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Supplement S5: Structural fluxes based on generating vectors 

Introduction to generating vectors 

GVs allow computation in polynomial time [10] and can be computed using the nullspace algorithm of 

METATOOL [11] or elmocomp [12] for larger metabolic networks. [13] show that CEFs computed 

from EMs and GVs are comparable, though if a reversible reaction is involved in forward and backward 

directions in the modes, its CEF computed from EMs tends to be underestimated compared to the CEF 

of the same reaction computed from GVs.  

An issue that was encountered in the approach of using GVs is the need for re-computation of the 

minimal generating set after each gene deletion, because cancelation of reversible fluxes hides simple 

pathways [14]. To avoid this re-computation and to obtain a unique set of modes and a pointed flux 

cone, one can split all reversible reactions into two irreversible reactions, and compute the set of modes 

for such metabolic network. The result is again the set of generating vectors that coincides with the set 

of elementary modes. We propose a compromise in one step by restricting and splitting up reversible 

reactions until a pointed cone is obtained, so that re-computation after each reaction deletion is no 

longer necessary (main text, section 2.2.1). The proposed approach reduces the computational intensity 

compared to elementary modes and avoids re-computation of the minimal generating set, thus allowing 

the use of larger-scale networks compared to elementary modes, and it is a way to consider biologically 

relevant modes. 

 

Procedure 

The procedure for finding metabolic engineering targets consists of two main steps and is given in Fig. 

1 using either EMs or GVs for larger-scale. Concerning the GVs, first, the structural fluxes are 

computed for the wild-type network as a measure that predicts the flux of all reactions across the 

network. Second, a search for mutants with an increased structural flux towards the target reaction is 

started.  

In more detail, the procedure is as follows: 
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 Compute StruFs for the wild-type network including its forward and backward value for each 

reversible reaction (Eqs.1-3). 

 Compute the reversibility score (Eq. 4) and restrict the reversiblities of a potentially reversible 

reaction if its reversibility score is smaller than 0.05; for the remaining reversible reactions: 

split up the reaction into a forward and backward reaction to obtain a modified metabolic 

network. 

 Re-compute the generating vectors from the modified wild-type network. Note that, for the 

modified network, the minimal generating set is equal to the extreme rays. Compute the StruFs 

for this set of GVs. 

 Search for mutants that have an increased structural flux for the target reaction by re-computing 

the structural fluxes for each knockout mutant. 

Based on case studies on medium-scale networks, we chose 0.05 as a cut off for restricting the reactions 

reversibility. The cut off for the reversibility score represents a trade-off between prediction power and 

computational intensity. A lower cut off gives better predictions at the expense of increased 

computational effort. For the intended application to large-scale networks, fine-tuning of this cut off 

may be desired. As an example, upon deletion of the reactions ZWF or GND, the directionality of some 

of the reactions in the pentose phosphate pathway has to change to be able to supply the biomass 

building blocks and this should be reflected in the values of the StruFs in forward and backward 

directions.  

 

Experimental validation 

In this section, we justify the use of generating vectors instead of elementary modes in the computation 

of structural fluxes towards large-scale implementation by showing the prediction of the fluxes per 

mutant. Tables S4 and S5 show the correlation of StruFs with 
13

C flux data as compared with the 

correlation of the same experimental data with fluxes estimated by FBA and CEFs, as well as StruFs 

calculated from EMs and GVs. It can be seen that structural fluxes are good predictors of intra-cellular 

fluxes in mutants for the central carbon metabolism of E. coli and S. cerevisiae. All p-values indicate a 
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significant correlation. Regarding the structural fluxes for E. coli, the Pearson correlation was at least 

0.70. S. cerevisiae is a more complex micro-organism than E. coli and known to have a higher degree of 

regulation. Interestingly, the obtained correlations for S. cerevisiae were better than for E. coli: ≥ 0.82.  

FBA gave Pearson correlations of about 0.5 for yeast. Flux variability analysis under the constraint of 

optimal growth did not change the flux distribution of most fluxes (only of the futile cycles MDH1-

MDH2, ADH1- ADH3, and OSM1-SDH) nor could improve the correlations. FBA gave Pearson 

correlations of about 0.3 for E. coli. These poor results are caused by a futile cycle through the 

glycolysis and pentose phosphate pathway. In flux variability analysis, these fluxes can have an 

infinite range of variation (constrained to -1000 and 1000 in our simulations). Slightly improved 

correlations can be obtained by setting additional constraints on the reversibility of for instance PGI. 

