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Continuous time model 
 

The statistical model 
Let Kk ,1,= K  be the index for the different types of elements (ornaments, red 

pigments, etc.) (3). Let k

i
X  be the initial number of elements of type k  at level 

ni ,1,= K . Let k

i
Y  be the actual number of elements of type k  at level ni ,1,= K .  In 

our case, 9=K  (ornaments, pigments, worked bone, Neandertal teeth, Dufour 
bladelets, Châtelperron points, Levallois flakes, unretouched bladelets and convergent 
sidescraprers) and 8=n  (VII, Protoaurignacian; VIII, IX and X, Châtelperronian; XI, 
XII, XIII and XIV, Mousterian). As an example, we have, for the ornaments 
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Let 
i
T  be the time difference between level i  and now. Consider an element starting 

at level i and ending in level j . We assume that at some random times 
1
t , 

2
t , etc. 

between 0  and 
i
T  the element can move to an upper/lower level with equiprobability. 

We assume that the random times are distributed according to a Poisson process of 
unknown rate 0.>!  Figure S1 shows a realization from this process, starting from 
level XI and ending in level XII. 

For any element, the number of events (up or down) over a period 
i
T  thus follows a 

discrete Poisson distribution of parameter 
i
T! . Let +

N  be the number of events where 
the element went to an upper level and !

N  the number of events where the element  
went to a lower level, then we have  
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where ‘~’ means ‘statistically distributed from' and Poisson (! ) is the usual discrete 
Poisson distribution of parameter ! . For any given item, the difference between the 
ending level and the starting level is ijN !=  with !+

! NNN =  and where +
N  is the 

number of times an item moved up and  is the number of times an item moved down. 
N  is distributed from a Skellam distribution whose probability mass function is given, 
for Z!k , by 
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 is the modified Bessel function of the first kind. As we need to have 
},{1,)(= nNij K!+ , we need to consider the truncated Skellam probability 

distribution. It follows that the probability 
ij

!  to go from a level },{1, ni K!  to a level 
},{1, nj K!  over the time 

i
T  for a single element is given by 
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For ni ,1,= K , let ),,(= 1 inii
!!! K .  

Let k

ijZ  denote the number of items of type k  that were in level i  at the initial time 
and end up in level j  at the final time (after 

i
T ). As every item moves independently, 

we have, for ni ,1,= K  and Kk ,1,= K  
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where ),,(= 1
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ZZZ K  and ),( X!M  denote the standard multinomial distribution of 

parameters !  and X . The items observed at the final time are the sums of items 
coming from different levels, hence, for nj ,1,= K  and Kk ,1,= K   

 k

ij

n

i

k

j ZY !
1=

=   (6) 

Here is the pseudo-code to sample from the model: 

• For ni ,1,= K , compute ij
!  as in Equation (4) 

• For Kk ,1,= K  

- for ni ,1,= K , sample ),(~ k
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- for nj ,1,= K , let k
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For this, we write simply, for Kk ,1,= K   
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where !F  is the distribution defined above, to emphasize the dependency with respect 
to ! . 

Hypothesis testing 
We want to perform a goodness of fit test to see whether the above model gives a 

good or a bad fit to the observed data. We assume that  
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where 
true
F  is the true distribution of the data, and we want to test the hypotheses  

 !! FFHFFH
truetrue

":  vs=:
10

 

To do so, we can consider the classical Pearson chi square statistic, defined by  
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Under 
0

H , the test statistic is approximately chi square distributed with 1)( !nK  
degrees of freedom. For a given size ! , we can compute a threshold !Th  such that we 
reject 

0
H  if !ThS > . 

Parameter estimation 

We need to estimate the rate parameter 0>! . To do so, we can choose the value that 
minimize the test statistic S . Optimization can be done over a one-dimensional grid. 

Summary 

The whole strategy is described below 
• Parameter estimation 

• For each value of !  

         (a) for ni ,1,= K , nj ,1,= K  compute 
ij

!  

        (b) for nj ,1,= K  and Kk ,1,= K , compute ij
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• Hypothesis testing 

• Let 
min
S  be the minimum value obtained. If !ThS

min
> , then reject 

0
H .  

 

Results 
The final (observed) conditions are given in Table 1. The initial conditions for the 

different hypotheses are given in Table S1, and the values of )(!S , computed over a 
grid of values for ! , are reported in Figure S2. 

