  
 
To correct for any changes in KHC fluorescence signal intensity due to changes in cell volume, 
CAD cells and primary hippocampal neurons were first transfected with plasmids expressing 
enhanced green fluorescent protein (EGFP).  The cells were fixed and stained with the H2 
antibody and the amount of KHC protein was quantified as a ratio of the raw KHC fluorescence 
intensity and the corresponding EGFP fluorescence intensity for each pixel along the neurite 
(CAD cells) or axon (primary hippocampal neurons).  Figure S5B shows the increasing portion 
of the curve at the end of the neurite of one CAD cell.  A typical qualitative feature of the KHC 
distribution in this and all other cells is an exponential increase of concentration towards the 
microtubule plus end in the axon terminal.  Thus, the experimentally-observed kinesin spatial 
profiles appear to point in favor of the Loose Bucket Brigade. 

         Diligent Worker       Loose Bucket Brigade 
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 One of the fitting parameters is the characteristic length λ1.  The value of λ1 averaged over 
12 CAD cells is 3.76 µm.  Based on the values of λ1 , the diffusion coefficient D (≈ 4.08 µm2/s, 
Figure S4), the kinesin velocity (0.78 µm/s, [1]) and the average run length l (≈ 1.17 µm [1]) 
allows one to estimate kon ( see the equations following Eq (4)):   

 
 The experimentally-observed exponential increase in KHC protein at axon tips matches 
the predicted distribution of kinesin-1 in the Loose Bucket Brigade but not the Diligent Worker 
model (Figure 5).  However, in neurites and axons, kinesin-1 also displays an increase at the 
minus ends of the microtubules (at the cell body, Figure 5E) that is not predicted in either of the 
models.  The experimentally-observed increase in kinesin-1 protein at the microtubule minus 
ends could be due to motors that do not participate in active transport or could simply be due to 
background fluorescence.  To distinguish between these possibilities, control experiments were 
performed by omitting the H2 primary antibody from the staining protocol.  The residual 
fluorescence at the minus ends of the microtubules in the absence of anti-kinesin-1 antibodies 
(Figure S5C) indicates that the baseline component is essentially due to background 
fluorescence.  Thus, all kinesin-1 motors appear to participate in both active transport and free 
diffusion. 
 

 
Figure S5C. Differentiated CAD cells expressing EGFP (a marker of cell volume) were immunostained as 
in Figure 5 except that the H2 primary antibody was omitted.  The fluorescence intensities due to the 
secondary antibody (red line) and EGFP (green line) were plotted along the length of the neurite (right 
panel).  Scale bar, 20 µm. 
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Figure S5B.  Experimentally-determined 
distribution of kinesin-1 motors in the 
neurite process of a differentiated CAD 
cell.  Pink line, exponential fit of the data 
using the formula .  
The average relative error of fit is < 9%.  
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Part 3. Hypothesis of an “organized bucket brigade” 
 
Both the Diligent Worker and the Loose Bucket Brigade models have their strengths and 
weaknesses.  Diligent Workers bind 100% of cargoes generated in the cell body but their 
turnover rate in long axons, dominated by diffusion, would be prohibitively slow.  In contrast, in 
the Loose Bucket Brigade, kinesin-1 recycling is independent of the axon length but for long 
axons, it is ineffective with respect to targeting cargoes in the cell body (still, for , the 
fraction of flux due to cargoes generated in the cell body is ≈ 2 %).  
 
One way to overcome the slowness of diffusion would be to “organize” the bucket brigade by 
assigning kinesin-1 molecules to a particular segment of the axon.  For this, the diffusion of 
inactive kinesin-1 motors should be “rectified”, i.e. the dissociated kinesin-1 motors must not 
diffuse in the “wrong” direction.  The idea of diffusion rectification is not unheard of in 
applications to cellular systems, e. g. Brownian ratchet [6].  To preclude kinesin-1 from diffusing 
in the plus end direction, there should be diffusion barriers of some sort.  These could be pile-ups 
of large cargoes at the ends of microtubule fragments or, probably more likely, stochastic cargo 
accumulations [7] sufficient for obstructing diffusion.  Our preliminary models of organized 
bucket brigades indicate that this mechanism indeed overcomes deficiencies of a loose bucket 
brigade and presents a diffusion-based alternative to models of active recycling of kinesin.   
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