Compared to FBA, structural fluxes are the preferred choice. Compared to the original concept of 

CEFs, structural fluxes give a slightly better correlation. Note that, for comparison of fluxes across 

mutants (as demonstrated in the paper), the prediction power for structural fluxes was found to be far 

superior over control effective fluxes, because the latter are not comparable across networks. 

To facilitate the use of large-scale networks, generating vectors were considered as an alternative for 

elementary modes. For the compromise, in which the directionality of the reactions was restricted or 

split up, the structural fluxes computed from the set of generating vectors or elementary modes are 

similar. Generating vectors are favorable for its lower computational time, though they tend to 

overestimate gene/reaction essentiality as the number of pathways is smaller . 
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Table S4. Correlations for predicted and measured fluxes per mutant in E. coli using 
13

C flux 

measurements from [4]. 

Mutant FBA  CEFs  88,109 

EMs 

StruFs  88,109 

EMs 

CEFs  9.272 

GVs 

StruFs  21,070 

GVs 

 p-value Pearson r p-value Pearson r p-value Pearson r p-value Pearson r p-value  Pearson r 

WT 7,08E-05 0,652 1.33E-09 0.8509 4.53E-08 0.8221 9.00E-08 0.7953 4.49E-06 0.7399 

HEX1 7,08E-05 0,652 5.02E-10 0.8613 1.73E-08 0.8354 9.14E-09 0.8279 2.42E-05 0.6995 

PGI 4,17E-06 0,7239 8.34E-13 0.9129 1.88E-11 0.9102 -*  - 2.86E-09 0.8651 

PPS 5,46E-06 0,7179 1.11E-10 0.8758 3.46E-09 0.8552 1.27E-08 0.8236 4.22E-07 0.7865 

FBP 8,79E-06 0,7069 3.93E-09 0.8384 1.05E-07 0.8095 1.89E-07 0.7833 2.82E-05 0.6955 

RPE 1,41E-04 0,631 2.25E-09 0.845 1.31E-08 0.8471 -  - 8.89E-06 0.7337 

PGL 7,37E-13 0,908 5.41E-11 0.8756 7.01E-09 0.8468 1.44E-12 0.9035 7.28E-09 0.8463 

G6PDH 5,63E-13 0,9153 3.59E-08 0.8092 1.08E-06 0.7784 3.88E-11 0.885 2.05E-06 0.7657 

PGDH 3,06E-09 0,8489 1.02E-09 0.8611 4.80E-08 0.8297 1.42E-11 0.8994 1.49E-08 0.8455 

TK1 1,06E-05 0,6939 4.02E-09 0.8307 6.90E-08 0.8159 -  - 1.18E-06 0.7675 

TK2 1,36E-06 0,7473 1.07E-10 0.8762 2.89E-09 0.8572 -  - 1.17E-05 0.7177 

PGMT 1,70E-05 0,6907 1.94E-09 0.8467 5.91E-08 0.8182 8.22E-08 0.7967 6.29E-06 0.7324 

sum r  8,8878  10.2838  10.0257  6.7147  9.1953 

*- indicates that the knockout was lethal and no growth was predicted in the simulations. 

 

Table S5. Correlations for predicted and measured fluxes per mutant in S. cerevisiae using 
13

C flux 

measurements from [5]. 

Mutant FBA  CEFs  191,083 

EMs 

StruFs  191,083 

EMs 

CEFs  7,056 

GVs 

StruFs  64,370 

GVs 

 p-value Pearson r p-value Pearson r p-value Pearson r p-value Pearson r p-value  Pearson r 

