Efficient Exact Maximum a Posteriori Computation for Bayesian SNP Genotyping in Polyploids

Oliver Serang^{1,2,*}, Marcelo Mollinari³, Antonio Augusto Franco Garcia³

1 Department of Neurobiology, Harvard Medical School, Boston, MA United States

2 Department of Pathology, Children's Hospital Boston, Boston, MA, United States

3 Department of Genetics, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil

* E-mail: Oliver.Serang@Childrens.Harvard.edu

1 Proof of Maximum a Posteriori Genotypes by Searching the Distribution C

Lemma 1 Given $\sigma > 0$, $\Pr(D|G)$ decreases monotonically with $||D - G||_2^2$.

Proof

$$log(\Pr(D|G)) = \sum_{i} log(\Pr(D_{i}|G_{i}))$$

= $-\sum_{i} \frac{(D_{i} - G_{i})^{2}}{2\sigma^{2}} - \sqrt{2\pi\sigma}$
= $c_{\sigma}^{(1)} - c_{\sigma}^{(2)} \sum_{i} (D_{i} - G_{i})^{2}$
= $c_{\sigma}^{(1)} - c_{\sigma}^{(2)} ||D - G||_{2}^{2}$

where $c_{\sigma}^{(1)}$ and $c_{\sigma}^{(2)}$ depend only on σ and $c_{\sigma}^{(2)} > 0$.

Lemma 2 Given $\sigma > 0$ and $D_1 < D_2$, the genotype assignment $G = g = (g_1, g_2, g_3, g_4, \ldots, g_n)$ where $g_1 = \mu_1, g_2 = \mu_0$ s.t. $\mu_1 > \mu_0$ is less likely than genotype assignment $G = g' = (g'_1, g'_2, g_3, g_4, \ldots, g_n)$ where $g'_1 = \mu_0, g'_2 = \mu_1$.

Proof

$$Pr(D|G) = \prod_{i} Pr(D_i|G_i)$$

=
$$Pr(D_1|G_1) Pr(D_2|G_2) \prod_{i:i>2} Pr(D_i|G_i)$$

$$\begin{array}{l} \underset{(G_1,G_2)\in\{(g_1,g_2),(g_1',g_2')\}}{\operatorname{argmax}} & \Pr(D_1|G_1)\Pr(D_2|G_2)\prod_{i:i>2}\Pr(D_i|G_i) \\ = \underset{(G_1,G_2)\in\{(g_1,g_2),(g_1',g_2')\}}{\operatorname{argmax}} & \Pr(D_1|G_1)\Pr(D_2|G_2) \end{array}$$

because
$$\prod_{i:i>2} \Pr(D_i|G_i) > 0$$
.
By Lemma 1, $\Pr(D_1|G_1) \Pr(D_2|G_2)$ decreases monotonically with $||(D_1, D_2) - (G_1, G_2)||_2^2$.

$$\| \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} - \begin{bmatrix} \mu_0 \\ \mu_1 \end{bmatrix} \|_2^2 - \| \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_0 \end{bmatrix} \|_2^2$$

$$= -2[D_1, D_2] \begin{bmatrix} \mu_0 \\ \mu_1 \end{bmatrix} + 2[D_1, D_2] \begin{bmatrix} \mu_1 \\ \mu_0 \end{bmatrix}$$

$$= 2[D_1, D_2] \left(\begin{bmatrix} \mu_1 \\ \mu_0 \end{bmatrix} - \begin{bmatrix} \mu_0 \\ \mu_1 \end{bmatrix} \right)$$

$$= 2(D_1(\mu_1 - \mu_0) - D_2(\mu_1 - \mu_0))$$

$$= 2(\mu_1 - \mu_0)(D_1 - D_2) < 0$$

Therefore, $\Pr(D_1|G_1 = \mu_1) \Pr(D_2|G_2 = \mu_0) < \Pr(D_1|G_1 = \mu_0) \Pr(D_2|G_2 = \mu_1)$ and $\Pr(D|G = g) < \Pr(D|G = g')$

Lemma 3 Given the number of individuals with each genotype $C_j = |\{i : g_i = \mu_j\}|$, the search space of consistent genotype configurations is $\{g : C\} = \{g \in \{\mu'_0, \mu'_1, \dots, \mu'_{k'}\}^n : C\}$ where $\{\mu'_0, \mu'_1, \dots, \mu'_{k'}\} = \{\mu_j : j \in \{1, \dots, k\}, C_j > 0\}$.

