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Abstract
The eyes of an individual act as an indispensable communication medium during human

social interactions. Functional neuroimaging studies have revealed that several brain

regions are activated in response to eyes and eye gaze direction changes. However, it

remains unclear whether the temporal pole is one of these regions. Furthermore, if the tem-

poral pole is activated by these stimuli, the timing and manner in which it is activated also

remain unclear. To investigate these issues, we analyzed intracranial electroencephalo-

graphic data from the temporal pole that were obtained during the presentation of eyes and

mosaics in averted or straight directions and their directional changes. Time–frequency sta-

tistical parametric mapping analyses revealed that the bilateral temporal poles exhibited

greater gamma-band activation beginning at 215 ms in response to eyes compared with

mosaics, irrespective of the direction. Additionally, the right temporal pole showed greater

gamma-band activation beginning at 197 ms in response to directional changes of the eyes

compared with mosaics. These results suggest that gamma-band oscillations in the tempo-

ral pole were involved in the processing of the presence of eyes and changes in eye gaze

direction at a relatively late temporal stage compared with the posterior cortices.

Introduction
It has been said that the eyes are windows to the soul [1] and thus are indispensable for human
communication. Accordingly, the detection of eyes and the recognition of changes in eye gaze
direction generate multiple psychological activities in the observer. For example, straight and
averted eye directions trigger emotional reactions [2] and attention orienting [3], respectively,
and both induce mind reading [4]. These processes play important roles in real-life social inter-
actions [5] as well as contribute to impairments in social functioning in patients with clinical
disorders [6].
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Neuroscientific studies have explored the neural mechanisms underlying the processing of
eye information and have identified several brain regions that are activated in response to eyes
and eye gaze direction changes. Several neuroimaging studies using functional magnetic reso-
nance imaging (fMRI) and positron emission tomography (PET) demonstrated that the poste-
rior superior temporal sulcus (STS) and the adjacent middle and superior temporal gyri (STS
region [7]) are active in response to the presence of eyes and changes in eye gaze direction, spe-
cifically in the case of averted gaze direction [8–16]. Intracranial electroencephalography
(EEG) studies also reported that the STS region [17] and the inferior occipital gyrus (Sato et al.,
submitted) exhibit electrical activity in response to eye gaze direction changes and eyes, respec-
tively. Additionally, neuroimaging studies revealed that other anterior regions, such as the
amygdala, are also active in response to eyes and eye gaze direction changes [16,18]. Because
these regions are also more active during the presentation of faces relative to non-face objects
(for a review, see [19]), it is likely that the processing of eyes is accomplished as a subtype of
processing for faces. These findings suggest that eye information is processed across a wide-
spread neural network that includes the inferior occipital gyrus, STS region, and amygdala.

However, it remains unclear whether there are changes in temporal pole activity in response
to the presence of eyes and changes in eye gaze direction. Lesion studies in monkeys have
revealed that the temporal pole plays an indispensable role during social interactions [20–23].
These findings are consistent with those of comparative anatomical studies indicating that the
temporal pole exists only in primates [24,25], likely because primates are exceedingly social
animals. Anatomical studies in monkeys revealed that the temporal pole receives highly pro-
cessed visual signals from the posterior cortices, including the STS region, and communicates
bidirectionally with the amygdala (for a review, see [26]). This suggests that the temporal pole
may cooperate with these regions during the processing of eye information. Several previous
neuroimaging studies in humans reported that the temporal pole is more activated in response
to faces relative to other objects [27–30], suggesting that this region is involved in face process-
ing. Although none of the aforementioned neuroimaging studies observed an activation of the
temporal pole in response to eyes or eye gaze direction changes, this null finding might be
accounted for by air-tissue inhomogeneity artifacts that can diminish fMRI signals in this
region or by ill-defined anatomical categories (e.g., the periamygdaloid region) due to the lack
of theoretical interest [31]. On the other hand, an fMRI study showed activation in the tempo-
ral pole by comparing brain activation during the observation of eyes in a mind reading task
versus during the passive observation of crosshairs [32]. Another fMRI study investigated
brain activation changes during the adaptation to eye gaze direction and reported reduced
activity in the temporal pole in response to adapted gaze direction [33]. Based on these find-
ings, we hypothesized that direct recording of electrical activity from the temporal pole could
reveal its activation in response to the presence of eyes and changes in eye gaze direction.

