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Abstract

Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern
after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years,
respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk
patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current
management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in
71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed
early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated
tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray
data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially
expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were
down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk
group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-
relapsing patients (AUC = 0.993, p-value,0.05). Network analysis based on miRNA-target interactions curated by public
databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in
an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related
microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast
surgery.
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Introduction

Breast cancer comprises a group of heterogeneous diseases that

can be classified based on both clinical and molecular features [1–

5]. Improvements in the early detection of primary tumors and the

development of novel targeted therapies, together with the

systematic use of adjuvant chemotherapy, has drastically reduced

mortality rates and increased disease-free survival (DFS) in breast

cancer. Still, about one third of patients undergoing breast tumor

excision will develop metastases, the major life-threatening event

which is strongly associated with poor outcome [6,7].

The risk of relapse after tumor resection is not constant over

time. A detailed examination of large series of long-term follow-up

studies over the last two decades reveals a bimodal hazard function

with two peaks of early and late recurrence occurring at 1.5 and 5

years, respectively, followed by a nearly flat plateau in which the

risk of relapse tends to zero [8–10]. A causal link between tumor

surgery and the bimodal pattern of recurrence has been proposed

by some investigators (i.e. an iatrogenic effect) [11]. According to

that model, surgical removal of the primary breast tumor would

accelerate the growth of dormant metastatic foci by altering the

balance between circulating pro- and anti-angiogenic factors

[9,11–14]. Such hypothesis is supported by the fact that the two

peaks of relapse are observed regardless other factors than surgery,

such as the axillary nodal status, the type of surgery or the

administration of adjuvant therapy. Although estrogen receptor

(ER)-negative tumors are commonly associated with a higher risk

of early relapse [15], the bimodal distribution pattern is observed

with independence of the hormone receptor status [16]. Other

studies also suggest that the dynamics of tumor relapse may be a
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consequence of the surgical procedure to remove the primary

tumor, which would alter the circulating levels of VEGF, TNFa
and several other inflammatory cytokines [17–19]. However,

empirical evidence demonstrating a molecular link between

surgery of the primary breast tumor and a bimodal pattern of

recurrence is still lacking.

The identification of distinctive molecular portraits by micro-

array-based gene expression profiling has led to a breast tumor

classification into five different subtypes: luminal A, luminal B,

HER2 overexpressing (HER2+), basal-like and normal-like [3,4].

Such classification has been adopted in the clinical routine,

defining intrinsic subtypes with distinct histological characteristics,

response to drug treatment and clinical outcome [3,20–23]. HER2

and basal-like subtypes commonly associate with higher risk of

relapse while luminal tumors frequently correlate with long-term

DFS [24–26]. A recent study from the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) has

proposed a new genome-driven classification of breast cancer by

integrating both genomic and transcriptomic data. This new

molecular stratification relies on the impact of somatic copy

number aberrations (CNAs) on the transcriptome and classifies

breast tumors in 10 integrative clusters (IntClusts 1–10), each

associated with distinct clinical outcomes [27,28].

MicroRNAs (miRNAs) are small, single-stranded RNAs with an

important role in the regulation of gene expression [29,30]. They

are transcribed as large RNA precursors (pri-miRNAs) that are

sequentially processed in the nucleus to produce a RNA hairpin of

65 nucleotides (nt), termed the precursor-miRNA (pre-miRNA)

and in the cytoplasm to produce a 19–23 nt mature, active

miRNA [31–33]. In general, miRNAs act as negative modulators

of gene expression, binding to a partially complementary sequence

usually located in the 39-UTR region of their target mRNA and

inhibiting its translation [34]. Due to this partial complementation,

a single miRNA can target multiple transcripts, hence down-

regulating many proteins in the same or in different pathways [29].

Currently, 1872 precursors and 2578 mature miRNAs have been

identified in the human genome (miRBase 20, www.mirbase.org)

[35], although the biological role of most of them remains to be

determined.

As happens to mRNA expression, the transcriptional profile of

miRNAs can vary among different tissues and stages of

development. Alterations of miRNA patterns and sequences are

common in several diseases, including cancer [36,37]. They are

involved in many deregulated pathways in tumor cells, especially

those regarding the hallmarks of cancer [38,39] and are often

located in breakpoint regions that are amplified, deleted or

translocated in cancer [36]. Several miRNAs have oncogenic

(oncomiRs) or tumor suppressor (TS-miRs) activities and there-

fore, can contribute to tumorigenesis, tumor progression and

metastasis [40–42].

In addition, miRNA expression profiles can provide molecular

information of clinical relevance in cancer [43]. Thus, tumors of

different origins can be classified according to particular sets of

expressed miRNAs (signatures). Different subtypes of the same

tumor can also be discriminated by miRNA expression and, in

some cases, they allow predictive clinical evaluation [37,44–46].

MicroRNAs are generally well-preserved in a wide range of

specimen types, including body fluids and formalin-fixed paraffin-

embedded (FFPE) tissues [47]. These two aspects have led to an

active search for miRNAs with diagnostic and/or prognostic

value. Several miRNAs have been linked to breast cancer

metastasis [48,49]. To our knowledge, however, the early peak

of relapse, as defined by Demicheli et al. [9] has not been

investigated as a separate, distinct entity from a molecular

perspective. Thus, the following study was aimed at finding

differences in miRNA expression patterns on a set of breast tumors

from patients who developed early recurrence (#24 months post-

surgery), late recurrence (50–60 months post-surgery) and those

who were free of disease after surgery during a 60-months follow-

up. By performing a microarray-based study, we have identified a

set of five miRNAs down-regulated in tumors from early-relapsing

patients. We show here that the so-called 5-miRNA signature is

associated with a shorter relapse-free survival (RFS) and has

predictive value as determined by a ROC curve analysis. Although

our study neither proves nor rules out a iatrogenic effect derived

from surgery, it shows that non-relapsing and early-relapsing

breast tumors can be distinguished at the molecular level by a

disctint set of 5 miRNAs which likely determines their proliferative

potential. Thus, the computational analysis of putative, experi-

mentaly verified mRNA targets for the 5-miRNA signature and

their associated gene ontology (GO) terms suggest that, at least in

part, early recurrence in breast cancer is a consequence of an

increased proliferative and angiogenic capacity of the primary

tumor.

