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Abstract

The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and
microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of
targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2
inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in
association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function
through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/
Bax activation. Analogous events were observed in both drug-naı̈ve and acquired bortezomib-resistant MM cells displaying
increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and
MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming
microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+

MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted
combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.
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Introduction

Multiple myeloma (MM) is a clonal accumulative disease of

mature plasma cells which, despite recent treatment advances, is

generally fatal [1,2]. As in numerous other malignancies, MM is

characterized by dysregulation of apoptotic regulatory proteins of

the Bcl-2 family [3,4]. Among these, the anti-apoptotic protein

Mcl-1, encoded by the Mcl-1 (myeloid leukemia cell-1) gene

located on chromosome 1q21, has been implicated in the

pathogenesis of various malignancies, particularly MM [5,6].

Mcl-1 promotes proliferation, tumorigenesis, and drug resistance

of MM cells [3,5]. Notably, whereas Mcl-1 represents a factor

critical for MM cell survival [4], it has also been shown to confer

resistance to the proteasome inhibitor bortezomib, one of the most

active agents in current MM therapy [7–9]. Of note, Mcl-1 is

over-expressed in cells from MM patients, and correlates with

relapse and short survival [10]. Moreover, it is widely recognized

that the bone marrow microenvironment (BMME) plays an

important role in MM cell survival [2,11,12]. Furthermore, tumor-

microenvironment interactions confer drug resistance to diverse

drug classes [13,14] and may limit the translational potential of

promising pre-clinical approaches [11,15]. Consequently, thera-

peutic strategies targeting tumor-microenvironment interactions

represent an area of intense interest in MM [12,16]. Significantly,

several studies suggest that Mcl-1 also plays an important role in

microenvironment-related form of drug resistance in MM

[9,17,18].

Mcl-1 pro-survival activities have been primarily attributed to

interactions with pro-apoptotic Bcl-2 family members such as Bak

and Bim [19,20], although this protein binds to multiple Bcl-2

family members. Mcl-1 expression is regulated at the transcrip-

tional, translational, and post-translational levels [21], and is

distinguished by a short half-life (e.g., 30 min to 3 h.) [5,6]. This

has prompted efforts to down-regulate Mcl-1 expression in MM

and other Mcl-1-related malignancies e.g., utilizing CDK inhib-

itors/transcriptional repressors [20,22] or translational inhibitors

(e.g., sorafenib) [23], among others. An alternative strategy

involves the use of BH3 mimetics which bind to and inactivate

multi-domain anti-apoptotic proteins. While some of these (e.g.

ABT-737 or ABT-199) display low avidity for and minimal activity

against Mcl-1 [24,25], others, including pan-BH3 mimetics such

as obatoclax, act against this protein [19,26]. However, the latter

agent is no longer being developed clinically. Moreover, questions

have arisen regarding the specificity of putative Mcl-1 antagonists
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[27]. Collectively, these considerations justify the search for

alternative strategies capable of circumventing Mcl-1-related drug

resistance.

Chk1 is a protein intimately involved in the DNA damage

response [28,29]. Exposure of MM cells to Chk1 inhibitors

induces MEK1/2/ERK1/2 activation through a Ras- and Src-

dependent mechanism. Moreover, interrupting this event by

clinically relevant agents targeting the Src/Ras/MEK/ERK

pathway synergistically induces MM cell apoptosis in vitro and in

vivo [28,30,31]. Evidence that interruption of the MEK1/2/

ERK1/2 pathway down-regulates Mcl-1 expression [32] and/or

alters its associations with pro-apoptotic effectors (e.g., Bak and

Bim) [33–35] raised the possibility the Chk1/MEK1/2 inhibitor

strategy might be active in the face of Mcl-1-related forms of drug

resistance in MM. However, no information is currently available

concerning whether this strategy would be effective in this setting,

and if so, by what mechanism(s). Here we report that Chk1/

MEK1/2 inhibition induces pronounced apoptosis in bortezomib-

resistant MM cells exhibiting Mcl-1 up-regulation, and overcomes

drug resistance stemmed from IL-6, IGF-1, or stromal cells. The

present findings also suggest two distinct but interrelated

mechanisms by which this strategy may target Mcl-1, including

transcriptional down-regulation of Mcl-1 and inhibition of its anti-

apoptotic function. Collectively, these findings highlight an

alternative approach to circumventing Mcl-1-dependent bortezo-

mib- and microenvironment-related drug resistance in MM.