Furthermore, if the above hypothesis is correct, the timing and manner in which the tempo-
ral pole is activated during the processing of eye information need to be addressed. To under-
stand the neural mechanisms, that is, the causal relationships among brain regions, the time
course and frequency of brain activation should be evaluated [34,35]. To date, no electrophysi-
ological studies, which can provide this type of information, have investigated activation in the
temporal pole in response to the presence of eyes and changes in eye gaze direction. Indirect
evidence from intracranial EEG recording and its event-related potential (ERP) analyses
revealed temporal differences in the activation of the temporal pole and other visual areas dur-
ing face processing [36]. This study showed that the temporal pole exhibits a higher ERP com-
ponent that peaks at 300–400 ms in response to faces than to other objects, whereas other
posterior cortices, including the inferior occipital gyrus and STS region, exhibit the ERP peaks
at approximately 200 ms. Other intracranial EEG studies investigating the processing of eye
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information revealed that the inferior occipital gyrus (Sato et al., submitted) and STS region
[17] exhibit ERPs that peak at approximately 200 ms. Collectively, these findings suggest that
the temporal pole may exhibit ERPs related to eye processing during the 300–400 ms window
that have a similar temporal profile to those exhibited during face processing. However, it must
be noted that ERP analyses primarily detect the low-frequency components of EEG data [37].
For the comprehensive elucidation of high- and low-frequency neuronal activities at a high
temporal resolution, time–frequency analyses must be conducted [38]. Previous intracranial
EEG studies that performed time–frequency analyses revealed that the inferior occipital gyrus
(Sato et al., submitted) and STS region [17] show gamma-band (higher than 30 Hz [39]) activa-
tion in response to eye information beginning at approximately 100 ms. These data suggest
that, within the visual stream from the posterior to the anterior occipito–temporal cortices, the
temporal pole may exhibit gamma-band activation during about 200–300 ms, which would
be later than that observed in more posterior regions. Taking these findings together, we
hypothesized that the temporal pole could show gamma-band and ERP activations beginning
at approximately 200–300 and 300–400 ms, respectively, in response to the presence of eyes
and changes in eye gaze direction.

To test these hypotheses, we analyzed intracranial EEG data from the temporal poles of six
participants undergoing presurgical assessments for epilepsy. To examine the effect of appear-
ance of eyes, the participants were presented with visual stimuli comprising the eye region or
mosaic patterns as control stimuli. To test the effect of eye gaze direction, averted and straight
directions were prepared for both the eyes and mosaics. To explore the effect of changes in eye
gaze direction, a second stimulus was presented 500 ms after the onset of the first stimulus
with the direction of the second stimulus being different from that of the first. To examine
automatic eye processing, the participants were asked to engage in dummy target detection.
Time–frequency statistical parametric mapping (SPM) [40] and traditional ERP analyses were
conducted. Because several lines of evidence indicate that there are functional hemispheric dif-
ferences during the processing of eye information [41], the activities of the temporal poles in
both hemispheres were analyzed and compared.

Materials and Methods

Ethics Statement
This study was approved by the Ethics Committee of Shizuoka Institute of Epilepsy and Neuro-
logical Disorders, and was conducted in accordance with the approved guidelines. All partici-
pants gave written informed consent after being provided with an explanation of the
experimental procedures.

Participants
The present study included 6 patients (5 females and 1 male; mean ± SD age, 34.5 ± 7.9 years).
All participants were suffering from pharmacologically intractable focal epilepsy and under-
went the implantation of intracranial electrodes as part of a presurgical evaluation. The experi-
ment was conducted 2.0–2.8 weeks after the electrode implantation. The surgical evaluations
suggested that the main epileptic foci for all the participants were outside the temporal pole;
five of the foci were in the hippocampus and one was in the lateral temporal cortex.