Materials and Methods

Patient material
The 75 patients included in this study underwent primary breast

cancer surgery at the Hospital Universitario Virgen de la Victoria

(HUVV, Málaga, Spain), between years 1998 and 2005. All

patients provided written informed consent for inclusion in the

study, which was approved by the hospital’s Institutional Review

Board (IRB). Patients were uniformly treated and followed

according to the protocols established by the Clinical Oncology

Department, based on scientific evidence and international

recommendations. All clinical investigation were conducted

according to the principles expressed in the Declaration of

Helsinki.None of the patients received neoadjuvant therapy.

Clinicopathological and follow-up information were obtained for

each patient by chart review.

Immunohistochemistry
Archived formalin-fixed and paraffin-embedded (FFPE) tumors

(n = 75) were retrieved, a pathologist selected the most represen-

tative areas and tissue microarrays were constructed with triplicate

cores (0.6 mm in diameter). Tumors were classified according to

the intrinsic subtypes by immunohistochemical staining. Specific

antibodies against estrogen receptor (ER, clone SP1), progesterone

receptor (PR, clone Y85), Ki-67 (clone SP6) epidermal growth

factor receptor 1 (EGFR1, clone EP38Y), vascular endothelial

growth factor (VEGF, clone EP1176Y) and cytokeratin 5/6

(CK5/6, clone D5/16B4) were all purchased from Master

Diagnostica (Spain). HER2 immunostaining was performed with

the HercepTestTM (Dako, Denmark). Interpretation of immuno-

histochemical data was performed as previously described

[23,50,51] by two pathologists blinded to the clinicopathological

characteristics and the outcome of each patient.

RNA extraction and microarray hybridization
FFPE tumor areas enriched with .90% breast cancer cells were

selected and cells were manually microdissected from 3x10 mm

sections. Total RNA was extracted using the RecoverAll Total

Nucleic Acid Isolation kit (Life Technologies, Grand Island, NY,

USA). RNA was converted to cDNA and hybridized to Affymetrix

miRNA Chip array 2.0 (Affymetrix, Santa Clara, CA, USA). Chip

hybridization and scanning were performed at the Functional

Genomics Core facility (Institute for Research in Biomedicine,
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IRB Barcelona, Spain) following the recommendations of the

manufacturer.

Microarray data analysis
All statistical analyses were performed using the open-source R

programming environment (v2.14.2) together with the open-

source Bioconductor v2.10 libraries [52]. MicroRNA microarrays

were first analyzed for quality control and expression of each

miRNA feature was normalized and summarized across the

remaining slides using the best-suited algorithm RMA [53–55].

Although the miRNA Chip Array 2.0 contanins probes repre-

senting 131 different organisms, only human features were used

for further analyses. To increase the statistical power of the

analyses, those miRNAs whose expression variability was below a

threshold of 66% standard deviation were removed. Differential

expression of normalized data was assessed using two R packages:

limma, a moderated t-statistic based on an empirical Bayes

approach [56] and RankProd, a simple non-parametric statistical

method based on ranks of fold changes [57]. The multi-testing

effect was corrected adjusting p-values by the Benjamini and

Hochberg method. A gene was considered significantly up- or

down-regulated when it complied the following two criteria: i)

adjusted p#0.05 and ii) fold change $2. The best candidates were

those that appeared at both parametric and non-parametric tests.

Independent comparisons were carried out for B vs A (B/A), BC vs

A (BC/A), and B vs AC (B/AC). Group C alone could not be

compared with A or B since microarray data from group C did not

provide statistically significant differentially expressed miRNAs.

The MIAME compliant microarray data has been deposited in the

ArrayExpress public repository (EBI, UK), with accession number

E-MTAB-1989.

RT-qPCR validation
Ten nanograms of total RNA from each tumor sample were

used to obtain cDNA by reverse transcription with specific

miRNA primers and reagents from the TaqMan MicroRNA

Reverse Transcription Kit (Life Technologies, Grand Island, NY,

USA). PCR products were amplified from cDNA samples with the

TaqMan MicroRNA Assays using the TaqMan Universal PCR

Master Mix. All the assays were performed in triplicate according

to the manufacturer’s instructions. Relative miRNA expression

was calculated using the DDCt method. The small RNAs RNU6b

and miR-16 were used as reference for normalization.

Survival analysis
The survival package in R was used to compute survival

estimates and perform multivariate regression analysis [58].

Clinico-pathological and microRNA expression variables were

analyzed and cumulative relapse-free survival (RFS), defined as

time from surgery until recurrence, was considered as the clinical

endpoint in survival outcomes. Patients without relapse or lost to

follow-up were censored at last follow-up. Actuarial survival was

performed by the Kaplan-Meier method and the significance in

statistical differences was assessed using a class of rank test

procedures for censored survival data (log-rank, Tarone-Ware and

Peto-Peto tests). A Cox proportional hazard regression model [59]

was used to examine the relationships of RFS and the prognostic

factors, and all possible combinations of covariates were tested to

identify the best model according to the Akaike Information

Criterium (AIC) value [60], a measure of the relative quality of a

statistical model. The assumption of hazard proportionality for the

Cox models was checked by testing for non-slope in a generalized

linear regression of the scaled Schoenfeld residuals on functions of

time [60]. A non-zero slope indicated a violation of the

proportional hazard assumption and the model was then excluded

from the analysis.

miRNAs signature prediction model
Three are the steps involved in the estimation of expression

profiles to predict the outcome of future observations: model

selection, prediction assessment and feature selection [61]. The

naive Bayes classifier was used in this work to predict the class in

future observations. The naive Bayes classifier is a standard model

based on Bayes theorem with no domain-specific assumptions.