Proof

$$C_j = 0 \leftrightarrow \forall i g_i \neq \mu_j$$

Therefore, $\{g: C\} = \{\mu_j: j \in \{1, \dots, k\}, C_j > 0: C\}^n$.

Lemma 4 Given ploidy $P = p, \sigma > 0$, data and labels ordered so that $D_1 < D_2 < \ldots < D_n$ and $\mu'_0 < \mu'_1 < \ldots < \mu'_{k'}$, and genotype counts C (where μ'_i and C are defined in Lemma 3), then in the most likely genotype configuration $g^* = (g_1^*, g_2^*, \ldots, g_n^*) = \operatorname{argmax}_q \Pr(D|G = g), g_1^* = \mu'_0$

Proof By Lemma 3,

$$\arg\max_{g \in \{\mu_0, \mu_0, \dots, \mu_P\}^n: C} \Pr(D|G = g)$$
$$= \arg\max_{g \in \{\mu'_0, \mu'_1, \dots, \mu'_{L'}\}^n: C} \Pr(D|G = g)$$

 $\forall g: g_1 = \mu'_j \neq \mu'_0$, there must be some i' > 1 for which $g_{i'} = \mu'_0$ (because $C_0 > 0$ and the μ_j are unique for a given ploidy). Given that the D_i are sorted in ascending order, then $D_{i'} > D_1$ and $\mu'_0 < \mu'_j$. By Lemma 2, choosing g' such that $g'_1 = \mu_0$ and $g'_{i'} = \mu'_j$ does not change the genotype counts, but increases the probability. Therefore, any configuration with $g_1 \neq \mu'_0$ is suboptimal. Hence by contradiction, in any optimal configuration $g^*, g_1^* = \mu'_0$.

Theorem 5 Given ploidy P = p, $\sigma > 0$, data and labels ordered so that $D_1 < D_2 < \ldots < D_n$ and $\mu'_0 < \mu'_1 < \ldots < \mu'_{k'}$, and genotype counts C (where μ'_i and C are defined in Lemma 3), then the unique

most likely genotype configuration is given by

$$\begin{array}{rcl} g_{1}^{*} & = & \mu_{0}' \\ g_{2}^{*} & = & \mu_{0}' \\ & \vdots \\ g_{C_{0}}^{*} & = & \mu_{0}' \\ g_{C_{0}+1}^{*} & = & \mu_{1}' \\ & \vdots \\ g_{C_{0}+C_{1}}^{*} & = & \mu_{1}' \\ g_{C_{0}+C_{1}+1}^{*} & = & \mu_{1}' \\ g_{C_{0}+C_{1}+1}^{*} & = & \mu_{3}' \\ & \vdots \\ g_{C_{0}+C_{1}+C_{2}}^{*} & = & \mu_{3}' \\ & \vdots \\ g_{C_{0}+C_{1}+C_{2}+\ldots+C_{k'-1}+1}^{*} & = & \mu_{k'-1}' \\ & \vdots \\ g_{C_{0}+C_{1}+C_{2}+\ldots+C_{k'}}^{*} & = & \mu_{k'}' \end{array}$$