Neuropsychological assessments confirmed that all participants’ language ability and every-
day memory were intact. The intelligence quotient (IQ), measured by the revised Wechsler
Adult Intelligence Scale, was in the normal range in five participants, and in the mildly men-
tally retarded range in one participant (mean ± SD full-scale IQ: 91.8 ± 19.2; mean ± SD verbal
IQ: 86.7 ± 12.0; mean ± SD performance IQ: 100.7 ± 27.3). During the experiment, no seizures
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were observed and all participants were mentally stable. All participants were right-handed, as
assessed using the Edinburgh Handedness Inventory [42], and had normal or corrected-to-
normal visual acuity. The data from different electrodes are reported elsewhere [43].

Anatomical magnetic resonance imaging (MRI) assessment
Pre- and post-implantation anatomical assessments were conducted using the 1.5-T structural
MRI scanning system (Signa TwinSpeed, General Electric Yokokawa) and multi-slice com-
puted tomography (CT) scanner (Millennium VG, GE Medical Systems). For each participant,
a whole brain T1-weighted MR image (matrix size = 256 × 256, field of view = 22 × 22 cm, and
76 slices resulting in voxel dimensions of 0.8594 × 0.8594 × 2.0 mm thick) and CT image
(matrix size = 512 × 512, field of view = 22.8 × 22.8 cm, and 24 slices resulting in voxel dimen-
sions of 0.4453 × 0.4453 × 5.0 mm thick) were acquired. Pre-implantation anatomical MRI and
CT assessments and surgical evaluations did not reveal any structural abnormalities in the
bilateral temporal poles of any participant.

The intracranial electrodes were implanted using the stereotactic method [44], and the
implantation sites were chosen based solely on clinical criteria. Subdural electrodes were
implanted in the usual manner in both hemispheres for five participants and in the right hemi-
sphere for one participant. Post-implantation anatomical MRI and CT assessments were con-
ducted to confirm the positions of the electrodes of interest in the temporal pole. First,
individual MRI data were segmented into gray matter, white matter, cerebrospinal fluid, skull,
and scalp using the unified segmentation and normalization procedure [45] in SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB 2012b (MathWorks). Next, individual
CT data were thresholded to remove the cranial content of the brain. Note that both the bony
skull and the high-intensity electrode signals were preserved in this image processing. The
resulting CT skull image was then co-registered to the skull image derived fromMRI segmenta-
tion. To report the stereotactic coordinates of the electrode positions, individual T1-weighted
MR images were normalized to a standard T1 template image defined by the Montreal Neuro-
logical Institute (MNI). The spatial transformation parameters from this normalization process
were then applied to the gray matter image and the CT skull image. The CT skull image was re-
thresholded and then binarized to limit the image contents to electrodes only. Finally, each
electrode was well visualized in the brain surface-rendering of the gray matter image using the
overlay function in MRICRON software (http://www.mccauslandcenter.sc.edu/mricro/
mricron/). One of the study authors manually localized and confirmed the electrodes in the
temporal pole. The mean ± SDMNI coordinates of the electrodes were as follows: right, x
33.8 ± 4.4, y 22.7 ± 3.2 z -39.3 ± 4.7; left, x -28.7 ± 5.2, y 21.2 ± 2.5, z -38.3 ± 2.7. The mean
three-dimensional locations of the electrodes were projected on the MNI glass brain (SPM
maximum intensity projection format; Fig 1).

Stimuli
Fig 2 depicts the eye and mosaic stimuli. The eye stimuli were prepared from color photo-
graphs of the full-face neutral expressions of seven females and seven males who were looking
either to the left or straight ahead. Only the eyes were used from the photographs, and no other
facial features or eyebrows were visible in the stimuli. Mirror images of these stimuli were cre-
ated using Photoshop 6.0 (Adobe). Eyes looking to the left or right were used for the averted-
direction condition and eyes looking straight ahead were used for the straight-direction condi-
tion. The mean luminance of the images was kept constant using MATLAB 6.5 (MathWorks).

