# Supplementary Material S1: Investigating the Role of T-Cell Avidity and Killing Efficacy in Relation to Type 1 Diabetes Prediction 

Anmar Khadra ${ }^{1}$, Massimo Pietropaolo ${ }^{2}$, Gerald T. Nepom ${ }^{3}$, Arthur Sherman ${ }^{1}$

${ }^{1}$ Laboratory of Biological Modeling
National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health, Bethesda, Maryland, USA
${ }^{2}$ Laboratory of Immunogenetics
University of Michigan, Ann Arbor, Michigan, USA
${ }^{3}$ Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA

## A Model Scaling

## A. 1 Scaled one-clone model

By making the following substitutions: $t_{c}=T_{c} / \widetilde{R}$ (here $\left.\widetilde{R}:=\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} / \epsilon\right), b=\eta_{0} B / \gamma, p_{c}=\delta_{P_{c}} P_{c} / \gamma$, $i_{g}=\delta_{I_{g}} \delta_{P_{c}} I_{g} /\left(a_{2} \gamma\right), p=\delta_{P} P /\left(R \widetilde{R} \beta_{0}\right)$ (here $\beta_{0}$ is the initial number of beta cells), $\beta_{s}=\beta / \beta_{0}$, we get

$$
\begin{align*}
\frac{d t_{c}}{d t} & =\alpha t_{c} \frac{p}{p+k}-\delta_{T_{c}} t_{c}-\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c}^{2}  \tag{S1a}\\
\frac{d b}{d t} & =\eta_{0}+\left(-\eta_{2} p t_{c}+\eta_{1} p-\eta_{0}\right) b  \tag{S1b}\\
\frac{d p_{c}}{d t} & =\delta_{P_{c}}\left[\frac{\eta_{2} p t_{c} b}{\eta_{0}}-p_{c}\right]  \tag{S1c}\\
\frac{d i_{g}}{d t} & =\delta_{I_{g}}\left[\ell b+p_{c}-i_{g}\right]  \tag{S1d}\\
\frac{d \beta_{s}}{d t} & =-\kappa \widetilde{R} t_{c} \beta_{s}  \tag{S1e}\\
\frac{d p}{d t} & =\delta_{P}\left[t_{c} \beta_{s}-p\right] \tag{S1f}
\end{align*}
$$

where $k=\delta_{P} \widetilde{k} /\left(R \widetilde{R} \beta_{0}\right), \eta_{2}=\widetilde{\eta}_{2} R \widetilde{R}^{2} \beta_{0} / \delta_{P}, \eta_{1}=\widetilde{\eta}_{1} R \widetilde{R} \beta_{0} / \delta_{P}$, and $\ell=a_{1} \delta_{P_{c}} /\left(a_{2} \eta_{0}\right)$.

## A. 2 Reduced/scaled one-clone model

Substituting the variables $b, i_{g}$ and $p$ by their steady states (fast variables) and assuming that $\beta_{s}$ is roughly a constant (slow variable), i.e. $\beta_{s}=1$, generates the following two-variable model

$$
\begin{align*}
\frac{d t_{c}}{d t} & =\alpha t_{c} \frac{t_{c}}{t_{c}+\bar{k}}-\delta_{T_{c}} t_{c}-\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c}^{2}  \tag{S2a}\\
\frac{d p_{c}}{d t} & =\delta_{P_{c}}\left[\frac{\eta_{2} t_{c}^{2}}{\eta_{2} t_{c}^{2}-\eta_{1} t_{c}+\bar{\eta}_{0}}-p_{c}\right] \tag{S2b}
\end{align*}
$$

where $\bar{k}=k / \beta_{s}(=k)$ (can be shown analytically to satisfy $0 \leq \bar{k} \leq 1$, see Section B) and $\bar{\eta}_{0}=\eta_{0} / \beta_{s}\left(=\eta_{0}\right)$.

## A. 3 Scaled two-clone model

By applying the following substitutions $t_{c j}=T_{c j} / \widetilde{R}$ (here $\left.\widetilde{R}:=\left(\alpha_{21}^{1 / 2}-\delta_{T_{c 21}}^{1 / 2}\right)^{2} / \epsilon\right), b_{j}=\eta_{0 j} B_{j} / \gamma_{j}, p_{c_{j}}=$ $\delta_{P_{c j}} P_{c j} / \gamma_{j}, i_{g j}=\delta_{I_{g j}} \delta_{P_{c j}} I_{g j} /\left(a_{2 j} \gamma_{j}\right)$ and $p_{j}=\delta_{P_{j}} P_{j} /\left(R_{j} \widetilde{R} \beta_{0}\right)(j=1,2)$, we obtain

