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1 Supplement A. Arcs update

In this section, we consider different schemes of conditional probabilities for updating one
arc, Aij given its adjacent nodes, Vi and Vj.

1.1 Arcs update version A

P (Aij = a|Vi = 1, Vj = 1) =


1− P0(Aij = 0) if a = 1,

0 if a = −1,

P0(Aij = 0) if a = 0.

(1)

P (Aij = a|Vi = 1, Vj = 0) =


0 if a = 1,

1− P0(Aij = 0) if a = −1,

P0(Aij = 0) if a = 0.

(2)

P (Aij = a|Vi = 0, Vj = ∗) =


P0(Aij = 1) if a = 1,

P0(Aij = −1) if a = −1,

P0(Aij = 0) if a = 0.

(3)

where symbol ∗ is a “wildcard” character representing either 0 or 1, and P0(·) represents the
prior value on a given event.

This setup corresponds to an assumption that the states of the arc-adjacent nodes are
insufficient to increase the certainty that the nodes interact. We are not altering the probabil-
ity that two nodes have connection no effect, but can informatively re-distribute probability
between activation and inhibition.

An assumption common across versions is that if the upstream node, Vi for an arc, Aij,
is inactive(Vi = 0), the value for Aij is sampled from the prior distribution for the arc,
P (Aij = aij). An inactive upstream node (Vi) does not provide evidence on its “effects” on
the downstream node (Vj).

1.2 Arcs update version B

P (Aij = a|Vi = 1, Vj = 1) =


1 if a = 1,

0 if a = −1,

0 if a = 0.

(4)

P (Aij = a|Vi = 1, Vj = 0) =


0 if a = 1,

1 if a = −1,

0 if a = 0.

(5)
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P (Aij = a|Vi = 0, Vj = ∗) =


P0(Aij = 1) if a = 1,

P0(Aij = −1) if a = −1,

P0(Aij = 0) if a = 0.

(6)

This version corresponds to an assumption that the states of the arc-adjacent nodes can
be used as direct evidence in support of existence of an interaction.

1.3 Arcs update version C

Consider the conditional probability

P (Aij = aij|Vi = vi, Vj = vj) =
P (aij, vi, vj)

P (vi, vj)
∝ p(aij|vi)p(vj|aij, vi). (7)

To simplify the computation, we assume that Aij is independent from the incoming node Vi

and we only consider inputs from Vi and Aij when deciding the output at Vj. Then, from
(7), the conditional probabilities for updating Aij are derived as follows:

P (Aij = a|Vi = 1, Vj = 1) =


P0(Aij = 1)

P0(Aij = 1) + P0(Aij = 0)P0(Vj = 1)
if a = 1,

0 if a = −1,
P0(Aij = 0)P0(Vj = 1)

P0(Aij = 1) + P0(Aij = 0)P0(Vj = 1)
if a = 0.

(8)

P (Aij = a|Vi = 1, Vj = 0) =


0 if a = 1,

P0(Aij = −1)

P0(Aij = −1) + P0(Aij = 0)P0(Vj = 0)
if a = −1,

P0(Aij = 0)P0(Vj = 0)

P0(Aij = −1) + P0(Aij = 0)P0(Vj = 0)
if a = 0.

(9)

P (Aij = a|Vi = 0, Vj = ∗) =


P0(Aij = 1) if a = 1,

P0(Aij = −1) if a = −1,

P0(Aij = 0) if a = 0.

(10)

This update uses Bayesian probability calculation and allows for a more intuitive re-
distribution of probabilities. It can also be readily extended to more sophisticated updating
schemes by incorporating more complex models for multiple inputs at Vj.

1.4 Arcs update version D

A slightly modified version.