The mosaic stimuli were constructed from the eye stimuli. First, all of the eye stimuli were
divided into small squares (10 vertical × 50 horizontal), and all squares were set to the mean
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luminance of pixels in each square. To construct objects conveying directional information in a
manner similar to the eye stimuli, two sets of 49 small squares with the highest luminance were
selected and arranged randomly to construct two large diagonally aligned squares. The squares
were aligned diagonally because our preliminary experiment indicated that large squares

Fig 1. Location of electrodes in the temporal pole. Left) Representative anatomical magnetic resonance images. Cross hairs indicate the
electrode location in the temporal pole. Right) Averaged coordinates of the electrodes in the temporal pole in the Montreal Neurological Institute
space.

doi:10.1371/journal.pone.0162039.g001

Fig 2. Illustrations of the stimuli. The averted (first presentation)–straight (second presentation) direction conditions for the eyes and mosaics
are shown.

doi:10.1371/journal.pone.0162039.g002
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arranged horizontally looked like eyes. The horizontal center of these large squares was compa-
rable to the pupil positions of the eye stimuli. Other small squares were then arranged ran-
domly in other areas. These manipulations resulted in mosaic stimuli equivalent to the
corresponding original eye stimuli in terms of overall luminance and directional information,
without the incorporation of eye features.

Stimuli with different direction conditions were shown for the first and second stimulus pre-
sentations (i.e., averted after straight or straight after averted) to represent directional changes.

Procedure
The presentation of stimuli was controlled by SuperLab Pro 2.0 (Cedrus) and implemented
using a Windows computer (FSA600, Teknos). Stimuli were presented on a 19-inch CRT mon-
itor (GDM-F400, Sony) at a refresh rate of 100 Hz and a resolution of 1,024 × 768 pixels. The
participants’ responses were recorded using a response box (RB-400, Cedrus).

The experiments were conducted individually in a quiet room. The participants were seated
comfortably with their heads supported by a chin-and-forehead rest positioned 0.57 m from
the monitor. The resulting visual angle subtended by the stimulus was 1.5° vertically × 7.5°
horizontally.

Each stimulus was presented three times. In addition, a red cross was presented as the target
in 15 trials. Thus, each participant performed a total of 183 trials: 42 trials each of averted eyes-
straight eyes, straight eyes-averted eyes, averted mosaics-straight mosaics, and straight mosa-
ics-averted mosaics, as well as 15 target trials. The stimuli were presented in a random order.
In each trial, after the presentation of a cross-shaped fixation point for 500 ms, the first stimu-
lus was presented for 500 ms in the center of the visual field. The second stimulus was then pre-
sented for 1,000 ms. In each target trial, instead of eyes or mosaic stimuli, the red cross was
presented until a response was made. The participants were instructed to press a button using
their right forefinger as quickly as possible after detecting the red cross. This task ensured that
participants kept their attention on the stimuli, and it prevented the explicit processing of eye
gaze. Performance on the target detection was perfect (correct identification rate = 100.0%),
with no delay in reaction times (mean ± SD = 261.0 ± 15.6 ms). The post-hoc debriefing con-
firmed that the participants were not aware that the purpose of the experiment was to investi-
gate gaze processing. The participants were also instructed not to blink while the stimuli were
being presented. Inter-trial intervals varied randomly between 2,000 and 5,000 ms. To avoid
habituation and drowsiness, participants were given short breaks every 45 trials. Prior to data
collection, the participants were familiarized with the procedure by performing a block of 10
training trials.

Data recording
To examine cortical activity, intracranial EEG data were recorded using subdural platinum
electrodes (2.3 mm diameter; Ad-tech). Depth platinum electrodes (0.8 mm diameter; Unique
Medical) were also inserted to record subcortical activity (data not shown). Electrodes were ref-
erenced to electrodes (2.3 mm diameter; Ad-tech) that were embedded inside the scalp of the
midline dorsal frontal region. Impedances were balanced and maintained below 5 kO. Data
were amplified, filtered online (band pass: 0.5–300 Hz), and sampled at 1,000 Hz onto the hard
disk drive of the EEG system (EEG-1100; Nihon Kohden). Online monitoring was conducted
using a more restricted bandwidth of 0.5–120 Hz. Vertical and horizontal electrooculograms
(EOGs) were simultaneously recorded using Ag/AgCl electrodes (Nihon Kohden). As in previ-
ous studies [46], off-line visual inspection confirmed that no contamination of the intracranial
EEG data by EOGs occurred. Unobtrusive video recording of events was performed using the
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built-in video camera of the EEG system and an off-line analysis of the videos confirmed that
all participants were fully engaged in the tasks.

