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Two-gene developmental landscape: the two remaining constructions
A caveat of Wang’s construction is that the extreme points on landscape deviate from the locality of equilib-
rium points of equation (1) in main text because the Itô stochastic integral is used in his construction. Ao
proposed a framework based on symmetric and antisymmetric matrix transformation to decompose the SDEs
into the gradient part and curl part, which ensures the extreme points on landscape match the stable points
(Ao, 2003). However, a SDEs decomposition by this transformation is not easy even though Ao developed
a gradient expansion algorithm (Ao, 2004). There also existed another effective method for landscape con-
struction (Bhattacharya et al , 2011). But it is only a numerical method and doesn’t consider the influence of
noise. Considering the above situations, we mainly applied Wang’s method of landscape construction. Here
we summarize the main mathematical basis for landscape construction by Ao and Bhattacharya’s methods.

For Ao’s transformation, let us first consider a process defined by following SDEs (Xing, 2010):

dxi/dt = Gi(x) + ϵ
m∑
j=1

gij(x)ςj(t), i = 1, ..., n. ( S1)

where g relates to diffusion matrix D by ggT = 2D, the independent Gaussian white noise satisfies <
ςj(t), ςj(τ) >= δijδ(t − τ) and ϵ is used to characterize the intensity of noise. Here Gi corresponds to the
Fi (the force driving gene i) in the main text while dxi/dt describes the change of rate in gene expression
of gene i. In order to obtain a scalar function corresponding to the potential function for the SDEs system,
one can always construct a symmetric matrix S and antisymmetric matrix T and transform Eq. S1 into:

(S+T) · dx
dt

= (S+T) · (G(x) + ϵg(x) · ς(t)))

= −∇xϕ(x) + ϵg
′
(x) · ς(t) ( S2)

where ϕ is the scalar potential function. By introducing an additional condition, g
′
g

′T
= 2S, we can uniquely

determine the matrixes of S and T by

∂ × [(M−1 ·G(x))] = 0,M+MT = 2D ( S3)

, where M−1 = S+T.
To obtain M, a gradient expansion algorithm is developed:

M = D+∆ lim
j→∞

Mj ( S4)

with ∆Mj =
∑∞

l=1(−1)l[(F τ )lD̃jF
−l + (F τ )−lD̃jF

l], D̃0 = DF − F τD, D̃j≥1 = (D+∆Mj−1){[∂ × (D−1 +

∆M−1
j−1)]G}(D−∆Mj−1). The zeroth order approximation to equation S3 is MFT−FMT = 0 (Ao, 2004),

where Fij =
∂Gi

∂xj
, i, j = 1...n. Based on the solution of ϕ(x), the landscape for the system can be mapped.

According to Bhattacharya’s method of landscape construction (Bhattacharya et al , 2011), for a two
genes system described by Eq. 1 in main text, we can define a quasi-potential term Vq whose increment is

∆Vq =
∂Vq

∂x1
·∆x1 +

∂Vq

∂x2
·∆x2

= −dx1

dt
∆x1 −

dx2

dt
∆x2

= −dx1

dt

(dx1

dt
∆t

)
− dx2

dt

(dx2

dt
∆t

)
= −

[(dx1

dt

)2

+
(dx2

dt

)2]
∆t ( S5)

By aligning all the trajectories under the assumption of the continuity of potential, we can then map the
landscape for the above system.

We first constructed the stage-specific and developmental landscape by Ao’s framework and Bhat-
tacharya’s method (Figure S2) with the same treatment of parameter a in Wang’s framework (Wang et al ,
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2011). We found that the stage-specific landscapes constructed are almost topologically identical. This
may result from the fact that both constructions tightly associate with the theory of Lyapunov stability
(Bhattacharya et al , 2011, Yuan et al , 2010). By similar operation stated in the main text, we further
quantified the development landscape. We found that the quasi-potential on Bhattacharya’s developmental
landscape increases from stem cells to mature cell types which is contrary to the original Waddington land-
scape. On the other hand, the quasi-potential on Ao’s developmental landscape firstly decreases from the
stem cell valley then increases slightly.

Mean first passage time under different noise influence
To characterize the stability of cell types under different noise amplitude, we use the concept of mean first
passage time (MFPT) which is defined as (van Kampen, 2007)

F1
∂τ

∂x1
+ F2

∂τ

∂x2
+D(

∂2τ

∂x2
1

+
∂2τ

∂x2
2

) = −1 ( S6)

, where F1, F2, x1, x2 is the same terms as in the equation (1) from the main text. τ is the the mean first
passage time for a cell stays at a specific valley (corresponds to a cell type) on landscape (Wang et al , 2010).
From Figure S4, we find that the MFPT decreases as the noise amplitude increases, implying that the cell
types become less stable under large noise influence.

Confirmation of stochastic simulation by public microarray data
We used two different models (the first one has an enforced decrease of Pax 6 and another has the negative
feedback from mature cell type to Pax 6) to simulate the development dynamics of CNS genesis and obtained
similar results (Figure S5A, B). We used the first one as our default model.

In addition to a qualitative consistency between the stochastic simulation of neurongenesis and the
microarray data, as shown in the main text, the stochastic simulation for astrogenesis and oligodendrogenesis
also partially matches qualitatively with the public microarray time series.

The expression of Scl, Olig 2 and Hes 5 increases from E11 to E14 in the microarray data (GDS10796)
for astrogenesis (Figure S6). This may correspond to the starting part of our simulation. The expression of
Stat 3, Aldh1L1 and Sox 8 increases simultaneously in the microarray data, identifying with the temporal
increase both of Scl and Olig 2 (before the bifurcation of their expression) caused by Hes 5 activation in
the starting part of the simulation. It also indicates that the astrogenesis may begin at about E11 (Figure
S6). The expression of Aldh1L is relative low, comparing to Tuj 1 and Sox 8, which may result from the
fact that Aldh1L is not the optimal marker for astrocytes (Cotterell and Sharpe, 2010).

As confirmed by the microarray data (GDS2379), the expression level of Scl increases while that of
Olig 2 decreases during oligodendrogenesis in the later part of our simulation (Figure S7). The decrease
of MytlL and Sox 8 is at odds with our simulation, possibly because that they are also not the optimal
markers of oligodendrocytes.

We also conducted reprogramming simulation after confirming our model and network by the above
stochastic simulation (Figure. S5C).

Three-gene motif as the network design for stemness maintenance
In the main text, we proposed that the three-gene motif in Figure 4b is the network design for stemness
maintenance and cellular development. To model this motif, we consider to couple the upstream gene’s
positive regulation and self-activation and using following equations to define its expression dynamics:

dx1

dt
= a1

xn
1

Sn
1 + xn

1

· xn
3

Sn
2 + xn

3

+
b1S

n
1

Sn
1 + xn

2

− k1x1 = F1(x1, x2) ( S7)

dx2

dt
= a2

xn
2

Sn
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2

· xn
3
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b2S
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− k2x2 = F2(x1, x2) ( S8)
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, where x1, x2, x3 represent the gene expression level of b, c, a of the three-gene motif in Figure 4b of main
text. We set a1 = a2 = 1, b1 = b2 = 1, k1 = k2 = 1, S1 = 0.5, S2 = 2, n = 4 for this three-gene model.
Figure S8 is bifurcation graph and the corresponding development landscape calculated based on equations
of x1, x2 under the change of x3 (assumed to represent the developmental process). From this figure, we can
conclude that the two side terminal cell type valleys can be reprogrammed to center stem cell valley by the
enforced increase of gene A.
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