P (Aij = a|Vi = 1) ∝


P0(Aij = 1)/P0(Vi = 1) a = 1

P0(Aij = −1)/P0(Vi = 1) a = −1

P0(Aij = 0) a = 0
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P (Aij = a|Vi = 1, Vj = 1) =


P0(Aij = 1)

P0(Aij = 1) + P0(Aij = 0)P0(Vi = 1)P0(Vj = 1)
if a = 1,

0 if a = −1,
P0(Aij = 0)P0(Vi = 1)P0(Vj = 1)

P0(Aij = 1) + P0(Aij = 0)P0(Vi = 1)P0(Vj = 1)
if a = 0.

(11)

P (Aij = a|Vi = 1, Vj = 0) =


0 if a = 1,

P0(Aij = −1)

P0(Aij = −1) + P0(Aij = 0)P0(Vi = 1)P0(Vj = 0)
if a = −1,

P0(Aij = 0)P0(Vi = 1)P0(Vj = 0)

P0(Aij = −1) + P0(Aij = 0)P0(Vi = 1)P0(Vj = 0)
if a = 0.

(12)

P (Aij = a|Vi = 0, Vj = ∗) =


P0(Aij = 1) if a = 1,

P0(Aij = −1) if a = −1,

P0(Aij = 0) if a = 0.

(13)

This arc update version differs in that when there is an input from Vi (i.e., Vi = 1),
the arc action likelihood is updated. The alteration maintains the ratio of the probabilities
on activation and inhibition, and down-weights the probability on no effect by an artificial
factor P0(Vi = 1).

1.5 Arcs update: Version E

One last proposal; a more generalized of version D.

P (Aij = a|Vi = 1, Vj = 1) =


P0(Aij = 1)

P0(Aij = 1) + βP0(Aij = 0)P0(Vi = 1)P0(Vj = 1)
if a = 1,

0 if a = −1,
P0(Aij = 0)P0(Vi = 1)P0(Vj = 1)

P0(Aij = 1) + βP0(Aij = 0)P0(Vi = 1)P0(Vj = 1)
if a = 0.

(14)

P (Aij = a|Vi = 1, Vj = 0) =


0 if a = 1,

P0(Aij = −1)

P0(Aij = −1) + βP0(Aij = 0)P0(Vi = 1)P0(Vj = 0)
if a = −1,

P0(Aij = 0)P0(Vi = 1)P0(Vj = 0)

P0(Aij = −1) + βP0(Aij = 0)P0(Vi = 1)P0(Vj = 0)
if a = 0.

(15)
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P (Aij = a|Vi = 0, Vj = ∗) =


P0(Aij = 1) if a = 1,

P0(Aij = −1) if a = −1,

P0(Aij = 0) if a = 0.

(16)

Here the probability on no effect is down-weighted by a factor βP0(Vi = 1) where an
arbitrary (0 ≤ β ≤ 1) can be named. When β = 0) this equation is equivalent to version C.
When β = 1) this equation is equivalent to version D.

1.6 Multiple arcs connected to the same node

.
The scenario gets more complicated when you consider a situation where there are mul-

tiple adjacent arcs to one node. One possible way to proceed is to update each arc inde-
pendently (as outlined above).We favor the simplicity of this solution. The one by one idea
behind our “independent arc update” is in accordance with the way in which most interac-
tions are discovered and published in the literature 1. Since these interactions are indepen-
dently derived, they can be tested for consistency with node-related data in the same fashion.

An alternate solution would be to update values for all the arcs adjacent to the same
node simultaneously. We are not addressing this in detail in this article because of the
difficulty of finding a set of assumptions that we can plausibly justify by biological data.
Another complication of multiple-arc updating is the possibility of parental nodes to the
given node which are not included in the data. Such a complicated update would not give
good probability estimates while adding computational burden.

1A notable exception is associated with so-called high-throughput experiments, such as yeast two-hybrid
experiments aiming at discovering protein-protein interactions.
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2 Supplement B: updating nodes given fixed arcs

In this section we describe different options for updating a node given fixed incoming arcs.
Our topology is a directed graph to incorporate causal knowledge 2. This allows us to cal-
culate the joint distribution for all nodes by decomposing the computation into the product
of the conditional probabilities of nodes, their parental nodes and associated arcs.