Data analysis: Preprocessing
All preprocessing, time–frequency SPM analyses, and ERP analyses were performed using
SPM8 (http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB R2012b (MathWorks).

Data obtained over 3,000 ms were sampled for each trial; pre-stimulus baseline data were
collected for 1,000 ms, and experimental data were collected for 2,000 ms after stimulus onset
at a sampling rate of 1,000 Hz. Epochs containing signals with amplitudes> ± 800 μV were
excluded from the analyses and any epochs with absolute signal amplitude values> 5 SD from
the mean or median signal amplitude for each electrode for each participant were rejected as
artifacts. The frequencies of artifact-contaminated trials did not significantly differ across the
conditions (mean ± SD = 6.20 ± 1.84%; p> 0.1, repeated-measures analysis of variance).

Data analysis: Time–frequency SPM analysis
Time–frequency SPM analyses [40,47,48] were performed to assess temporal pole activity.
Time-frequency (power) maps were first calculated for each trial using continuous wavelet
decomposition with 7-cycle Morlet wavelets during the whole epoch (-1,000–2,000 ms) and
from 4 to 300 Hz, which covered theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and
gamma (30–300 Hz) bands. The time-frequency maps were then cropped to -200–500 ms
within the time period evaluated to prevent edge effects of the wavelet transformation. Finally,
the time-frequency maps were log-transformed and baseline-corrected separately for each fre-
quency with respect to the mean power over the 200 ms pre-stimulus period.

The time–frequency maps were then converted into two-dimensional images and entered
into a general linear model (GLM) based on a fixed-effects analysis of the pooled error from all
trials for all participants. Separate analyses were conducted for the first and second stimulus
presentations, to test the effects of presence of eyes and changes in eye gaze direction, respec-
tively. We set up a full factorial model including stimulus type (eyes or mosaics), stimulus
direction (averted or straight), and hemisphere (right or left) as factors of interest. Corrections
for non-sphericity (dependence and possible uneven variance between factor levels) were
applied to ensure the assumption of an independent and identically distributed error for the
GLM using the restricted maximum likelihood procedure [49]. The window of interest was
restricted to the whole frequency range (4–300 Hz) during the post-stimulus period (0–500
ms) using explicit masking. Finally, time-frequency SPM{T} data were calculated for each
contrast.

Based on our interests, we analyzed the main effects of stimulus type (eyes versus mosaics)
and interactions related to the stimulus type factor (i.e., the interactions of stimulus
type × stimulus direction, stimulus type × hemisphere, and stimulus type × stimulus
direction × hemisphere). For significant interactions, follow-up analyses for simple main
effects of stimulus type were conducted. Significantly activated time-frequency clusters were
identified if they reached an extent threshold of p< 0.05, which was family-wise error cor-
rected for multiple comparisons over the whole time-frequency space (0–500 ms and 4–300
Hz), with a height threshold of p< 0.001 (uncorrected).

Data analysis: ERP
To analyze ERP, one-dimensional SPM analysis [50,51], a variant of the three-dimensional
sensor-space-time SPM approach [47,48], was utilized. Because this study focused on a single
electrode, the three-dimensional sensor-space-time SPM was reduced to the single-sensor-time

Temporal Pole GammaOscillations to Eyes

PLOS ONE | DOI:10.1371/journal.pone.0162039 August 29, 2016 7 / 16

http://www.fil.ion.ucl.ac.uk/spm


SPM. Single trial responses from all trials for all participants were converted into one-dimen-
sional line images after baseline correction for the -200–0 ms time period. The line images
were then entered into the GLM in the same manner as for the time–frequency SPM analysis.
Planned contrasts and statistical inferences were also performed in the same manner as for the
time–frequency SPM analysis.