$$
\begin{align*}
\frac{d t_{c 1 j}}{d t} & =\alpha_{1 j} t_{c 1 j} \frac{p_{1}}{p_{1}+k_{1 j}}-\delta_{T_{c 1 j}} t_{c 1 j}-\left(\alpha_{21}^{1 / 2}-\delta_{T_{c 21}}^{1 / 2}\right)^{2} t_{c 1 j}\left(t_{c 11}+t_{c 12}\right)  \tag{S3a}\\
\frac{d t_{c 2 j}}{d t} & =\alpha_{2 j} t_{c 2 j} \frac{p_{2}}{p_{2}+k_{2 j}}-\delta_{T_{c 2 j}} t_{c 2 j}-\left(\alpha_{21}^{1 / 2}-\delta_{T_{c 21}}^{1 / 2}\right)^{2} t_{c 2 j}\left(t_{c 21}+t_{c 22}\right)  \tag{S3b}\\
\frac{d b_{j}}{d t} & =\eta_{0 j}+\left[-\eta_{2 j} p_{j} G\left(t_{c 11}, t_{c 12}, t_{c 21}, t_{c 22}\right)+\eta_{1 j} p_{j}-\eta_{0 j}\right] b_{j}  \tag{S3c}\\
\frac{d p_{c j}}{d t} & =\delta_{P_{c j}}\left[\frac{\eta_{2 j} p_{j} G\left(t_{c 11}, t_{c 12}, t_{c 21}, t_{c 22}\right) b_{j}}{\eta_{0 j}}-p_{c j}\right]  \tag{S3d}\\
\frac{d i_{g j}}{d t} & =\delta_{I_{g j}}\left[\ell_{j} b_{j}+p_{c j}-i_{g j}\right]  \tag{S3e}\\
\frac{d \beta_{s}}{d t} & =-\kappa \widetilde{R} G\left(t_{c 11}, t_{c 12}, t_{c 21}, t_{c 22}\right) \beta_{s}  \tag{S3f}\\
\frac{d p_{j}}{d t} & =\delta_{P_{j}}\left[G\left(t_{c 11}, t_{c 12}, t_{c 21}, t_{c 22}\right) \beta_{s}-p_{j}\right] \tag{S3g}
\end{align*}
$$

where $k_{j}=\delta_{P_{j}} \widetilde{k}_{j} /\left(R_{j} \widetilde{R} \beta_{0}\right), \eta_{2 j}=\widetilde{\eta}_{2 j} R_{j} \widetilde{R}^{2} \beta_{0} / \delta_{P_{j}}, \eta_{1 j}=\widetilde{\eta}_{1 j} R_{j} \widetilde{R} \beta_{0 j} / \delta_{P_{j}}$, and $\ell_{j}=a_{1 j} \delta_{P_{c j}} /\left(a_{2 j} \eta_{0 j}\right)$ (recall that $G$ is linear).

## B Theoretical Results

## B. 1 Nullclines and steady states

We focus in this section on the reduced model described by Eqs. (S2a)-(S2b) to find its steady states and determine under what conditions these steady states are stable. In order to do so, we examine the $t_{c}$ and $p_{c}$-nullclines and their points of intersections (steady states).


Fig. S1: A sketch of the functions $f_{1}\left(t_{c}\right)$ and $f_{2}\left(t_{c}, \bar{k}\right)$ for several values of $\bar{k}$. These two functions are guaranteed to intersect at two points for $0 \leq \bar{k}<1$, but become tangential at $\bar{k}=1$ and never intersect for $\bar{k}>1$. The points of intersection are highlighted by black dots for one particular case, where the $t_{c}$-component of each point corresponds to the value of the vertical $t_{c}$-nullcline, i.e. $t_{c}=t_{c r}$ defined by Eqn. (S5).

Equation (S2a) is independent of $p_{c}$, therefore its nullclines are vertical lines. Clearly, $t_{c}=0$ is one $t_{c}$-nullcline. For additional $t_{c}$-nullclines, we must have

$$
\begin{align*}
& \alpha \frac{t_{c}}{t_{c}+\bar{k}}=\delta_{T_{c}}+\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c}=0  \tag{S4}\\
& \left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c}^{2}-\left(\alpha-\delta_{T_{c}}\right) t_{c}=-\bar{k}\left[\delta_{T_{c}}+\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c}\right] .
\end{align*} \quad \Longleftrightarrow
$$