Proof By Lemma 4 if $g^* = argmax_{g:C} \Pr(D|G = g)$, then $g_1^* = \mu'_0$. Then $g^* = (g_1^*, g^{(2)^*})$ and $g^* = argmax_{g:C,g_1^* = \mu'_0} \Pr(D|G = g) = argmax_{g^{(2)}:C^{(2)}} \Pr(D|G = g^{(2)})$ where $C^{(2)} = (C_0 - 1, C_1, \ldots C_{k'})$. Inductively, this creates a series of maximization problem of the same form. For maximization problem *i* in this series, the smallest remaining μ'_j for which $C_j^{(i)} > 0$ is assigned to g_i^* . For this reason, μ'_0 is assigned to $g_1^*, \ldots g_{C_0}^*$ because they correspond to the smallest $D_1, \ldots D_{C_0}^*$. After $g_1^*, \ldots g_{C_0}^*$ are assigned, then the new smallest value of μ'_j s.t. $C_j^{(C_0)} > 0$ will be μ'_1 ; therefore, μ'_1 will be assigned to the next C_1 genotypes $g_{C_0+C_1}^*, \ldots g_{C_0+C_1}^*, \mu'_3$ will be assigned to the next C_2 genotypes, $g_{C_0+C_1+1}^*, \ldots g_{C_0+C_1+C_2}^*$, etc. until all genotypes have been filled.

Corollary 6 Given a distribution prefix $C^{pref} = (C_0, C_1, \ldots, C_j)$ with total sum n^{pref} , for all suffixes C^{suf} , the optimal genotype configuration must include the optimal genotype configuration must include the genotype assignments resulting from the subproblem on C^{pref} , g^{pref} , n^{pref} where $g^{pref} = (g_1, g_2, \ldots, g_{n^{pref}})$ are in sorted order. Call this prefix configuration g^{pref}_{Cpref} .

Proof For any distribution configuration $C = (C^{pref}, C^{suf})$, Theorem 5 defines the optimal genotype configuration by sorting the unassigned individuals after the smallest C_0, C_1, \ldots are assigned. Any genotype configuration that violates this ordering for a smaller problem will necessarily violate for any suffix C^{suf} ; therefore, in the optimal configuration, the order must be applied in C^{pref} to achieve optimality.

Theorem 7 Let the prior on G be uniform (not all configurations will be weighted equally because configurations yielding a more probable distribution C will be weighted more). Given ploidy P = p, sigma > 0, and the theoretical distribution T, the genotype configuration that maximizes the posterior is given by $g^* = \{g_C^* : \forall C \Pr(D|G = g_C^*) \Pr(C|T) = f^*\}$, where f^* denotes the maximum value of $\Pr(D|G = g) \Pr(C|T)$ and g_C^* is defined by Theorem 5 for the given genotype counts C.

Proof Denote the genotype counts for a given configuration as c(g). Let $f(g, c(g)) = \Pr(D|G)$

 $g) \Pr(C = c(g) | T).$

$$f^* = \max_{g} f(g, c(g))$$

=
$$\max_{g,c':c'=c(g)} f(g, c')$$

=
$$\max_{c':\exists g,c'=c(g)} \max_{g:c'=c(g)} f(g, c')$$

=
$$\max_{c'} \max_{g:c'=c(g)} f(g, c')$$

because every considered genotype count is attainable from some genotype configuration.

Theorem 5 states that for a given c', $g_{c'}^*$ attains the unique maximum $\max_{g:c'=c(g)} \Pr(D|G=g)$. For any fixed c', $\Pr(C = c'|T)$ is a postive constant, and so $g_{c'}^*$ also maximizes f(g, c').

Therefore,

$$f^* = \max_{c'} \max_{g:c'=c(g)} f(g,c') = \max_{c'} f(g^*_{c'},c')$$

If $f(g, c(g)) = f^*$, then g must attain the maximum for that c(g), $\max_{g:c'=c(g)} f(g,c')$. Because $\max_{g:c'=c(g)} f(g,c')$ has a unique optimum $g^*_{c'}$ for any c', then any optimal g^* must be in the set $\{g^*_{c'}: \forall c'\}$ and must attain the maximum f^* .