With this model, a new sample would be classified into the most

probable class based on posterior probability and computed

according to the Bayes theorem. This classifier will be used to

estimate predictive models in between-groups comparisons. The

C-index is the most widely accepted measure of discrimination

ability for a predictive model. In binary cases, this metric is

equivalent to the area under the Receiver Operating Character-

istic curve (AUC), which is commonly used to measure the

predictive ability of logistic regression models.

A generalization of the 632+ bootstrap estimation of the

misclassification error to estimate the TPR, FPR and ROC curves

[62] was used to assess the prediction accuracy for the naive Bayes

classifiers. The bootstrap estimator is obtained by drawing B

bootstrap samples of size N with replacement. The observations in

the bootstrap samples are used for training, while the remaining

observations (the out-of-bag sample) are used for testing.

Performance estimations are averaged for each prediction over

all out-of-bag samples, and the bootstrap estimate of the TPR,

FPR and ROC curve is defined analogously to the bootstrap error.

The e1071 [52] and Daim (http://CRAN.R-project.org/

package = Daim) packages were used in R to conduct these

analyses. Feature selection refers to decide which miRNAs to

include in the prediction, and it is a crucial step in developing a

class predictor. Including too many features could reduce the

model accuracy and may lead to a data overfitting [63]. To avoid

it, all combinations for miRNAs were tested to identify the model

containing the miRNA expression signature that more accurately

predicted between groups at risk.

miRNA target prediction
Validated targets for each miRNA were obtained from

mirTarBase (http://mirtarbase.mbc.nctu.edu.tw/) [64] and miR-

ecords (http://mirecords.biolead.org/) [65]. Both databases con-

tain experimentally validated miRNA-target interactions (MTIs)

curated by data mining of the published literature. The

mirTarBase v4.3, includes a total 20,907 validated human MTIs

for 384 miRNAs and 9,816 mRNAs. The CyTargetLinker plugin

in Cytoscape [66] was used to retrieve validated and predicted

MTIs for the five miRNAs identified in our study and to visualize

them in a graphical way. The ClueGo and CluePedia plugins

[67,68] were used to retrieve the Gene Ontology (GO) annotations

for the target genes identified with Cytargetlinker [69]. The

enrichment of GO terms in the target genes set was assessed with a

right-sided hypergeometric statistical analysis which provides a p-

value that was further corrected using a Benferroni step down

method. Only GO terms with corrected p-value#0.01 were

considered.

Results and Discussion

Microarray analysis
To identify miRNAs associated with early and late recurrence,

the abundance of 1105 miRNAs was analyzed in a cohort of 75

primary breast tumors by the microarray technology. Tumors
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were classified into three prognosis groups according to the clinical

outcome of the patients as follows: group A, patients who were

disease-free $60 months after tumor excision; group B, patients

who developed early recurrence (#24 months post-surgery); and

group C, patients who developed late recurrence (50–60 months

post-surgery). Table 1 summarizes the clinical and pathological

data of the study population. Except for group C, the cohort was

balanced for the 4 intrinsic subtypes luminal A, B, basal-like and

HER2+. The two later subtypes are associated with a more

aggressive phenotype and higher risk of relapse [24,26] which

explains why group C (late recurrence) was mainly composed of

luminal tumors (Table 1).

Microarrays were first analyzed for quality control and

normalized for miRNA expression (see methods). Four samples

with a poor signal quality were excluded from the study, leaving a

cohort of 71 breast tumors for further analysis. Unsupervised

hierarchical clustering of the microarray data showed that the

transcription profiles of miRNAs discriminate the prognosis

groups in two distinct clusters (Figure 1). Cluster 1 included

70% of all tumors from group A and 26% of all tumors from group

B while cluster 2 included 74% of all tumors from group B and

30% of all tumors from group A. Overall, tumors from group C

were distributed within clusters 1 and 2, with a slightly greater

proportion (63%) grouped in cluster 2. Since group C represents a

Table 1. Clinical and pathological features of the study population.

Group A* Group B* Group C* p-val

n (%) n (%) n (%)

Number of patients 36 (48.0) 27 (36.0) 12 (16.0)

Age #50 15 (45.5) 10 (37.0) 4 (36.4) 0. 8034

.50 18 (54.5) 17 (63.0) 7 (63.6)

Hormonal status Preperim.** 15 (41.7) 10 (37.0) 6 (50.0)

Postmen.** 21 (58.3) 15 (55.6) 6 (50.0)

Unknown 0 (0.0) 2 (7.4) 0 (0.0)

Tumor size (cm) ,2 5 (15.2) 2 (7.4) 3 (27.3) 0. 7487

2–5 22 (66.7) 17 (63.0) 7 (63.6)

.5 5 (15.2) 4 (14.8) 1 (9.1)

Unknown 1 (3.0) 4 (14.8) 0 (0.0)

Tumor stage I 3 (8.3) 4 (14.8) 1 (8.3)

II 19 (52.8) 8 (29.6) 8 (66.7)

III 14 (38.9) 15 (55.6) 3 (25.0)

Hystological grade 1 4 (11.1) 0 (0.0) 0 (0.0)

2 14 (38.9) 16 (59.3) 9 (75.0)

3 16 (44.4) 8 (29.6) 2 (16.7)

Unknown 2 (5.6) 3 (11.1) 1 (8.3)

Histologic subtype Lobulillar 4 (11.1) 0 (0.0) 0 (0.0)

Ductal 29 (80.6) 24 (88.9) 11 (91.7)

Medullar 0 (0.0) 1 (3.7) 0 (0.0)

Carcinoma 1 (2.8) 2 (7.4) 0 (0.0)

Mixed 2 (5.6) 0 (0.0) 1 (8.3)

Intrinsic subtype Luminal A 9 (25.0) 3 (11.1) 7 (58.3)

Luminal B 9 (25.0) 6 (22.2) 3 (25.0)