WT 7.64E-03 0.4852 3.48E-09 0.8551 1.18E-09 0.867 7.15E-09 0.8466 1.57E-10 0.8865 

ADH3 7.32E-03 0.4874 1.40E-09 0.8652 1.24E-09 0.8665 6.76E-09 0.8473 2.52E-10 0.8822 

ALD6 6.45E-03 0.4941 8.55E-08 0.8127 5.73E-08 0.8187 2.65E-07 0.7946 4.67E-09 0.8517 

FUM1 -*  - -  - -  - -  - -  - 

IDP1 7.64E-03 0.4852 2.47E-09 0.859 8.49E-10 0.8704 8.46E-09 0.8445 9.66E-11 0.8907 

LSC1 8.91E-03 0.4769 4.18E-10 0.8774 1.07E-10 0.8898 1.71E-09 0.8631 4.44E-12 0.9139 

MAE1 3.73E-03 0.5213 2.51E-09 0.8588 8.59E-10 0.8703 2.06E-09 0.861 3.43E-10 0.8793 

MDH1 3.84E-03 0.5199 3.61E-10 0.8788 2.66E-10 0.8817 -  - 7.86E-13 0.9246 

PCK1 7.97E-03 0.4829 1.90E-09 0.8619 5.59E-10 0.8746 3.41E-09 0.8553 5.14E-11 0.8959 

PDA1 2.39E-04 0.6315 2.00E-11 0.9033 1.05E-11 0.908 2.00E-10 0.8843 7.33E-13 0.925 

RPE1 6.99E-05 0.6701 4.01E-09 0.8535 2.79E-09 0.8576 -  - 6.09E-09 0.8485 

SDH1 3.47E-01 0.181 3.69E-10 0.8786 8.70E-11 0.8916 6.21E-10 0.8736 7.78E-11 0.8925 

ZWF1 7.95E-03 0.483 3.11E-09 0.8564 1.34E-09 0.8657 8.35E-09 0.8447 -  - 

sum r  5.9185  10.3607  10.4619  8.515  9.7908 

*- indicates that the knockout was lethal and no growth was predicted in the simulations.  
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As examples, Fig. S1A shows the predicted structural fluxes against the measured 
13

C fluxes for E. coli 

and Fig. S1B for yeast on a log-log scale for ease of visualization. Each graph represents a particular 

mutant. The fluxes were normalized for the glucose uptake of each mutant. The dotted line represents 

the fit with its corresponding Pearson correlation r. Note that most fits do not cross the origin, as the 

structural fluxes represent a “capacity” for each flux, whereas the measurements reflect a particular 

situation, in this case batch fermentation (in the case of E. coli the data were obtained from a chemostat 

at 0.1 h
-1

). The intercept can be interpreted as a “degree of regulation”. Using E. coli for instance, the 

measured acetate flux is zero at a low specific growth rate. The structural flux, on the other hand, is 

nonzero as it represents the capacity of the network. It can produce acetate, but not necessarily, 

reflected by a nonzero intercept. Also note that no structural fluxes were predicted for the FUM1 mutant 

in yeast, as no biomass producing modes were left upon its deletion. We expect that a larger-scale 

model (containing more transport reactions) would predict a viable FUM1 mutant. 

Phenotypic phase plane analysis shows that the yields in the elementary modes and generating vectors 

have a similar distribution (Figs. S2-S3). As mentioned before, [13] showed that the CEFs computed 

from EMs and GVs are comparable, though if a reversible reaction is involved in forward and backward 

direction in the modes, CEF tends to be slightly different due to a different reaction participation in the 

modes. Figure S4 shows that the reaction participation is highly correlated for elementary modes and 

generating vectors with a Pearson correlation coefficient higher than 0.93. To compare each reaction 

participation of elementary modes with generating vectors, the split reactions (into forward and 

backward direction) were summed for the generating vectors. 
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Fig. S1A. Pearson correlations for log transformed StruFs in E. coli. Predicted structural fluxes 

versus measured 
13

C fluxes of E. coli for the wild-type and mutants with single gene deletions using 

EMs. 10
2
 (100%) represents the glucose flux. The fluxes are shown on a log log-scale. Fluxes smaller 

than 1% of the glucose flux were removed from this plot. r is the Pearson correlation coefficient. 
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Fig. S1B. Pearson correlations for log transformed StruFs in S. cerevisiae. Predicted structural 

fluxes versus measured 
13

C fluxes of S. cerevisiae for the wild-type and mutants with single gene 

deletions using EMs. 10
2
 (100%) represents the glucose flux. The fluxes are shown on a log log-scale. 

Fluxes smaller than 1% of the glucose flux were removed from this plot. r is the Pearson correlation 

coefficient. 
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Fig. S2. Phenotypic phase plane analysis in E. coli . Biomass yield on glucose versus acetate yield on 

glucose for each pathway. A. Full set of elementary modes B. generating vectors.  
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Fig. S3. Phenotypic phase plane analysis in S. cerevisiae. Biomass yield on glucose versus ethanol 

yield on glucose for each pathway. A. Full set of elementary modes. B. Generating vectors.   
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Fig. S4. Reaction participation in elementary modes vs. generating vectors. r represents the 

respective Pearson correlation coefficients. A. E. coli. B. S. cerevisiae.  

 

  

 