By Theorem 7, the optimal genotype configuration can be found by searching all C and choosing the g_C^* that maximizes $\Pr(D|G = g_C^*)$. Given that genotype configurations have uniform prior (before being weighted by the distribution C = c(g) that each produces), then the configuration that maximizes $\Pr(D|G = g)$ will maximize $\Pr(G = g|D)$.

2 Branch and Bound

Lemma 8 The multinomial probability

$$\binom{n}{C_0}\binom{n-C_0}{C_1}\binom{n-C_0}{C_1}\cdots\binom{n-C_0-C_1-\cdots-C_{k-1}}{C_k}p_1^{C_0}p_2^{C_1}\cdots p_k^{C_k}$$

is bounded above by

$$\binom{n}{C_0}\binom{n-C_0}{C_1}\binom{n-C_0}{C_1}\cdots\binom{n-C_0-C_1-\cdots-C_{i-1}}{C_i}\times p_1^{C_0}p_2^{C_1}\cdots p_i^{C_i}(1-p_1-p_2-\cdots-p_i)^{n-C_0-C_1-\cdots-C_i}$$

for any i < k.

Proof $\binom{n}{n'}p^{n'}(1-p)^{n-n'} \leq 1$ because it defines a single term in the binomial expansion series $(p+1-p)^n$ and each term in the series is nonnegative. The value

$$\binom{n}{C_0}\binom{n-C_0}{C_1}p_1^{C_0}p_2^{C_1}(1-p_2)^{n-C_0-C_1} \le \binom{n}{C_0}p_1^{C_0}(1-p_1)^{n-C_0}$$

because a positive constant $\binom{n}{C_0}p_1^{C_0}$ can be divided out. By induction, extending the series from i to i+1 must decrease it; therefore, since k > i, the series value must be smaller than the series value for i.

Theorem 9 Given $T_{\theta} = (p_0, p_1, \dots, p_P)$ and $C^{pref} = (C_0, C_1, \dots, C_j)$ with $C_0 + C_1 + \dots + C_j = n^{pref}$, the joint probability of the best genotype configuration compatible with that distribution is bounded by:

$$\begin{split} & \underset{g}{\operatorname{argmax}} \max_{C^{suf}} \Pr(D, G = g, (C^{pref}, C^{suf}) = c(g)) \leq \\ & \frac{n!}{C_0! C_1! \dots C_j!} \left[\prod_{j' \leq j} p_{j'}^{C_j} \right] \left(1 - p_0 - p_1 - \dots - p_j\right)^{n - n^{pref}} \times \\ & \operatorname{Pr}(D^{pref} | G^{pref} = g_{C^{pref}}^{pref}) \prod_{i > n^{pref}} \max_{g_i: g_i \in \{\mu_{j+1}, \mu_{j+2}, \dots, \mu_{k'}\}} \Pr(D_i | G_i^{suf} = g_i) \end{split}$$

Proof Corollary 6 states that the optimal genotype configuration given C^{pref} is $g_{C^{pref}}^{pref}$. Lemma 8 proves the multinomial bound $\frac{n!}{C_0!C_1!\ldots C_j!}(1-p_0-p_1-\ldots-p_j)^{n-n^{pref}} \geq \Pr((C^{pref},C^{suf})|T_{\theta})$. Lastly, the greatest suffix likelihood given C^{pref} is the maximum likelihood over all suffixes that can result in C^{pref} . Since $C = (C^{pref},C^{suf}) = c(g^{pref}) + c(g^{suf})$ and $C^{pref} = c(g^{pref})$, then $c(g^{suf})_{j'} = 0 \forall j' \leq j$; therefore, g^{suf} cannot contain any genotypes from $\mu_0, \mu_1, \ldots, \mu_{k'}$, and so the maximum likelihood is the maximum likelihood is the maximum likelihood.