Basal-like 9 (25.0) 9 (33.3) 1 (8.3)

HER2-enriched 9 (25.0) 9 (33.3) 1 (8.3)

Type of surgery Conservative 22 (61.1) 9 (33.3) 5 (41.7)

Radical 14 (38.9) 18 (66.7) 7 (58.3)

Affected lymph node Negative 14 (42.4) 18 (48.6) 5 (45.5) 0.0292

1–3 13 (39.4) 5 (13.5) 5 (45.5)

$4 6 (12.8) 14 (37.8) 1 (9.1)

Therapy Chem.*** 28 (77.8) 23 (85.2) 7 (58.3)

Horm.*** 20 (55.6) 15 (55.6) 10 (83.3)

Rad.*** 25 (69.4) 13 (48.1) 6 (50.0)

*Group A = no recurrence, Group B = early recurrence (#24 months after surgery), Group C = late recurrence (50–60 months after surgery).
**Preperim. = Pre-perimenopausic, Postmen. = postmenopausic.
***Chem. = chemotherapy, Horm. = hormonotherapy, Rad. = radiotherapy.
doi:10.1371/journal.pone.0091884.t001
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clinical outcome intermediate between no recurrence (group A)

and early recurrence (group B), the wide distribution of tumors

from group C within clusters 1 and 2 could reflect that variation at

the molecular level. An alternative explanation is that group C

cannot not be identified by a distinct miRNA expression profile

due to either its intrinsic molecular nature or the lower sample

size. Of note, tumors tend to cluster according to their ER status

and thus, most luminal tumors (ER+) were grouped in cluster 1

while cluster 2 mainly included HER2+ and basal-like tumors,

which are both ER- (Figure 1). Multiple pairwise comparison tests

showed that the largest expression differences occurred between

luminal A and basal-like tumors. Consequently, the largest list of

candidate miRNAs was obtained after comparing luminal A versus

basal-like or basal-like versus the other subtypes (Supplementary

Table S1). Overall, these results suggest that the three groups of

tumors (A, B and C) represent distinct biological entities. They are

also in accordance with accumulating evidence indicating that

miRNA signatures can be associated to intrinsic molecular

subtypes, supporting its use as a valuable tool for cancer diagnosis

and prognosis [3,43,70,71].

In order to select the statistically significant and differentially

expressed miRNAs from Fig. 1, paired and multiple comparisons

among the prognosis groups A, B and C were performed. Two

different approaches, limma and RankProd Bioconductor, were

employed. Only those candidates with a fold change (FC).2

(either up- or down-regulated) and an adjusted p-value,0.05 were

selected (Table 2). Thus, comparison of the logFC and p-values

obtained with both limma and RankProd libraries led to the

identification of miR-149, miR-20b, miR-30a-3p, miR-342-5p,

miR-625 and miR-10a as the miRNAs that most significantly

changed their expression when comparing tumors from disease-

free patients versus relapsing patients, i.e. group B vs A or BC vs A

(Table 2). As we had observed in the hierarchical clustering

(Figure 1), the largest differences in expression of the six miRNAs

were again detected when comparing B vs A (Table 2). In contrast,

paired comparisons of either group A or B with the group C did

not result in any statistically significant miRNA. Notably, the

relative levels of all the candidate miRNAs were lower in samples

from group B compared to the others, suggesting that these

miRNAs could act, directly or indirectly, as suppressors of

metastasis. Other researchers have also observed a general

down-regulation of miRNA levels in breast cancer [72].

Regarding the intrinsinc subtypes, we found lower levels of

miR-149, miR-30a-3p and miR-342-5p in ER- tumors (Supple-

mentary Table S1). In that respect, others have shown repression

of miR-149 levels in basal-like and HER2+ tumors [70,73,74]. and

overexpression of miR-342-5p in ER+ breast tumors [75]. Jansen

et al. found an association between miR-342-5p and ER

expression in lymph node negative breast disease, with a strong

downregulation in basal-like tumors. They also showed an inverse

relationship between the mitotic index and both miR-30a-3p and

miR-342-5p [76].

Differential expression of all six miRNAs were also determined

by RT-qPCR in the three prognosis groups (Table 2). With the

exception of miR-625, which could not be validated, miR-149,

miR-20b, miR10a, miR-30a-3p and miR-342-5p (the ‘‘5-miRNA

signature’’, from now on) were all confirmed to be down-regulated

in tumors from relapsing patients (groups B or C) when compared

Figure 1. MicroRNA expression profiles in primary breast tumors from patients with different prognosis. Total RNA was obtained from
71 breast tumors, converted to cDNA and hybridized to Affymetrix miRNA Chip Array 2.0. After normalization, differential miRNA expression data was
analysed by unsupervised hierarchical clustering. Color bars on top of the heatmap refer to the prognostic group and intrinsic subtype of each tumor.
Group A included tumors from patients who were disease-free $60 months after surgery, group B included tumors from early-relapsing patients
(#24 months) and group C included tumors from late-relapsin patients (50–60 months after surgery). Tumors grouped in two main clusters (cluster 1
and cluster 2), showing opposite expression profiles and strongly associated with prognosis groups. Thus, cluster 1 included most luminal and/or
non-relapsing tumors while cluster 2 mostly included basal-like and/or early-relapsing tumors.
doi:10.1371/journal.pone.0091884.g001

Table 2. Most significant deregulated miRNAs in breast tumors from relapsing patients.

