Text Supplementary 1 - Imperfect vaccine aggravates the long-standing dilemma of voluntary vaccination

Bin Wu^{1*}, Feng Fu², Long Wang¹

1 Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China

2 Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA

* E-mail: bin.wu@evolbio.mpg.de

Dynamics analysis

In the following, we show the dynamics analysis for

$$\dot{x} = x(1-x)(ef(ex)C - V) \tag{1}$$

where the function of infection risk is given by

$$f(x) = \begin{cases} 1 - \frac{1}{R_0(1-x)} & \text{if } 0 \le x < 1 - \frac{1}{R_0} \\ 0 & x \ge 1 - \frac{1}{R_0} \end{cases}$$
(2)

Let G(x) = ef(ex) - r, where r = V/C. The above replicator equation is equivalent to

$$\dot{x} = x(1-x)G(x) \tag{3}$$

under a time rescaling [1].

Theorem For the evolutionary outcome depicted by the replicator equation, we have

(i) When $R_0 \leq \frac{1}{1-r}$; all are unvaccinated.

(*ii*) When $\frac{1}{1-r} < R_0 \le (\frac{1}{1-\sqrt{r}})^2$; if $e \le \frac{r}{1-\frac{1}{R_0}}$, all are unvaccinated, otherwise there is a unique internal stable equilibrium x^* .

(*iii*) When $R_0 > (\frac{1}{1-\sqrt{r}})^2$; if $e \leq \frac{r}{1-\frac{1}{R_0}}$, all are unvaccinated, if $\frac{r}{1-\frac{1}{R_0}} < e \leq e_1^*$, there is a unique internal stable equilibrium x^* , if $e_1^* < e \leq e_2^*$, full vaccination, if $e_2^* < e$, there is a unique internal stable equilibrium x^* .

Where
$$x^* = \frac{1 - \frac{1}{R_0(1 - \frac{r}{e})}}{e}, e_{1,2}^* = \frac{1 + r}{2} - \frac{1}{2R_0} \pm \frac{\sqrt{R_0^2(1 - r)^2 - 2R_0(1 + r) + 1}}{2R_0}$$
.
proof

For (i):

since f(y) is decreasing, thus G(x) is decreasing. Therefore if G(0) < 0, then G(x) < 0 for all the x between 0 and 1. This induces $x^* = 0$ is the unique stable equilibrium for the dynamical system.

But G(0) = ef(0) - r. If $R_0 \leq \frac{1}{1-r}$ is valid, then $G(0) = e(1 - \frac{1}{R_0}) - r < 0$ is valid for any e between 0 and 1. This completes the proof for (i).

For (ii):

for $R_0 \leq (\frac{1}{1-\sqrt{r}})^2$, we have that G(1) is smaller than zero for any e. For $R_0 > \frac{1}{1-r}$, the sign of G(0) depends on e: if $e \leq \frac{r}{1-\frac{1}{R_0}}$, it is negative, which results in all unvaccination eventually. Otherwise, it is positive. In this case, there is a unique equilibrium x^* lying between 0 and 1 since G(x) is continues and monotonic [2]. In addition to this, the derivative of G(x) at x^* is negative since f(x) is decreasing. Therefore, there is a unique internal stable equilibrium x^* . By the f(x) we adopt, we have $x^* = \frac{1-\frac{1}{R_0(1-\frac{r}{c})}}{e}$.

This completes the proof of (ii).

For (iii):

if $e \leq \frac{r}{1-\frac{1}{R_0}}$, we have G(0) < 0. In analogy to the proof in (i), we have $x^* = 0$ is the unique stable equilibrium.

If $\frac{r}{1-\frac{1}{R_0}} < e \le e_1^*$, then G(0) > 0 while G(1) < 0. In analogy to (*ii*), there is a unique internal stable equilibrium x^* ;

If $e_1^* < e \le e_2^*$, we have G(1) > 0, since G(x) is decreasing, we have G(x) is positive for all the x lying between zero and one. Thus, all vaccination becomes the unique stable equilibrium this time.

If $e_2^* < e$, then G(0) > 0 while G(1) < 0, In analogy to (ii), there is a unique internal stable equilibrium x^* .

This completes the proof.

References

- Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press.
- 2. Rudin W (1986) Principles of mathematical analysis. McGraw-Hill.