We begin with the input nodes (nodes with no parent nodes) and follow the graph until
all sink nodes (nodes with no offspring nodes) are updated.

G −→ B −→ C −→ D.

Node G is the only input node, and node D is the only sink node. The joint distribution
of node values given arcs for this simple graph has the following form:

P (VG = vG, VB = vB, VC = vC , VD = vD|AGB = aGB, ABC = aBC , ACD = aCD)

= P (VG = vG)P (VB = vB|VG = vG, AGB = aGB)

× P (VC = vC |VB = vB, ABC = aBC)

× P (VD = vD|VC = vC , ACD = aCD). (17)

Therefore, to arrive at a sample from the full joint distribution of nodes given arcs, we
first update the value for the input node (G)—sampling from its prior distribution. For
all non-input nodes (B, C, and D) the value is sampled from the appropriate conditional
distributions (given the values of arcs and parental nodes for the node being updated). Each
child node can be updated only after all parental nodes are updated.

A more general case of node updating concerns sampling of values for a node, V , that has
multiple incoming edges with possibly conflicting arc values (both inhibition and activation
values). We need to define the conditional probability that Vi = vi given the values of
upstream nodes and arcs—assuming that node Vi has n parents, with values {Vj = vj}j=1,...,n

at the parental nodes, and the values {Aij = aij}j=1,...,n at the direct incoming arcs of Vi.
Different definitions of this conditional probability actually represent different assumptions
and models at the local network of Vj.

2.1 Node update version A

P

(
Vi = 1

∣∣∣∣ {Vj = vj}j=1,...,n

{Aij = aij}j=1,...,n

, j ∈ par(Vi)

)
=


φ(I+

i B I−i ) if I+
i > 0, and I−i > 0

1 if I+
i > 0, and I−i = 0

0 if I+
i = 0, and I−i > 0

P0(Vi = 1) if I+
i = 0, and I−i = 0

(18)

2This first version is a directed acyclic graph - we hope to handle cycles in the next version.
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P

(
Vi = 0

∣∣∣∣ {Vj = vj}j=1,...,n

{Aij = aij}j=1,...,n

, j ∈ par(Vi)

)
= 1−P

(
Vi = 1

∣∣∣∣ {Vj = vj}j=1,...,n

{Aij = aij}j=1,...,n

, j ∈ par(Vi)

)
(19)

where I+
i =

∑
{j: aij=1} vj and I−V =

∑
{j: aij=−1} vj are combined incoming activating and

inhibiting signals upon Vi. Here φ(I+
i B I−i ) is a function that resolves a conflict between

activating and inhibiting signals—in the simplest case it can be a single probability parameter
common for the whole network. In a more sophisticated setup, the value of the parameter
can vary for different nodes. In even more complex case, function φ(I+

i B I−i ) can explicitly
depend on values of I+

i and I−i and have different a form for different nodes in the network.

2.2 Node update version B

P

(
Vi = 1

∣∣∣∣ {Vj = vj}j=1,...,n

{Aij = aij}j=1,...,n

, j ∈ par(Vi)

)
=


P0(Vi = 1) if I+

i > 0, and I−i > 0

1 if I+
i > 0, and I−i = 0

0 if I+
i = 0, and I−i > 0

P0(Vi = 1) if I+
i = 0, and I−i = 0

(20)

P

(
Vi = 0

∣∣∣∣ {Vj = vj}j=1,...,n

{Aij = aij}j=1,...,n

, j ∈ par(Vi)

)
= 1−P

(
Vi = 1

∣∣∣∣ {Vj = vj}j=1,...,n

{Aij = aij}j=1,...,n

, j ∈ par(Vi)

)
(21)

This update version resolves conflicting inputs by an assumption that every conflict in
input signals brings us back to the prior distribution for the node.