limma F* RankProd** RT-qPCR***

Comparison# miRNA logFC adj-pval logFC adj-pval logFC SE

B/A hsa-miR-149 21.410 0.0016 21.615 ,0.00001 22.646 0.724

hsa-miR-20b 21.048 0.0071 21.237 ,0.00001 21.542 0.521

hsa-miR-30a-3p 21.359 0.0078 21.521 ,0.00001 21.001 0.514

hsa-miR-625 21.149 0.0014 21.377 ,0.00001 20.347 0.282

hsa-miR-10a 21.235 0.0168 21.547 ,0.00001 21.108 0.404

BC/A hsa-miR-149 21.120 0.0117 21.329 ,0.00001 22.555 0.681

hsa-miR-20b 21.016 0.0076 21.155 ,0.00001 21.470 0.536

hsa-miR-30a-3p 21.124 0.0256 21.326 ,0.00001 20.994 0.458

hsa-miR-625 21.003 0.0049 21.223 ,0.00001 20.266 0.237

B/AC hsa-miR-149 21.294 0.0052 21.446 ,0.00001 22.340 0.698

hsa-miR-10a 21.397 0.0093 21.647 ,0.00001 21.241 0.404

hsa-miR-342-5p 21.123 0.0159 21.254 ,0.00001 21.194 0.627

#Group A = no recurrence, Group B = early recurrence (#24 months after surgery), Group C = late recurrence (50–60 months after surgery).
*limma F, analysis of filtered data (sd.70%) using limma.
**RankProd, analysis of unfiltered data using RankProduct algorithm.
***RT-qPCR, Relative miRNA expression was calculated using the DDCt method. The standard error (SE) was calculated based on the theory of error propagation [107].
doi:10.1371/journal.pone.0091884.t002
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with tumors from relapse-free patients (group A, Table 2). MiR-

625 was excluded from any further studies since RT-qPCR data

showed minimal variation between groups (FC,2). Next, we re-

clustered the 71 tumors based on the 5-miRNA signature. As

shown in Figure 2, tumors from groups A and B were clearly

segregated in two distinct clusters, which included most of the

expected samples in each category: 78.8% group A in cluster 1b

(low risk) and 70.4% group B in cluster 2b (high risk). Of note, the

supervised analysis included most tumors from group C (72.8%),

in cluster 1b, indicating that the 5-miRNA signature specifically

discriminates tumors with an overall higher risk of early

recurrence.

The 5-miRNA signature
MiR-149 was the most significant miRNA downregulated in

group B, as determined by microarray hybridization and by RT-

qPCR. This miRNA has been described as a TS-miR that

regulates the expression of genes associated with cell cycle,

invasion or migration and its downregulation has been observed in

several tumor diseases, including gastric cancer and breast cancer

[70,77–81]. Down-regulation of miR-149 can occur epigenetical-

Figure 2. A 5-miRNA signature is associated with early recurrence in breast cancer. Hierarchical clustering of the 71 tumor samples based
on expression of the 5-miRNA signature. Note that lower expression levels of the 5-miRNA signature defines a distinct cluster 2b wich mainly includes
tumors from ‘‘high risk’’ patients (group B). On the contrary, most patients with good prognosis (group A) had tumors with normal or higher-than
normal levels of the 5-miRNA signature, defining a different cluster 1b (‘‘low risk’’).
doi:10.1371/journal.pone.0091884.g002

Figure 3. The 5-miRNA signature discriminates patients with diferent RFS. A) Kaplan-Meier graph for the whole patient cohort included in
this study. B) Those patients whose tumors showed an overall down-regulation of the 5-miRNA signature (i.e. those from cluster 2b in Fig. 2) were
classified as ‘‘high risk’’ (red line) and their cumulative RFS was calculated (red line). RFS was also calculated for the remaining patients in the cohort
(‘‘low risk’’, black line). The Kaplan-Meier plot shows that the 5-miRNA signature specifically discriminates tumors with an overall higher risk of early
recurrence.
doi:10.1371/journal.pone.0091884.g003
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ly, by hypermethylation of the neighbouring CpG island [80] or by

impaired processing of the pri-miR-149 precursor, in a polymor-

phic variant [79]. In a recent work, downregulation of miR-149

has been associated with elevated levels of the transcription factor

SP1, increase invasiveness and lower 5-year survival in colorectal

cancer [80]. The p53 repressor ZBTB2 is also a target of miR-149

[81], which could explain, at least partially, its function as a TS-

miR.

MiR-30a-3p is a member of the miR-30 family, which is

associated with mesenchymal and stemness features [82,83] and is

downregulated in several types of cancer [84–86]. Recently,

Rodriguez-Gonzalez et al. have linked low levels of this miRNA to

tamoxifen resistance in ER+ breast tumors. They have also

proposed several targets of miR-30a-3p involved in proliferation

and apoptosis, such as BCL2, NFkB, MAP2K4, PDGFA,

CDK5R1 and CHN1 [87].

Regarding miR-20b, this miRNA is part of the miR-106b-363

cluster, which is frequently deregulated in cancer [88–91]. The

levels of miR-20b associate with histological grade in breast cancer

[92,93]. This miRNA has been involved in regulating several key

proteins such as ESR1, HIF-1a, VEGF or STAT3 [92,94,95]. In

particular, because it targets both HIF-1a and VEGF and HIF-1a
negatively controls miR-20b levels, it has been defined as an anti-

angiogenic miRNA [95].

Both oncogenic and tumor suppressor features have been

reported for miR-10a [96]. Thus, reduced expression of miR-10a

has been associated with MAP3K7- and bTRC-mediated

activation of the proinflammatory NFkB pathway [97]. Also,

miR-10a downregulation represses differentiation in part by

deregulation of the histone deacetylase HDAC4 [98] and

positively affects invasiveness by de-repressing several members

of the homeobox family of transcription factors [99].

Regarding miR-342-5p, it appears significantly deregulated

only when we compare B vs AC (Table 2). Together with its

counterpart (miR-342-3p), it is deregulated in inflammatory breast

cancer [74] and its low expression has been associated with lower

post-recurrence survival [100], likely because it targets AKT1

mRNA [101].

In sum, the available bibliographic data suggests that down-

regulation of miR-149, miR-30a-3p, miR-20b, miR-10a and

miR342-5p in primary breast tumors could confer them enhanced

proliferative, angiogenic and invasive potentials.