Results

Time–frequency SPM
The time–frequency maps of temporal pole activity were analyzed using the GLM, which
included the effects of stimulus type, stimulus direction, and hemisphere (Table 1).

First, temporal pole activity during the first stimulus presentation was analyzed to deter-
mine the effect of presence of eyes (Fig 3). The contrast of the main effect of stimulus type
(eyes versus mosaics) revealed significant activation in the ranges of 215–236 ms and 101–150
Hz, which indicated that gamma-band activation in the bilateral temporal poles in response to
eyes versus mosaics began at 215 ms. There was no significant activation for the interaction of
stimulus type × stimulus direction, indicating that the above component was not specific to
any gaze direction. The interaction of stimulus type × hemisphere revealed significant activa-
tion in the ranges of 209–235 ms and 85–102 Hz. Follow-up analyses indicated that this
gamma-band component at a slightly lower frequency range than that of the main effect of
stimulus type was evident only in the left temporal pole. There was no significant three-way
interaction.

Next, to determine the effect of changes in eye gaze direction, temporal pole activity during
the second stimulus presentation was analyzed (Fig 4). The main effect of stimulus type (eyes
versus mosaics) was significant at the activation in the ranges of 457–464 ms and 205–246 Hz,
which indicated that there was higher gamma-band activation in the bilateral temporal poles in
response to eyes versus mosaics. There was no significant activation for the interaction of

Table 1. Time-frequency regions showing significant temporal pole activity.

Contrast Activation profile

Peak Extent

Time Frequency T-value Time Frequency Cluster size

　 (ms) (Hz) (ms) (Hz) (ms × Hz)

The presence of eyes (first stimulus presentation)

Main effect of stimulus typea 226 121 5.36 215–236 101–150 705

267 55 3.95 248–282 52–63 249

Interaction of stimulus type × stimulus direction none

Interaction of stimulus type × hemisphereb 216 97 4.26 209–235 85–102 281

Interaction of stimulus type × stimulus direction × hemisphere none

Changes in eye gaze direction (second stimulus presentation)

Main effect of stimulus typea 459 222 4.29 457–464 205–246 205

Interaction of stimulus type × stimulus direction none

Interaction of stimulus type × hemispherec 210 47 3.67 197–228 43–51 170

Interaction of stimulus type × stimulus direction × hemisphere none

p < 0.05 cluster-level family-wise-error corrected.
a contrast: (eyes—mosaics).
b contrast: {(left eyes—left mosaics)—(right eyes—right mosaics)} inclusively masked by positive main effect of stimulus type.
c contrast: {(right eyes—right mosaics)—(left eyes—left mosaics)} inclusively masked by positive main effect of stimulus type.

doi:10.1371/journal.pone.0162039.t001
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Fig 3. Temporal pole activity in response to the presence of eyes (first stimulus presentation). Upper) Time–frequency maps. Lower)
Statistical parametric maps (left) and effect sizes at the peak activation foci (right). p < 0.05 cluster-level family-wise error-corrected. EA = averted
eyes; ES = straight eyes; MA = averted mosaics; MS = straight mosaics; 1 = first stimulus presentation.

doi:10.1371/journal.pone.0162039.g003

Fig 4. Temporal pole activity in response to changes in eye gaze direction (second stimulus presentation). Upper) Time–frequency maps.
Lower) Statistical parametric maps (left) and effect sizes at the peak activation foci (right). p < 0.05 cluster-level family-wise error-corrected.
EA = averted eyes; ES = straight eyes; MA = averted mosaics; MS = straight mosaics; 2 = second stimulus presentation.

doi:10.1371/journal.pone.0162039.g004
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stimulus type × stimulus direction. The interaction of stimulus type × hemisphere revealed sig-
nificant activation in the ranges of 197–228 ms and 43–51 Hz. Follow-up analyses revealed
that this gamma-band component was evident only in the right temporal pole. There was no
significant three-way interaction.