2.3 Node update version C

In this version, we assume that state of node Vi is determined by a Boolean function over
values of Vj ∈ par(Vi) and values of the corresponding edges, Aij. For example, if vertex V1

has just two parental nodes, V2 and V3, as shown below:

V2 V3

↘ ↙
V1

(22)

we can assume that node V1 is active only if both parental nodes are active, V2 = V3 = 1,
and both arcs are in the state activation, A21 = A31 = 1. Similarly, we can assume that
to inhibit V1 we need both incoming edges in the state inactivation, A21 = A31 = −1, and
both parental nodes active. Then the probability to find node V1 activated given states of
parental nodes and arc is as follows.
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P

(
V1 = 1

∣∣∣∣ V2 = v2, V3 = v3

A21 = a21, A31 = a31

)
=


1 if (v2, v3, a21, a31) = (1, 1, 1, 1),

0 if (v2, v3, a21, a31) = (1, 1,−1,−1),

P0(V1 = 1) otherwise.

(23)
Given n inputs to a node Vi, we can define the state of the node as a probabilistic function

of all possible 2n× 3n states of the parental nodes and arcs. Unfortunately, it would be very
hard to find biological data to estimate parameters for such modeling at the present state of
knowledge about biological circuitry.

3 Supplement C: enumeration examples

In this section, we give numerical illustrations of different arc update and node update ver-
sions. For comparison, in addition to the arc updates version considered in supplement A,
we also include examples where the arcs are assumed to be independent with the nodes.

3.1 Independent arcs

Consider a special case when distribution values of the arcs are fixed despite the values of
incoming nodes, that is,

P (A|V) = P (A) =
∏
j,i

P (Aij = aij). (24)

Then, we can compute the marginal probabilities for nodes through direct summation over
the appropriate joint distribution for nodes and arcs. Below we illustrate computation of
the joint and marginal distributions for a simple linear network example.

3.2 Linear example

G −→ B −→ C −→ D. (25)

Priors for the nodes:
P0(VG = 1) = 0.9, P0(VG = 0) = 0.1,
P0(VB = 1) = 0.9, P0(VB = 0) = 0.1,
P0(VC = 1) = 0.9, P0(VC = 0) = 0.1,
P0(VD = 1) = 0.9, P0(VC = 0) = 0.1.

Priors for arcs:
P0(AGB = [1,−1, 0]) → (0.9, 0.05, 0.05)
P0(ABC = [1,−1, 0]) → (0.05, 0.9, 0.05)
P0(ACD = [1,−1, 0]) → (0.7, 0.2, 0.1).
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For this simple example, the exact enumeration of the joint probabilities and marginal
probabilities with independent arcs may be carried out as follows.

P (VG = vG, VB = vB, VC = vC , VD = vD, AGB = aGB, ABC = aBC , ACD = aCD)

= P0(VG = vG)P0(AGB = aGB)P (VB = vB|VG = vG, AGB = aGB)

× P0(ABC = aBC)P (VC = vC |VB = vB, ABC = aBC)

× P0(ACD = aCD)P (VD = vD|VC = vC , ACD = aCD). (26)

P (VG = vG)
def
=

∑
vB=0,1

∑
vC=0,1

∑
vD=0,1

∑
aGB=−1,0,1

∑
aBC=−1,0,1∑

aCD=−1,0,1

P (VG = vG, VB = vB,

VC = vc, VD = vD, AGB = aGB,

ABC = aBC , ACD = aCD). (27)

P (Aij = aij) ≡ P0(Aij = aij) (prior values) , ∀i, j. (28)

Enumerated marginals for the nodes can be easily calculated:
P (VG = 1) = 0.9, P (VG = 0) = 0.1,
P (VB = 1) = 0.9405, P (VB = 0) = 0.0595,
P (VC = 1) = 0.1429, P (VC = 0) = 0.8571,
P (VD = 1) = 0.8843, P (VD = 0) = 0.1157.

3.3 X-shaped example

In this section, we use a more general example to illustrate different arc and node update
versions, starting with simpler computations where independent arcs are assumed.