Prognostic value of the 5-miRNA signature. The relation-

ship between expression of the 5-miRNA signature and RFS was

examined by a survival analysis. Figure 3A shows a Kaplan-Meier

graph for the whole series of patients included in the study. Due to

the intrinsic characteristics of the cohort, decreases in the RFS are

only observed in the intervals 0–24 and 50–60 months

(corresponding to groups B and C, respectively). We next grouped

the tumors according to their 5-miRNA signature status in two

different groups. One group included those tumors with all five

miRNAs simultaneously downregulated, (FC.2 and p,0.05) and

a second group included those tumors not having all five miRNAs

downregulated. A survival analysis was performed using clinical

data from the corresponding patients. As shown in Figure 3B, the

Kaplan-Meier graphs for the two groups demonstrate that the 5-

miRNA signature defines a ‘‘high risk’’ group of patients with a

shorter RFS (Peto-Peto test with p-value = 0.02, when comparing

the low vs high risk groups).

Using a Cox proportional hazard regression model, we also

tested all possible combinations of different covariates (tumor

subtype, patient age, tumor size, number of lymph nodes affected

and the 5-miRNA signature) with early relapse (#24 months) to

identify the best prognostic factors. The best model according to

the AIC criterion included the tumor size and expression of the 5-

miRNA signature (data not shown). Only the 5-miRNA signature

(all five miRNAs down-regulated) resulted statistically significant in

the Cox model for the high risk group (p-value = 0.02 with

HR = 2.73, 95% CI: 1.17–6.36). The 5-miRNA expression data

were also used to develop a predictor model through boot-

strapping over a Naive Bayes classifier (B = 200 with N = 71, see

methods). The prognostic accuracy of the models was assessed by a

receiver operating charateristic (ROC) test (Figure 4). Considered

individually, miR-30a-3p and miR-10a showed a strikingly high

Area Under the Curve (AUC) score (0.890 and 0.875, respective-

ly). This result suggests that mRNA targets regulated by miR-30a-

3p and miR-10a could potentially add a greater contribution to

the final outcome of the disease. However, the 5-miRNA signature

had the strongest predictive value to discriminate tumors from

patients that will develop early relapse (group B) from those that

will remain free of disease (group A), with an AUC = 0.993

(Figure 4). In summary, the 5-miRNA signature has a good

performance as a risk predictor for early breast cancer recurrence.

Candidate targets for the 5-miRNA signature. To extend

our set of five miRNAs with regulatory information, we next took

advantage of the existing public databases curating predicted and

validated miRNA-target interactions (MTIs). In particular, vali-

dated targets were obtained from the miTarBase and miRecords

repositories (see methods). First, we created a biological network in

Cytoscape [66] containing all the individual miRNAs included in

the 5-miRNA signature (miR-149, miR-20b, miR10a, miR-30a-

3p and miR-342-5p). Next, we extended the network by adding H.

sapiens MTI data retrieved from the indicated repositories and,

finally, extended regulatory interaction networks (RIN) were

generated and visualized in Cytoscape. Each regulatory interac-

tion in the network consist of two nodes, a regulatory component

(miRNA) and a target biomolecule (mRNA) connected through

one directed edge. Figure 5 shows the extended network when the

RIN threshold was set to 1 (i.e. each predicted target appears in, at

least, one RIN). Thus, at RIN = 1 the network included 14

Figure 4. Receiver operating characteristic curve (ROC) for
early breast cancer recurrence by the 5-miRNA signature
status. ROC curves generated using the prognosis information and
expression levels of the 5-miRNA signature can discriminate between
patients who will develop early recurrence and those who will remain
free of disease. Note that, although miR-30-3p and miR10a, individually
have a high area under the curve (AUC) score, the 5-miRNA signature
has the strongest predictive value (AUC = 0.993) to discriminate those
patients likely to recur early (group B in our cohort).
doi:10.1371/journal.pone.0091884.g004
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validated targets assigned to miR-20b (VEGFA, BAMBI, EFNB2,

MYLIP, CRIM1, ARID4B, HIF1A, HIPK3, CDKN1A, PPARG,

STAT3, MUC17, EPHB4, and ESR1), 7 validated targets

assigned to miR-10a (HOXA1, NCOR2, SRSF1, SRSF10/

TRA2B, MAP3K7, USF2 and BTRC) and 9 validated targets

assigned to miR-3a-3p (THBS1, VEZT, TUBA1A, CDK6,

WDR82, TMEM2, KRT7, CYR61 and SLC7A6) (Figure 5).

Taking these results into account and considering that i) the

extended network was constructed with the 5-miRNA signature as

the network nodes and ii) all MTIs depicted in Figure 5 have been

experimentally verified, we suggest that at least some of the

30 mRNAs (Figure 5) could be regulated in vivo by the 5-miRNA

signature in early-relapsing tumors.

To gain further insight into the molecular basis of the 5-miRNA

signature prognostic value, we investigated the biological pathways

associated with the 30 experimentally verified targets from

Figure 5. To that end, we searched for Gene Ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways associated with the 30 targets as a whole set. It should be

noted, however, that our restrictive approach –including only

experimentally validated miRNA targets-, left miR-149 and miR-

342-5p out of the GO analysis and therefore, additional biological

pathways could be affected by downregulation of the 5-miRNA

Figure 5. Prediction of mRNA targets likely to be regulated by the 5-miRNA signature. Biological networks were created using the
Cytoscape software. Each network includes two types of nodes: the five individual miRNAs included in the 5-miRNA signature and their predicted
mRNA targets (yellow circles), obtained from two different public databases (miRTarBase and miRecords). The number of databases included in the
analysis defines the regulatory interaction network (RIN) threshold. Thus, at RIN = 1 the network includes all mRNA targets that appear in, at least, one
database. The databases included in the RIN are identified by the color of the connecting arrows: miRTarBase (blue) and miRecords (red). Although
many mRNAs are potential targets for miR-149 and miR-342-5p, the miRTarBase and miRecords versions included in this study did not reveal any
targets experimentally validated for the two miRNAs.
doi:10.1371/journal.pone.0091884.g005
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signature. To increase the predictive value of the GO analysis we

considered only term ontologies with experimental evidence and

p-value#0.01. Interestingly, most targets in the set were associated

with GO terms related to angiogenesis and cell migration

(GO:0001954, GO:0002040, GO:0002042, GO:0043534 and

GO:0043536), in addition to the GO terms ‘‘response to stradiol

stimulus’’ (GO:0032355), ‘‘monocyte differentiation’’