Materials and Methods

Cells and reagents
Human MM cell lines U266 and NCI-H929, and human bone

marrow stromal cell (BMSC) line HS-5 were purchased from

ATCC and maintained as described previously [36]. RPMI8226

cells were from Dr. Alan Lichtenstein (University of California,

Los Angeles) [37]. Dexamethasone-sensitive (MM.1S) and -

resistant (MM.1R) cell lines were provided by Dr. Steven T.

Rosen (Northwestern University, Chicago, IL) [38]. U266/Mcl-1

and RPMI8226/Mcl-1 cells were established by stably transfecting

with a construct encoding human full-length Mcl-1 as before [20].

Bortezomib-resistant U266 cells (PS-R) [20] and OPM2 cells

(V10R) [39] were generated and maintained as described

previously, all experiments were performed using logarithmically

growing cells (3–66105cells/ml).

BM samples were obtained with written informed consent

according to the Declaration of Helsinki from nine MM patients

undergoing routine diagnostic aspiration with VCU IRB approval.

CD138+ and CD1382 cells were separated using the MACS

magnetic separating system according to the manufacturer’s

instructions (Miltenyi Biotech, Auburn, CA) [30]. Briefly, mono-

nuclear cells were isolated from bone marrow samples by Ficoll-

Hypaque (Sigma, St Louis, MO), and then incubated with MACS

CD138 microbeads at 4uC for 15 minutes. CD138+ cells were

then isolated using an MS+/LS+ column and a magnetic

separator. The purity of CD138+ cells (.90%) was determined

by CD138-PE staining and flow cytometry. Viability (.95%) of

both CD138+ and CD1382 cells was assessed by trypan blue

exclusion. Isolated cells were maintained in RPMI 1640 medium

containing 10% FCS in 96-well plates. Normal BM CD34+ cells

were purchased from Lonza (Walkersville, MD). Purity of CD34+

cells was .95% and viability .80% when thawed.

The pre-clinical Chk1 inhibitor CEP3891 [29,36] was provided

by Cephalon. The MEK1/2 inhibitor PD184352 (formerly

Upstate Biotech, now Millipore) [40], analogous to the first

MEK1/2 inhibitor (PD325901) to be used in humans. Dexameth-

asone and melphalan were purchased from Sigma (St. Louis, MO).

Reagents were dissolved in sterile DMSO (final concentration

,0.1%). Melphalan was dissolved in HCl-ethanol. Recombinant

human IL-6 and IGF-I were purchased from Sigma (St. Louis,

MO) and R&D Systems (Minneapolis, MN) respectively, rehy-

drated in PBS and 10 mM acetic acid (containing 0.1% BSA). All

reagents were stored at 280uC.

Analysis of effects of the microenvironment on MM cell
viability

To assess effects of stromal cells on drug activity, a co-culture

model of MM cells with human BMSCs (HS-5) was employed

[11,41,42]. Briefly, MM cells were stably transfected with a

construct expressing luciferase (Luc) or GFP (phrGFP Vector,

Agilent Technologies) [20]. HS-5 cells were pre-plated for 48 h on

multi-well plates or Lab-Tek Chamber Slide System (Nalge Nunc,

Naperville, IL), followed by seeding Luc- or GFP-expressing MM

cells and co-culturing for an additional 24 h. After drug treatment

(48 h), cells were subjected to the following analyses: a) biolumi-

nescent assay using luciferin (RPI, Mount Prospect, IL) by

Envision Multilabel Reader (PerkinElmer, Waltham, MA); b) flow

cytometry after staining with 7AAD; c) microphotography using

an Olympus IX71 Inverted Fluorescence Microscope with CS-

DIM imaging software (Olympus, Centervalley, PA) after 7AAD

(0.5 mg/ml) staining at 37uC for 20 min; d) assessment of colony-

forming ability after 3 weeks by fluorescence microscopy as above

(colonies were defined as clusters of .50 GFP+ cells); or e) Western

blot analysis. In parallel, HS-5-conditional medium was prepared

and used as described previously [20].