G B

↘ ↙
C

↙ ↘
D E

(29)

Priors for the nodes:
P0(VG = 1) = 0.7, P0(VG = 0) = 0.3,
P0(VB = 1) = 0.8, P0(VB = 0) = 0.2,
P0(VC = 1) = 0.9, P0(VC = 0) = 0.1,
P0(VD = 1) = 0.35, P0(VD = 0) = 0.65,
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P0(VE = 1) = 0.75, P0(VE = 0) = 0.25.

Priors for arcs:
P0(AGC = [1,−1, 0]) → (0.9, 0.05, 0.05),
P0(ABC = [1,−1, 0]) → (0.05, 0.85, 0.1),
P0(ACD = [1,−1, 0]) → (0.8, 0.11, 0.09),
P0(ACE = [1,−1, 0]) → (0.1, 0.1, 0.8).

3.3.1 Independent arcs

Assuming independent arcs, the probabilities can be enumerated as follows.

P (VG = vG, VB = vB, VC = vC , VD = vD, VE = vE,

AGC = aGC , ABC = aBC , ACD = aCD, ACE = aCE)

= P0(VG = vG)P0(AGC = aGC)

× P0(VB = vB)P0(ABC = aBC)

× P (VC = vC |VG = vG, VB = vB, AGC = aGC , ABC = aBC)

× P0(ACD = aCD)P (VD = vD|VC = vC , ACD = aCD)

× P0(ACE = aCE)P (VE = vE|VC = vC , ACE = aCE). (30)

We implemented this example with two of our node update version. Table 1 shows the
results for using node update version A with φ(I+

i B I−i ) = 1
2

(Equation (18)). The enu-
merated marginals (using exact probability computation) on the nodes are compared with
both the priors and the caluculated values using the proposed numerical updates with Gibbs
sampler. Since we are assuming independent arcs for this computation, the marginals on
the arcs are unchanged from the prior values. The resulting network is compared with the
network based on prior values in Figure 1.

Node Priors Exact marginals Gibbs sampler

v = 1 v = 0 v = 1 v = 0 v = 1 v = 0

VG 0.7 0.3 0.7 0.3 0.6996 0.30048

VB 0.8 0.2 0.8 0.2 0.7999 0.2001

VC 0.9 0.1 0.5143 0.4857 0.5140 0.4860

VD 0.35 0.65 0.5976 0.4024 0.5974 0.4026

VE 0.75 0.25 0.7243 0.2757 0.7243 0.2757

Table 1: Marginals for the nodes exact and estimated with the Gibbs sampler: node update
version A. (Gibbs sampler: 50, 000 different starting points, 100 iterations for each chain.)
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Figure 1: Update of both arcs and nodes of a hypothetical five-node and four-arc network
(node update version A, arc update from priors).

For comparison, we also implemented the enumeration and numerical updating using the
node update version B. The results are listed in Table 2.

Node Priors Exact marginals Gibbs sampler

v = 1 v = 0 v = 1 v = 0 v = 1 v = 0

VG 0.7 0.3 0.7 0.3 0.7002 0.2998

VB 0.8 0.2 0.8 0.2 0.8001 0.1999

VC 0.9 0.1 0.6862 0.3138 0.6864 0.3136

VD 0.35 0.65 0.6804 0.3196 0.6802 0.3198

VE 0.75 0.25 0.7157 0.2843 0.7156 0.2844

Table 2: Marginals for the nodes—comparison of the exact computation with the Gibbs sam-
pler: node update version B.(Gibbs sampler: 50, 000 different starting points, 100 iterations
for each chain.)

Apparently from Tables 1 and 2, the Gibbs sampler gives acceptable estimates of the
marginals (precision can be improved by increasing the number of sampling iterations).

These examples also illustrate the difference between node update versions A and B. In
the case of conflicting inputs for node C, version A assumes complete lack of information
about the state of Vc (φ(I+

i B I−i ) = 1
2
, Equation 18), while version B samples values from

the prior distribution for node VC .
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3.3.2 Updating both nodes and arcs

In this section, we apply different versions of arc and node update combinations to the same
numerical x-shape example, with exactly the same prior values.