(GO:0030224) and ‘‘ephrin receptor signaling pathway’’

(GO:0048013) (Figure 6). Other GO terms of particular relevance

to our study were: ‘‘positive regulation of fibroblast proliferation’’

(GO:0048146), ‘‘regulation of chemotaxis’’ (GO:0050920), ‘‘reg-

ulation of cellular response to growth factor stimulation’’

(GO:0090287) and ‘‘positive regulation of reactive oxygen species

metabolic process’’ (GO:2000379). Taken together, the computa-

tional analysis of putative, experimentaly verified mRNA targets

for the 5-miRNA signature and their associated GO terms (p-

value#0.01) suggest that early recurrence in breast cancer is a

consecuence of the higher angiogenic, invasive, and proliferative

potential of a subset of tumors with downregulated levels of, at

least, miR-20b, miR-10a and miR-30a-3p (Figure 5). In fact,

Figure 6. Gene Ontology (GO) terms associated with the predicted mRNA targets of the 5-miRNA signature. A GO term analysis was
performed using terms of the ‘‘biological process’’ vocabulary. Shown are the GO identification number (GO ID), the name of the biological process
(GO term) and the mRNA targets associated to each particular GO term. Only term ontologies with experimental evidence and corrected p-
value#0.01 are shown.
doi:10.1371/journal.pone.0091884.g006

Table 3. Expression levels of VEGF, Ki67 and ER in tumors.

Group Risk Level

A B C Low High

n (%) n (%) n (%) p-val n (%) n (%) p-val

VEGF Low 6 (20.7) 4 (15.4) 1 (9.1) NS 14 (37.8) 5 (17.2) NS

High 23 (79.3) 22 (84.6) 10 (90.9) 23 (62.2) 24 (82.8)

Ki67 Negative 15 (45.4) 4 (14.8) 6 (54.5) 0.012 17 (40.5) 8 (25.6) NS

Positive 18 (54.6) 23 (85.2) 5 (45.5) 25 (59.5) 21 (72.4)

ER Negative 17 (51.5) 18 (66.7) 2 (18.2) 0.025 14 (33.3) 23 (79.3) ,0.0001

Positive 16 (48.5) 9 (33.3) 9 (81.8) 28 (66.7) 6 (20.7)

NS: Not significant (p-value was calculated using a Fisher’s exact test).
doi:10.1371/journal.pone.0091884.t003
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integration of the GO terms into the KEGG pathway maps,

provides further support for this notion, as the net effect of changes

in the regulatory pathways affected by a rise in the predicted

targets would be an increase in both proliferation and angiogenesis

(Supplementary Figure S1).

In an effort to validate such hypothesis, we collected retrospec-

tive immunohistochemical data for expression of angiogenesis

(VEGF) and proliferation (Ki67) markers in the set of primary

tumors (Table 1), when available. As a positive control, we also

included estrogen receptor (ER) expression data, as it is often

associated with prognosis [3,4]. Since down-regulation of a

miRNA should result in an increased stability of its target

mRNAs, we anticipated an increased expression of VEGF and

Ki67 in those tumors identified by the 5-miRNA signature (high

risk group). Quantification of VEGF, Ki67 and ER immunostain-

ing was performed as previously described [23,50,51] and the

percentage of tumors showing low or high expression of each

marker was calculated for each prognostic group (A, B or C) or the

5-miRNA signature status (low or high risk). The results of the

analysis are summarized in Table 3. We only found a statistically

significant association when comparing Ki67 vs prognostic groups

(p-value = 0.012), ER vs prognostic groups (p-value = 0.025) or ER

vs risk groups (p-value,0.0001). In contrast, VEGF expression

was not found to be significantly associated with either the

prognostic groups or the 5-miRNA signature (Table 3). In spite of

that, we found slightly increased levels of VEGF and Ki67 in early-

relapsing tumors (group B) and in the ‘‘high risk’’ group (Table 3).

A survival analysis also showed a reduced RFS in those patiens

with tumors positive for Ki67, negative for ER and with increased

expression of VEGF (Figure 7). Again, however, only Ki67 levels

were signficantly associated with RFS (P = 0.044, Figure 7, middle

panel). We suggest that the lack of statistically significant

association between VEGF levels and the 5-miRNA signature or

RFS could be a consequence of the relatively small number of

samples included in our immunohistochemical analysis. Future

studies with a larger number of tumors will address the

contribution of VEGF expression levels to early relapse. Regard-

less of that, our data demonstrate that tumors with the worst

prognosis (group B) had a statistically significant higher prolifer-

ative potential, as measured by Ki67 immunostaining.

Biological significance
Predicting early relapse represents a major challenge in the

clinical practice, because an early failure very often corresponds to

a more aggressive disease with fewer therapeutic options and

poorer outcome. Indeed, up to half of all the relapses reside within

the early peak of recurrence described by Demicheli and

colleagues [16]. According to their model of bimodal hazard

function, early recurrence can be explained as an iatrogenic effect

of surgically removing the primary tumor. Late recurrences, on the

contrary, are not synchronized and therefore not influenced by the

surgical procedure. Instead, they are proposed to result from the

sudden growth of single-cell micrometastases during the natural

evolution of the disease [11]. Following this hypothesis, previous

reports have focused on dormant metastatic foci, their surrounding

microenvironment or even serum signals, to find factors that could

explain different risks of recurrence. In this regard, different

groups -including ours- have observed an association between

recurrence and post-surgery variations in several circulating

inflammatory cytokines [17–19].