ERP
The ERP for each stimulus presentation was analyzed using the GLM in the same manner as
the above time-frequency SPM analysis (Fig 5). The results showed no significant activation
related to either the main effect of stimulus type or the interactions related to stimulus type.

Discussion
The time–frequency analysis in the present study demonstrated that there was electric activa-
tion in the temporal pole in response to the presence of eyes versus mosaics and to changes in
eye gaze direction versus mosaic direction. These results are inconsistent with those of several
previous neuroimaging studies that did not observe temporal pole activation in response to the
presence of eyes or changes in eye gaze direction (e.g., [10]). However, the discrepant findings
may be accounted for by methodological differences. Whereas almost all of the previous studies
assessed fMRI data, the present study analyzed electrical signals from the temporal pole. The

Fig 5. Grand-average event-related potentials in the temporal pole. EA = averted eyes; ES = straight eyes; MA = averted mosaics;
MS = straight mosaics; 1 = first stimulus presentation; 2 = second stimulus presentation.

doi:10.1371/journal.pone.0162039.g005
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temporal pole can show weak fMRI signals due to air-tissue inhomogeneity artifacts [52]. The
previous studies may also have utilized ill-defined criteria for the temporal pole [31]. On the
other hand, the present results are consistent with other neuroimaging studies showing that
the temporal pole exhibits activation induced by eye information during active mind reading
[32] and that there is a reduction in activation in response to adapted gaze direction [33]. How-
ever, these studies did not directly investigate neural activation in response to eyes or eye gaze
direction changes. Thus, our results extend those of previous neuroimaging studies and provide
the first electrophysiological evidence that the temporal pole is active in response to eyes and
eye gaze direction changes.

Furthermore, the time–frequency analysis in the present study provided temporal and fre-
quency profiles for temporal pole activation in response to the presence of eyes and changes in
eye gaze direction; activation was identified in the gamma-band beginning at approximately
200 ms. This temporal profile is reasonable when considering the anatomical fact that the tem-
poral pole is located at the endpoint of the occipito–temporal visual stream [31] and the intra-
cranial EEG findings that the inferior occipital gyrus (Sato et al., submitted) and STS region
[17] exhibit gamma-band activity that begins at approximately 100 ms in response to eye infor-
mation and that the temporal pole shows ERP peaks in response to faces about 100–200 ms
later than the posterior cortices [7]. Similarly, the frequency profile observed in the present
study is consistent with the findings of previous intracranial EEG studies showing that gamma-
band activities in several brain regions, including the inferior occipital gyrus (Sato et al., sub-
mitted), STS region [17], and amygdala [43], are involved in the processing of eye information.
Taken together, the present findings extend the current understanding of neural processing of
eye information and indicate that the temporal pole exhibits gamma oscillations beginning at
around 200 ms, which is after the activation in the posterior cortices, in response to eyes and
eye gaze direction changes.

Irrespective of the commonalities that can be seen in the frequency profiles of the temporal
pole and amygdala during the processing of eye information, the temporal profiles and activa-
tion patterns of these two regions differ. Although the present results revealed that the tempo-
ral pole showed activation in response to the presence of eyes beginning at 215 ms, activation
in the amygdala in response to the presence of eyes begins at 170 ms [43]. Whereas the tempo-
ral pole showed evident activation in response to both the presence of eyes and changes in eye
gaze direction in the present study, the amygdala only shows clear activation in response to the
presence of eyes [43]. These data indicate that the temporal pole conducts different types of
processing of eye information at a later time point relative to the amygdala. Because the tempo-
ral pole and the amygdala have bidirectional connections [26], the temporal pole may receive
inputs from the amygdala along with inputs from the posterior visual cortices. In contrast, the
amygdala appears to conduct the processing of eyes prior to the receipt of visual inputs from
the temporal pole using different pathways, such as the subcortical pathway via the superior
colliculus and pulvinar [53,54] or the cortical pathway from the posterior regions [55,56].