Node update Arc update Numerical results Graph

Version A Version C Tables 4 and 5 Figure 2

Version A Version D Tables 6 and 7 Figure 3

Version B Version B Tables 8 and 9 Figure 4

Version B Version C Tables 10 and 11 Figure 5

Version B Version E (with β = 0.2) Tables 12 and 13 Figure 6

Table 3: Versions of update depicted in the supplement.

Node Priors Marginals

(Gibbs sampler)

v = 1 v = 0 v = 1 v = 0

VG 0.7000 0.3000 0.7005 0.2995

VB 0.8000 0.2000 0.8000 0.2000

VC 0.9000 0.1000 0.5147 0.4853

VD 0.3500 0.6500 0.5979 0.4021

VE 0.7500 0.2500 0.7243 0.2757

Table 4: Marginals for the nodes estimated with the Gibbs sampler: node update model
A, arc update model C. (Gibbs sampler: 10, 000 different starting points, 100 iterations for
each chain.)
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Arc Priors Marginals (Gibbs sampler)

a = 1 a = −1 a = 0 a = 1 a = −1 a = 0

AGC 0.9000 0.0500 0.0500 0.8998 0.0500 0.0501

ABC 0.0500 0.8500 0.1000 0.0499 0.8499 0.1002

ACD 0.8000 0.1100 0.0900 0.8007 0.1096 0.0897

ACE 0.1000 0.1000 0.8000 0.1002 0.0999 0.7999

Table 5: Marginals for the arcs estimated with the Gibbs sampler: node update model A,
arc update model C. (Gibbs sampler: 10, 000 different starting points, 100 iterations for each
chain.)

Node Priors Marginals

(Gibbs sampler)

v = 1 v = 0 v = 1 v = 0

VG 0.7000 0.3000 0.6994 0.3006

VB 0.8000 0.2000 0.8004 0.1996

VC 0.9000 0.1000 0.5762 0.4238

VD 0.3500 0.6500 0.6215 0.3785

VE 0.7500 0.2500 0.7199 0.2801

Table 6: Marginals for the nodes estimated with the Gibbs sampler: node update model
A, arc update model D. (Gibbs sampler: 10, 000 different starting points, 100 iterations for
each chain.)

4 Supplement D. Graph support

In this section, we included the data supporting the graph depicting the genes assoiciated
with the four neurological diseases.

4.1 List of Nodes

4.2 List of Arcs

4.3 List of Arc Types

4.4 List of Brain Tissue Names
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Figure 2: Update of both arcs and nodes of a hypothetical five-node and four-arc network
(node update version A, arc update version C—detailed numerical information corresponding
to this figure is shown in Tables 4 and 5).

Arc Priors Marginals (Gibbs sampler)

a = 1 a = −1 a = 0 a = 1 a = −1 a = 0

AGC 0.9000 0.0500 0.0500 0.6766 0.2757 0.0477

ABC 0.0500 0.8500 0.1000 0.1833 0.5438 0.2729

ACD 0.8000 0.1100 0.0900 0.7941 0.1179 0.0880

ACE 0.1000 0.1000 0.8000 0.1056 0.1046 0.7898

Table 7: Marginals for the arcs estimated with the Gibbs sampler: node update model A,
arc update model D. (Gibbs sampler: 10, 000 different starting points, 100 iterations for each
chain.)
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Figure 3: Update of both arcs and nodes of a hypothetical five-node and four-arc network
(node update version A, arc update version D (equivalent to version E with β = 1)—detailed
numerical information corresponding to this figure is shown in Tables 6 and 7).