The model of bimodal recurrence relies on the concept of tumor

dormancy and metastatic homeostasis being perturbed by tumor

removal [11,12]. Tumor cells leave the primary site to seed in a

different, distant tissue where they remain dormant for a variable

period of time, either as single cells or as micrometastasis [102–

104]. Most micrometastases do not proliferate actively and only a

small number (,10%) have an angiogenic phenotype [11]. Non-

angiogenic micrometastases remain quiescent in the absence of an

angiogenic switch and even angiogenic micrometastases cannot

grow to more than avascular foci without proper neovasculariza-

tion. Dormancy then results from a balance between pro- and

anti-angiogenic signals that affect the micrometastases. Genetic

alterations acquired over the natural course of the disease will

eventually produce an imbalance between pro- and anti-angio-

genic factors favoring neovascularization and growth of the

micrometastatic foci (the angiogenic switch) [103]. The model of

bimodal recurrence assumes that the primary tumor contributes to

Figure 7. Patients with a higher risk of relapse have tumors with increased proliferative capacitity. The angiogenic (VEGF), proliferative
(Ki67) and hormone receptor (ER) status of the primary breast tumors were assessed by immunohistochemistry with specific antibodies.
Interpretation of the immunohistochemical signal (low/high for VEGF and positive/negative for Ki67 and ER) followed the criteria specified in the
methods section. Patients were classified according to the VEGF, Ki67 and ER status of their tumors and the cumulative RFS was calculated. The
Kaplan-Meier plots show a reduced RFS in patients with tumors highly positive por VEGF, positive for Ki67 and negative for ER, although the
differences were only statistically significant for Ki67 (Log-rank P = 0.044). All 71 tumors included in this study were processed for Ki67 and ER staining
while only 67 could be processed for VEGF staining.
doi:10.1371/journal.pone.0091884.g007
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the homeostasis of distant metastases by releasing anti-angiogenic

factors that keep angiogenic metastatic cells in a dormant,

avascular state. Surgical removal of the tumor would abolish the

angiogenic restrain and favor the metastatic process. In addition,

growth factors and cytokines released as a consequence of tissue

wounding during the surgery would add and angiogenic spike,

boosting the metastatic process [9,11,13]. Here, we have explored

the hypothesis that, in addition to such an iatrogenic effect, tumors

likely to relapse early after surgery have distinct, intrinsic

molecular characteristics that favor metastatic growth.

Several miRNAs with prognostic value for metastatic breast

cancer have been proposed [44,93,105,106]. In all cases, however,

recurrence was considered as a homogeneous process. Unlike most

authors, we have considered recurrence as proposed by Demicheli

and coworkers: a bimodal, heterogeneous process influenced by

both the natural history of the disease and the surgical removal of

the primary tumor [13]. We have shown here that primary tumors

from early-relapsing patients are dissimilar to tumors from disease-

free patients, at least concerning to their miRNA profile. In our

opinion, these differences in miRNA expression –which should

also impact on the tumor transcriptome– reflect two distinct

biological entities with, at least, different proliferative potential

(Figure 7). Our network analysis predicted several targets that

could also confer enhanced angiogenic and invasive capacity to

the early-relapsing tumors. However, we could only prove a

statistically significant correlation between early recurrence and

proliferation, as measured by Ki67 statining.

Our study neither support nor refute an iatrogenic effect derived

from surgery but rather demonstrates that breast tumors with

different risk or relapse can be differentiated at the miRNA

expression level. However, if we consider such an iatrogenic effect,

our data could be reconciled with a bimodal recurrence

distribution as follows: the increased proliferation potential of

the tumors in group B (early recurrence) could lead to the

formation of micrometastasis as opposed to the tumors with lower

proliferative capacity (group A and some in group C), which would

seed mainly as single-cell micrometastasis. Both metastatic foci

would remain avascular and therefore dormant, until a surgery-

driven angiogenic switch restarts tumor progression. Then,

micrometastasis would grow at different rates based on their

distinct proliferative potential (including some not growing at all).

Differences in the angiogenic and invasive capacities of the tumors

could also contribute to the temporal distribution of recurrence

but they still need to be firmly stablished in future studies.

Conclusions
MiRNA deregulation is involved in breast cancer and there is a

growing interest in the identification of miRNA signatures with

biomarker potential in the clinical setting. Here, we have provided

evidence that miRNA profiling can discriminate patients with

different risk of relapse. In particular, we have identified a 5-

miRNA signature (including miR-149, miR-30a-3p, miR-20b,

miR-10a and miR-342-5p) with prognostic value (AUC = 0.993,

p-value,0.05) that is downregulated in primary breast tumors

from patients who develop early recurrence. In addition, we have

identified a set of 30 mRNAs predicted to be up-regulated by the

5-miRNA signature in early-relapsing tumors. Notably, the set

included mRNAs coding for proteins mainly involved in angio-

genesis and proliferation (VEGFA, THBS1, EPHB4 CDK6 and

DCKN1, among others). We have demonstrated that early-

relapsing tumors have a significant higher proliferative potential,

as measured by Ki67 immunostaining. Further efforts are needed

to address the role of these biomarkers in the process of

recurrence, but they could contribute to develop novel treatment

strategies and to better understand the specific functions of

miRNAs in cancer progression and metastasis.

Although our results may require further external validation in a

larger cohort, we propose our set of 5 miRNAs as an independent

prognostic-associated signature for early recurrence in breast

cancer.
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Figure S1 Overview of predicted biological functions
affected by expression of the 5-miRNA signature in
early-metastasizing tumors. The set of 30 predicted targets

of the 5-miRNA signature (Fig. 5) was integrated into the Kyoto

Encyclopedia of Genes and Genomes (KEGG) to generate a map

of the key proteins (red stars) and pathways most likely associated

with the targets. Note that an increase in the predicted targets (due

to down-regulation of the 5-miRNA signature in early-relapsing

tumors) would result in a net increase in proliferation and

angiogenesis.
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