The present results also revealed functional hemispheric differences such that the left and
right temporal poles showed more evident gamma-band activation in response to the presence
of eyes and changes in eye gaze direction, respectively. The existence of hemispheric asymme-
try in the temporal pole is consistent with findings from other literatures, such as semantic cog-
nition (for a review, see [57]). The left hemispheric dominance for processing eyes may be in
line with a study of brain-damaged patients that observed a left hemispheric dominance in
mind reading ability using information from eyes [58]. The right hemispheric dominance
regarding eye gaze direction changes is consistent with several previous neuroimaging studies
showing a right hemispheric dominance during the processing of dynamic facial signals (e.g.,
[59]). However, it must be noted that the electrode placement in the present study was based
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on anatomical information, and hence, it is possible that the electrodes in the right and left
temporal poles were not comparable functionally. Further investigation is necessary to deter-
mine whether a functional hemispheric asymmetry exists with respect to temporal pole activi-
ties during the processing of eye information.

In contrast to the hypotheses of the present study, the results did not reveal evident ERP or
low-frequency band activation in response to the presence of eyes and changes in eye gaze
direction. Although drawing of any conclusions based on a null finding should be postponed,
this result suggests that the temporal pole may not process eye information using low-fre-
quency activity. The results showing that the gamma-band activity exhibited eye information-
related activity, but low-frequency band activity did not, may also have some interesting impli-
cations. It has been proposed that the brain generally uses electrical activity in low-frequency
bands, such as the theta-band, for long-range inter-regional communication and that this low-
frequency activity entrains local intra-regional gamma-band activation that corresponds to the
computation of cell populations (e.g., [35,60]). The present findings suggest that this cross-fre-
quency theta–gamma coupling may not be involved in the processing of eye information in the
temporal pole. Instead, it may be possible that inter-regional communication between the tem-
poral pole and other brain areas during the processing of eye information is accomplished via
the same-frequency gamma–gamma coupling (cf. [61]).

The present findings have several implications. First, the activation of the temporal pole and
its specific temporal profile during the processing of eyes and eye gaze direction changes
updates the current understanding of the spatiotemporal neural network dynamics involved in
the processing of eye information. Although the temporal pole is commonly associated with
the processing of social interactions [31], this area has received relatively little attention regard-
ing the processing of eye information [62–64]. Second, the occurrence of temporal pole activa-
tion during the processing of eye information suggests that the impaired social functioning
observed in monkeys following damage to this region (e.g., [20]) could at least partially be
attributed to the impaired processing of eye information. Likewise, human studies have
reported that the brain damage [65,66] and atrophy associated with semantic dementia [67,68]
including the temporal pole induce social malfunctioning and this may be related to impaired
processing of eye information. Finally, the involvement of gamma oscillations in the temporal
pole during the processing of eye information corroborates previous evidence showing that the
brain uses this frequency range to accomplish information processing (e.g., [69]; for a review,
see [70]).

A limitation of this study should be acknowledged. We asked participants to engage in a
dummy task to investigate automatic activation in response to eyes and eye gaze direction
changes. However, this task did not reveal any details regarding the processing of eye informa-
tion associated with temporal pole activity. Different tasks might enhance or suppress activity
in the temporal pole at particular temporal and frequency points. For example, a previous
fMRI study has observed activation in the temporal pole during intentional mind reading
based on eye information [32]. This particular mind reading task during the observation of
eyes may enhance gamma-band activity beginning at about 200 ms, as we found in the present
study, or it may induce additional later gamma-band activation in the temporal pole. In future
studies, participants should be asked to engage in intentional cognitive processes in response to
eyes or eye gaze direction changes to specify the functional correlates of temporal pole activity.

In summary, the present intracranial EEG data revealed that the bilateral temporal poles
exhibited a greater degree of gamma-band activation beginning at 215 ms in response to eyes
compared with mosaics, irrespective of gaze direction. Additionally, the right temporal pole
showed a greater degree of gamma-band activation beginning at 197 ms in response to direc-
tional changes of the eyes compared with mosaics. These results suggest that the temporal pole
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uses gamma oscillations to process the presence of eyes and changes in eye gaze direction at a
relatively late time stage compared with brain regions in the posterior cortices, such as the infe-
rior occipital gyrus and STS region.

Supporting Information
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