Let $f_{1}\left(t_{c}\right):=\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c}^{2}-\left(\alpha-\delta_{T_{c}}\right) t_{c}$ and $f_{2}\left(t_{c}, \bar{k}\right):=-\bar{k}\left[\delta_{T_{c}}+\left(\alpha-\delta_{T_{c}}\right) t_{c}\right]$. Fig. S1 shows typically the graphs of these two functions $\left(f_{1}, f_{2}\right)$ intersecting at two points when the avidity of T cells is high
enough (i.e, when $\bar{k}$ is small enough) and do not intersect otherwise. To determine the parameter range for $\bar{k}$ in which the two curves $f_{1}, f_{2}$ intersect, we solve for the roots of $t_{c}$ from the quadratic Eqn. (S4). By letting $a:=\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}>0$ and $b:=\alpha^{1 / 2}+\delta_{T_{c}}^{1 / 2}$, we deduce that the roots of Eqn. (S4) are

$$
\begin{equation*}
t_{c r}=\frac{a(b-a \bar{k}) \pm \sqrt{a^{2}(b-a \bar{k})^{2}-4 a^{2} \bar{k} \delta_{T_{c}}}}{2 a^{2}} . \tag{S5}
\end{equation*}
$$

To obtain real roots, we require the quantity inside the square root to be non-negative, i.e. $(b-a \bar{k})^{2}-$ $4 \bar{k} \delta_{T_{c}} \geq 0$. It follows that

$$
\begin{array}{ll}
b^{2}-2 a b \bar{k}+a^{2} \bar{k}^{2}-4 \bar{k} \delta_{T_{c}} \geq 0 & \Longleftrightarrow \\
b^{2}-2\left(\alpha-\delta_{T_{c}} \bar{k}+a^{2} \bar{k}^{2}-4 \delta_{T_{c}} \bar{k} \geq 0\right. & \Longleftrightarrow \\
b^{2}-2 \alpha \bar{k}+a^{2} \bar{k}^{2}-2 \delta_{T_{c}} \bar{k} \geq 0 . &
\end{array}
$$

But $-2 \alpha \bar{k}-2 \delta_{T_{c}} \bar{k}=-2 \bar{k}\left(\alpha+\delta_{T_{c}}\right)=-\bar{k}\left(a^{2}+b^{2}\right)$. Hence

$$
\begin{aligned}
& a^{2} \bar{k}^{2}-\left(a^{2}+b^{2}\right) \bar{k}+b^{2} \geq 0 \quad \Longleftrightarrow \\
& a^{2} \bar{k}(\bar{k}-1)-b^{2}(\bar{k}-1) \geq 0,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left(a^{2} \bar{k}-b^{2}\right)(\bar{k}-1) \geq 0 \tag{S6}
\end{equation*}
$$

Inequality (S6) is satisfied either when $\bar{k} \geq(b / a)^{2}>1$ or $0 \leq \bar{k} \leq 1<(b / a)^{2}$. If $\bar{k} \geq(b / a)^{2}$, then one of the $t_{c r}<0$, a physiologically irrelevant case. However, if $0 \leq \bar{k} \leq 1$, then both $t_{c r}>0$ and the graphs of the two functions $f_{1}, f_{2}$ intersect at either one point (i.e. they are tangential to each other) when $\bar{k}=1$, or intersect at two points when $0 \leq \bar{k}<1$, as demonstrated in Fig. S1. Thus, two physiologically relevant $t_{c}$-nullclines (vertical lines) are obtained in the interval $\bar{k} \in[0,1)$.

By solving for $p_{c}$ in Eqn. (S2b), we obtain the $p_{c}$-nullcline, given by

$$
p_{c}=\frac{\eta_{2} t_{c}^{2}}{\eta_{2} t_{c}^{2}-\eta_{1} t_{c}+\bar{\eta}_{0}}
$$

The points of intersection of the $t_{c^{-}}$and $p_{c}$-nullclines are the steady states of Eqs. (S2a)-(S2b). There are three such intersections; namely, the point $\mathbf{S}_{1}:=(0,0)$, corresponding to a healthy state (with no effector CD8 ${ }^{+}$T-cell, CD4 ${ }^{+}$T-cell or plasma-cell accumulation); the point $\mathbf{U}$, whose $t_{c}$-component is the left
black dot shown in Fig. S1; and the point $\mathbf{S}_{2}$, corresponding to an autoimmune state (with elevated level of $\mathrm{CD}^{+} \mathrm{T}$ cells, $\mathrm{CD} 4^{+} \mathrm{T}$ cells and plasma cells), whose $t_{c}$-component is the right black dot in Fig. S1. These steady states can all coexist provided that $\bar{k} \in[0,1)$. We demonstrate below that $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$ are stable, while $\mathbf{U}$ is unstable.

Fig. S1 reveals that increasing T-cell avidity (i.e. decreasing $\bar{k}$ within $[0,1)$ ) shifts the right black dot of intersection (and thus the corresponding $t_{c}$-nullcline) to the right. This shift is accompanied by an elevation in the level of autoreactive T cells in the autoimmune state $\mathbf{S}_{2}$. The left black dot of intersection, on the other hand, is shifted to the left against the origin, compressing the basin of attraction of the healthy state $\mathbf{S}_{1}$. Details of these various configurations are explained in detail in the main text.