For Hypothesis 1, the minimal value 15331.55=S  is obtained for 0.000124=! . It 

means that an element will move to an upper/lower level every 8065=
1

!
 years on 

average (the distribution between time events indeed follows an exponential distribution 
with this parameter). The quantities !  and E  associated to this best fitted value are 
given in Tables S2-S3, respectively. The distribution of S  under 

0
H  is obtained by 

Monte Carlo simulation (the 2!  approximation is not valid here). The threshold 
associated to a size 0.01=! is 95.10=

h
T . As 

h
TS >15331.55= , we reject 

0
H . The 

p-value (probability under 
0

H  of obtaining a value at least as extreme) is less than 2e-
16 (Matlab double precision), thus there is very strong evidence against 

0
H . 



For Hypothesis 2, the minimal value 4862.16=S  is obtained for 0052.55= !e" . It 

means that an element will move to an upper/lower level every 39216=
1

!
 years on 

average (the distribution between time events indeed follows an exponential distribution 
with this parameter). The quantities !  and E  associated to this best fitted value are 
given in Tables S2-S3, respectively. The distribution of S  under 

0
H  is obtained by 

Monte Carlo simulation (the 2!  approximation is not valid here). The threshold 
associated to a size 0.01=! .is 192.27=

h
T . As 

h
TS >4862.16= , we reject 

0
H . The p-

value (probability under 
0

H  of obtaining a value at least as extreme) is 0.0001. 

For Hypothesis 3, the minimal value 984.92=S  is obtained for 0065= !e" . It 

means that an element will move to an upper/lower level every 200000=
1

!
 years on 

average (the distribution between time events indeed follows an exponential distribution 
with this parameter). The quantities !  and E  associated to this best fitted value are 
given in Tables Tables S2-S3, respectively. The distribution of S  under 

0
H  is obtained 

by Monte Carlo simulation (the 2!  approximation is not valid here). The threshold 
associated to a size 0.01=!  is 211.25=

h
T . As 

h
TS >984.92= , we reject 

0
H . The p-

value (probability under 
0

H  of obtaining a value at least as extreme) is 0.0006. 

Probability models 
Let ! be the probability that an element found in Châtelperronian levels VIII-X is 

intrusive from Protoaurignacian level VII. This probability is unknown and we assume 
that it is distributed a priori from a uniform distribution over the interval [0,1]. Given 
that 0 out of 287 Dufour bladelets intruded and 0 out of 2800 unretouched bladelets 
intruded, if we apply the Bayes theorem (1), the posterior probability of  !  now 
follows a Beta distribution of parameters a=1, b=3088. Consequently, over a new set of 
47 items (the total number of ornaments found in levels VII and VIII-X), the number of 
items that are intrusive from VII into VIII-X follows a Beta-binomial distribution of 
parameters n=47, a=1 and b=3088, whose probability mass function evaluated at k is 
given by          
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where Γ is the Gamma function. The probability mass function is represented in Figure 
S3a for the given parameters. It puts most of its mass at zero and the probability that 
more than 1 item is intrusive is <0.01. 

We can carry out the same analysis using the Levallois flakes to assess the 
probability that items found in Châtelperronian levels VIII-X are displaced from 
underlying Mousterian levels XI-XII. Let π be the probability of moving from levels 
XI-XII to VIII-X. Given that 0 over 23 Levallois flakes have moved, the posterior 
probability of π follows a Beta distribution of parameters a=1, b=24. Consequently, over 
a set of 31 items (the total number of Neandertal teeth found in levels XI-XII and VIII-
X), the number of items that have moved follows a Beta-binomial distribution of 
parameters n=31, a=1, b=24. The probability mass function is represented in Figure 
S3b. The probability that more than 7 items have moved is < 0.01.   



For a set of 26 items (the total number of dated samples from levels VII and VIII-X), 
the number of items that are intrusive follows a Beta-binomial distribution with the 
same parameters as in the ornaments case except for n=26. The probability mass 
function is represented in Figure S3c. It puts most of the mass at 0, and the probability 
that more than 1 item is intrusive is <0.01. 

Using a different approach, we can also assess the implications for the personal 
ornaments and the Neandertal teeth derived from accepting that the 38% anomalously 
young results obtained for Châtelperronian levels VIII-X reflect stratigraphic intrusion 
instead of incomplete sample decontamination. For the 39 personal ornaments, the 
probability that any one is intrusive is 0.38 with a 95% confidence interval of [0.18, 
0.62]. Taking the higher limit of the interval (the most favorable for the disturbance 
hypothesis), the probability that all 39 are intrusive is 0.6239, or 6e-9 (and, for a 
threshold of 1%, the maximum number of ornaments that could have been displaced 
under these probabilities is 31). By the same token, the probability that the 29 
Neandertal teeth found in the Châtelperronian levels are all displaced can be calculated 
as 0.6229, i.e., 8e-7 (and, for a threshold of 1%, the maximum number that could have 
been displaced under these probabilities is 24). As discussed above, however, such a 
level of disturbance should also be reflected in the distribution of the diagnostic stone 
tools, but it is not. 

 

References 
1. Bernardo JM, Smith AFM (2000) Bayesian Theory (Wiley and Sons, New York).  

 
 


