Supporting Information

Network 'small-world-ness': a quantitative method for determining canonical network equivalences

Mark D. Humphries and Kevin Gurney

Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, Sheffield. S10 2TP. UK
m.d.humphries@sheffield.ac.uk

1 Real-world systems - details

The correlations of S^{\triangle} and $S^{\text {ws }}$ with n (see main text) are re-plotted in Figure ST1a and Figure ST1b, respectively, using the indices of the networks from Table 1. The three real-world systems with $S^{\text {ws }}<1$ were omitted from that correlation as these were not small-world networks. Some systems were borderline small-world networks, defined here as $1 \leq S^{\Delta}$, $S^{\mathrm{ws}} \leq 3-4$ systems had $S^{\text {ws }}$ in this range, 6 systems had S^{\triangle} in this range. For these we tested the significance of their small-world-ness scores as detailed in the main text. All had S values greater than the upper 99% confidence limit. We conclude that all other real-world systems were small-world networks.

Figure ST1: Correlation of real-world system properties. Both S^{\triangle} (a) and S^{ws} (b) scale linearly with network size n across real networks from all domains, and irrespective of other properties. Numbers correspond to entries in Table 1.

The few systems that were not small-world networks were defined as such according to their S^{ws} values, and not their S^{\triangle} values. This illustrates the comment made in the main text that C^{ws} and C^{\triangle} often considerably differ, and actually describe two different graph properties: one interpretation is that C^{ws} measures average local edge density and that C^{Δ} measures the proportion of closed loops in the network. We can see the difference clearly in Figure ST2, which shows the correlation of C^{ws} and C^{\triangle} for the real-world systems in Table 1 (main text).

Figure ST2: Correlation of clustering coefficients for real-world systems. Linear regression shows some correlation ($r^{2}=0.65, n=27$), but C^{ws} and C^{\triangle} for some systems differ by an order of magnitude.

2 Finding maximum S^{\triangle}

We wanted to find out how close the particular linear model $S^{\triangle} \simeq 0.023 n$ was to the theoretical maximum possible value for S^{Δ} from the Watts-Strogatz (WS) model, given the corresponding mean degree $\langle k\rangle \simeq 5$ for that data-set. To do this, we differentiated $S_{w s}^{\triangle}$ with respect to p; as $S_{w s}^{\triangle}$ has a unique maximum value, finding the value of p for which $\mathrm{d} S_{w s}^{\Delta} / \mathrm{d} p=0$ would thus give us the theoretical maximum S^{\triangle} value.

The ratios $\lambda_{w s}$ and $\gamma_{w s}^{\triangle}$ can be expressed as (see main text):

$$
\begin{align*}
& \lambda_{w s}=\frac{n \ln (2 K) f(n K p)}{K \ln (n)}, \tag{1}\\
& \gamma_{w s}^{\triangle}=\frac{3 K-3}{8 K^{2}-4 K} n(1-p)^{3} . \tag{2}
\end{align*}
$$

If we assume that the product $n K p \gg 1$, and thus substitute the asymptotic limit $f(x)=\ln (2 x) / 4 x$
into (1), we get the full expression

$$
\begin{equation*}
S_{w s}^{\Delta}=\frac{\gamma_{w s}^{\triangle}}{\lambda_{w s}}=\frac{(3 K-3) n(1-p)^{3} 4 K^{2} \ln (n) p}{\left(8 K^{2}-4 K\right) \ln (2 K) \ln (2 n K p)} . \tag{3}
\end{equation*}
$$

We want to differentiate this with respect to p, so gather all constant terms in (3)

$$
\begin{equation*}
S_{w s}^{\triangle}=\beta \frac{p(1-p)^{3}}{\ln (2 n K p)}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\frac{4 K^{2}(3 K-3) n \ln (n)}{\left(8 K^{2}-4 K\right) \ln (2 K)}, \tag{5}
\end{equation*}
$$

and differentiate (4) to obtain

$$
\begin{equation*}
\frac{\mathrm{d} S_{w s}^{\Delta}}{\mathrm{d} p}=\beta\left\{\frac{\ln (2 n K p)\left[(1-p)^{3}-3 p(1-p)^{2}\right]-(1-p)^{3}}{\ln (2 n K p)^{2}}\right\}, \tag{6}
\end{equation*}
$$

We set $\mathrm{d} S_{w s}^{\Delta} / \mathrm{d} p=0$ and re-arrange to find p. No closed form solution exists, but after some algebra we find

$$
\begin{equation*}
0=(1-p)\left(1-\frac{1}{\ln (2 n K p)}\right)-3 p \tag{7}
\end{equation*}
$$

We use a standard minimisation routine - fzero from MATLAB (The MathWorks, Natick, MA), with an initial value of $p=0.5$ - to find values for p which satisfy this equality, given $n \in$ $\left[10^{3}, 10^{4}, \ldots, 10^{20}\right]$ and $K=\langle k\rangle / 2=2.5$. These are shown in Figure ST3a. We see that the value for p that maximises $S_{w s}^{\triangle}$ is surprisingly restricted across the whole range of n, converging on an asymptotic value of $p=0.246$ as $n \rightarrow \infty$. If we substitute the values for n and the resulting p values into (3) we find the linear relationship $S_{w s}^{\triangle}=0.181 n$, shown in Figure ST3b. Thus, as shown in the main text (Figure 2a), the linear rate of real-world scaling does not reach the theoretical maximum.

Figure ST3: Determining maximum possible S^{\triangle}. a The value for p that maximises $S_{w s}^{\triangle}$ in the WS model falls in a narrow range over many orders of magnitude of n, converging on an asymptotic value of $p=0.246$ as $n \rightarrow \infty$. \mathbf{b} The result is that maximum $S_{w s}^{\triangle}$ grows linearly with n.