Notice that the denominator in the equation of $p_{c}$-nullcline could be zero (in which case, the $p_{c^{-}}$ nullcline will have a vertical asymptote). This may lead to an unbounded increase in the level of T cells in the autoimmune state $\mathbf{S}_{2}$ while varying $\bar{k}$, a feature considered unrealistic biologically (see Fig. S1(a)). To avoid this situation, we impose the condition $\eta_{1}^{2}<4 \eta_{2} \bar{\eta}_{0}$

## B. 2 Stability analysis

The Jacobian matrix of Eqs. (S2a)-(S2b) is given by

$$
J=\left(\begin{array}{cc}
\frac{2 \alpha t_{c}}{t_{c}+\bar{k}}-\frac{\alpha t_{c}^{2}}{\left(t_{c}+\bar{k}\right)^{2}}-\delta_{T_{c}}-2\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c} & 0 \\
\delta_{P_{c}}\left[\frac{2 \eta_{2} t_{c}}{\eta_{2} t_{c}^{2}-\eta_{1} t_{c}+\bar{\eta}_{0}}-\frac{\eta_{2} t_{c}^{2}\left(2 \eta_{2} t_{c}-\eta_{1}\right)}{\left(\eta_{2} t_{c}^{2}-\eta_{1} t_{c}+\bar{\eta}_{0}\right)^{2}}\right] & -\delta_{P_{c}}
\end{array}\right)
$$

The eigenvalues of $J \mid \mathbf{s}_{1}$ are $\lambda_{1}=-\delta_{T_{c}}$ and $\lambda_{2}=-\delta_{P_{c}}$ both of which are negative, so the healthy state is always stable. In the presence of the two other steady states, the autoimmune state $\mathbf{S}_{2}$ is also stable while the steady state $\mathbf{U}$ is unstable. The $t_{c}$-nullcline passing through $\mathbf{U}$ is the separatrix between the basins of attraction of the two states $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$.

## B. 3 B-cell-dependent T-cell activation

In one of the model assumptions stated in the main text, we ignored the direct role of B cells in activating T cells and assumed that the three types of APCs under consideration (DCs, macrophages and B cells)
act uniformly on the T-cell population. We also assumed that the population size of APCs is roughly constant. Here we show that having a separate pool of B cells that acts directly on T cells as APCs for activation and cell replication, does not significantly alter the general behaviour of the reduced one-clone model.

To varify this, we modify Eqn. (S2a) to account for B-cell activation of T cells, as follows

$$
\begin{equation*}
\frac{d t_{c}}{d t}=\left(\alpha_{B} b+\bar{\alpha}\right) t_{c} \frac{t_{c}}{t_{c}+\bar{k}}-\delta_{T_{c}} t_{c}-\left(\alpha^{1 / 2}-\delta_{T_{c}}^{1 / 2}\right)^{2} t_{c}^{2}, \tag{S7}
\end{equation*}
$$

where $\alpha_{B} b t_{c}^{2} /\left(t_{c}+\bar{k}\right)$ is the B-cell-dependent T-cell activation occuring at a rate $\alpha_{B}$ and satisfying $\alpha_{B} b+$ $\bar{\alpha} \approx \alpha$. (This equation derives from the non-scaled form as done before.) Including such terms in the dynamic equation of $t_{c}$ generates a cubic-shped $t_{c}$-nullcline by joining the two right vertical nullcline asscociated with Eqs. (S2a)-(S2b) (see Fig. S2. Increasing the value of $a_{B}$ decreases the steepness of this cubic nullcline and alightly alters the location of the steady states $\mathbf{S}_{2}$ and $\mathbf{U}$, but does not their stability. This suggests that the approximation used in Eqn. (S2a) is justifiable.


Fig. S2: The phase plane of Eqs. (S7) and (S2b), displaying the $t_{c^{-}}$and $p_{c}$-nullclines for $a_{B}=0.5\left(t_{c}=0\right.$ nullcline is not shown because the $c^{-}$-axis is in logarithmic scale). The two gray lines are the $t_{c}$-nullclines, while the Hill-like black line is the $p_{c}$-nullcline. The stable steady state $\mathbf{S}_{2}$, shown as black dot, is the autoimmune state as before, while the unstable steady state $\mathbf{U}$ is shown as a white dot. (The healthy state $\mathbf{S}_{1}$ is not shown.) Including the term $\alpha_{B} b t_{c}^{2} /\left(t_{c}+\bar{k}\right)$ in the dynamic equation of $t_{c}$ modified the shape of the $t_{c}$-nullclines only slightly.