3 Approximate Posterior Computation

Theorem 10 Given approximate posteriors defined as follows:

$$\Pr(G = g_{\theta}^* | D) = \frac{\Pr(D, G = g_{\theta}^* | \theta) \Pr(\theta)}{\sum_{\theta'} \Pr(D, G = g_{\theta'}^* | \theta') \Pr(\theta')}$$

and the following criteria for bounding:

$$max_q \Pr(D, G = g, C^{pref}|\theta) < \delta \Pr(D, G = g'|\theta')$$

Then denote B as the set of θ for which all configurations are eventually bound (and thus do not contribute to the posterior approximation):

$$B = \{\theta: \ \operatorname{Pr}(D, G = g^*_{C^*_\theta}, C^*_\theta, \theta) < \delta \operatorname{Pr}(D, G = g', \theta')\}$$

then the maximum absolute posterior error is $< \delta(|\{\forall \theta\}| - 1)$.

Proof Denote $s_{\theta} = \Pr(D, G = g_{\theta}^* | \theta) \Pr(\theta)$ then the posterior for θ can be defined as $\frac{s_{\theta}}{\sum_{\theta''} s_{\theta''}}$. Denote the denominator in this computation d and the denominator in the approximated computation $d^{(H)} = d - \sum_{\theta' \in H} s_{\theta'}$.

Because θ' , by definition, cannot be in *B*:

$$\frac{d}{d^{(B)}} < \frac{d^{(B)} + s_{\theta'}\delta|B|}{d^{(B)}}$$

$$= 1 + \frac{s_{\theta'}\delta|B|}{d^{(B)}}$$

$$< 1 + \frac{s_{\theta'}\delta|B|}{s_{\theta'}}$$

$$= 1 + \delta|B|$$

$$\begin{array}{lll} \epsilon_{\theta} & = & |\frac{s_{\theta}}{d} - \frac{s_{\theta}}{d^{(B)}}| \\ \forall \theta \epsilon_{\theta} & < & |1 - \frac{d}{d^{(B)}}| \end{array}$$

 $\begin{array}{l} \text{because } \forall \theta \ \frac{s_{\theta}}{d} \geq 0.\\ \text{Since } \frac{d}{d^{(B)}} > 1, \end{array}$

$$\begin{aligned} |1 - \frac{d}{d^{(B)}}| &= \frac{d}{d^{(B)}} - 1 \\ &< 1 + \delta |B| - 1 \\ &= \delta |B| \\ &\leq \delta (|\{\forall \theta\}| - 1) \end{aligned}$$

Because B cannot, by definition, include θ^* .

4 MAP Validity with Replicate Data

Lemma 11 Given r replicate data points for each individual, the genotype distribution C, and σ , the MAP configuration found by using the mean value of these data points for each individual results in the true MAP configuration.

Proof Denote the replicate data for individual 1 as $D^{(1)} = (D_1^{(1)}, D_2^{(1)}, \dots, D_r^{(1)})$. The log likelihood of the genotype configuration g is:

$$f(\sigma) + \sum_{i} \sum_{k}^{r} \frac{\|D_{k}^{(i)} - g_{i}\|_{2}^{2}}{\sigma^{2}}$$

= $f(\sigma) + \frac{1}{\sigma^{2}} \sum_{i} \left[\sum_{k}^{r} D^{(i)}_{k}\right]^{2} + rg_{i}^{2} - 2\sum_{k}^{r} D_{k}^{(i)}g_{i}$

Because $\sum_{k}^{r} D_{k}^{(i)^{2}}$ is a constant that does not depend on θ or g, any g that maximizes the above equation will maximize the following:

$$\frac{1}{\sigma^2} \sum_{i} rg_i^2 - 2\sum_{k}^r D_k^{(i)} g_i = \frac{1}{\sigma^2} \sum_{i} g_i^2 - 2g_i \ mean(D^{(i)})$$

The equation to maximize without replicate data is:

$$\frac{r}{\sigma^2} \sum_i D_i^2 + g_i^2 - 2g_i D_i$$

For fixed r both functions are different by a constant and thus by using the means of the replicate data, the optimal genotype configuration for C can be reached using Theorem 5.