Node Priors Marginals

(Gibbs sampler)

v = 1 v = 0 v = 1 v = 0

VG 0.7 0.3 0.6999 0.3001

VB 0.8 0.2 0.8000 0.2000

VC 0.9 0.1 0.8455 0.1545

VD 0.35 0.65 0.7241 0.3199

VE 0.75 0.25 0.7105 0.2895

Table 8: Marginals for the nodes estimated with the Gibbs sampler: node update model B,
arc update model B.(Gibbs sampler: 50, 000 different starting points, 100 iterations for each
chain.)
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Arc Priors Marginals (Gibbs sampler)

a = 1 a = −1 a = 0 a = 1 a = −1 a = 0

AGC 0.9 0.05 0.05 0.8962 0.0887 0.0151

ABC 0.05 0.85 0.1 0.6745 0.3055 0.02

ACD 0.8 0.11 0.09 0.7913 0.1948 0.0139

ACE 0.1 0.1 0.8 0.61052 0.2662 0.1233

Table 9: Marginals for the arcs estimated with the Gibbs sampler: node update model B,
arc update model B. (Gibbs sampler: 50, 000 different starting points, 100 iterations for each
chain.)

Figure 4: Update of both arcs and nodes of a hypothetical five-node and four-arc network
(node update version B, arc update version B—detailed numerical information corresponding
to this figure is shown in Tables 8 and 9).
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Node Priors Marginals

(Gibbs sampler)

v = 1 v = 0 v = 1 v = 0

VG 0.7000 0.3000 0.7001 0.2999

VB 0.8000 0.2000 0.7998 0.2002

VC 0.9000 0.1000 0.8057 0.1943

VD 0.3500 0.6500 0.7306 0.2694

VE 0.7500 0.2500 0.7102 0.2898

Table 10: Marginals for the nodes estimated with the Gibbs sampler: node update model
B, arc update model C. (Gibbs sampler: 10, 000 different starting points, 100 iterations for
each chain.)

Arc Priors Marginals (Gibbs sampler)

a = 1 a = −1 a = 0 a = 1 a = −1 a = 0

AGC 0.9000 0.0500 0.0500 0.8455 0.1023 0.0522

ABC 0.0500 0.8500 0.1000 0.2339 0.3411 0.4249

ACD 0.8000 0.1100 0.0900 0.7911 0.1161 0.0928

ACE 0.1000 0.1000 0.8000 0.1001 0.0999 0.7999

Table 11: Marginals for the arcs estimated with the Gibbs sampler: node update model B,
arc update model C. (Gibbs sampler: 10, 000 different starting points, 100 iterations for each
chain.)

Node Priors Marginals

(Gibbs sampler)

v = 1 v = 0 v = 1 v = 0

VG 0.7000 0.3000 0.6999 0.3001

VB 0.8000 0.2000 0.8001 0.1999

VC 0.9000 0.1000 0.8331 0.1669

VD 0.3500 0.6500 0.7441 0.2559

VE 0.7500 0.2500 0.6454 0.3546

Table 12: Marginals for the nodes estimated with the Gibbs sampler: node update model B,
arc update model E (with β = 0.2). (Gibbs sampler: 10, 000 different starting points, 100
iterations for each chain.)
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Figure 5: Update of both arcs and nodes of a hypothetical five-node and four-arc network
(node update version B, arc update version C—detailed numerical information corresponding
to this figure is shown in Tables 10 and 11).

Arc Priors Marginals (Gibbs sampler)

a = 1 a = −1 a = 0 a = 1 a = −1 a = 0

AGC 0.9000 0.0500 0.0500 0.8854 0.0941 0.0204

ABC 0.0500 0.8500 0.1000 0.5173 0.3168 0.1659

ACD 0.8000 0.1100 0.0900 0.8123 0.1549 0.0329

ACE 0.1000 0.1000 0.8000 0.2672 0.2462 0.4867

Table 13: Marginals for the arcs estimated with the Gibbs sampler: node update model B,
arc update model E (with β = 0.2), (Gibbs sampler: 10, 000 different starting points, 100
iterations for each chain.)
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Figure 6: Update of both arcs and nodes of a hypothetical five-node and four-arc network
(node update version B, arc update version E (with β = 0.2)—detailed numerical information
corresponding to this figure is shown in Tables 12 and 13).
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