Western blot analysis
Whole-cell lysates were extracted using Triton X-100 lysis

buffer containing 1% Triton X-100, 50 mM HEPES (pH 7.5),

5 mM EDTA, 50 mM NaCl, 10 mM sodium pyrophosphate,

50 mM sodium fluoride, 1 mM Na3VO4, 1 mM phenylmethyl-

sulfonyl fluoride, 10 mg/ml aprotinin, and 10 mg/ml leupeptin).

Protein samples were harvested as the supernatant following

centrifugation at 12,800 g for 5 minutes [40]. Alternatively,

subcellular fractions were prepared as follows. 46106 cells were

washed in PBS and lysed by incubating in digitonin lysis buffer

(75 mM NaCl, 8 mM Na2HPO4, 1 mM NaH2PO4, 1 mM

EDTA, and 350 mg/ml digitonin) for 30 seconds. After centrifu-

gation at 12,000 g for 1 minute, the supernatant (S-100 cytosolic

fraction) was collected in an equal volume of 26sample buffer.

The pellets (organelle/membrane fractions) were then washed

once in cold PBS and lysed in 16 sample buffer.

The amount of total protein was quantified using Coomassie

protein assay reagent (Pierce, Rockford, IL). 20 mg of protein were

separated on precast SDS-PAGE gels (Invitrogen, CA) and

electrotransferred onto nitrocellulose membranes. Blots were

reprobed with antibodies against b-actin (Sigma) or a-tubulin

(Oncogene, La Jolla, CA) to ensure equal loading and transfer of

proteins. Blots were probed with primary antibodies including:

anti-Mcl-1, anti–caspase-3, and anti–cytochrome c (BD Biosci-

ences, San Jose, CA); anti-Bim and anti–smac/DIABLO (Milli-

pore, Billerica, MA); anti-PARP (Biomol, Plymouth Meeting, PA);

anti-cleaved caspase-3 and anti-phospho-p44/42 (Thr202/

Tyr204) MAPK (Cell Signaling, Beverly, MA); anti-Bax (Santa

Cruz Biotechnology, Santa Cruz, CA).

Immunoprecipitation (IP)
Interactions between Mcl-1 and Bim or Bak were evaluated by

co-IP analysis. CHAPS buffer (150 mmol/L NaCl, 10 mmol/L

Overcoming Mcl-1-Mediated Resistance in Myeloma
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HEPES [N-2-hydroxyethylpiperazine-N9-2-ethanesulfonic acid]

pH 7.4, protease inhibitors, and 1% CHAPS) was employed to

avoid artifactual associations [43]. Cells were lysed in CHAPS

buffer and 200 mg of protein per condition were immunoprecip-

itated with 1 mg anti-Mcl-1 (Santa Cruz Biotechnology or BD

Biosciences), anti-Bak, or anti-Bim (Santa Cruz Biotechnology),

followed by Dynabeads (Dynal, Oslo, Norway). IP samples were

then subjected to Western blot analysis using anti-Bim (Millipore),

anti-Mcl-1, or anti-Bak (Santa Cruz Biotechnology) as primary

antibodies, respectively.

To monitor Bak and Bax conformational change, anti-Bax

(6A7, Sigma) or anti-Bak (Ab-1, Millipore) antibodies, which only

recognize Bax or Bak that have undergone conformational

change, were used for IP, followed by Western blot analysis using

anti-Bax and anti-Bak as primary antibodies.

Quantitative real time-PCR (qRT-PCR)
Quantitative PCR (qPCR) analysis using TaqMan gene

expression assay (assay ID, Hs03043899_m1) and 7900HT real-

time PCR system (Applied Biosystems, Foster City, CA) were

employed to quantify human Mcl-1 mRNA [20]. Human

GAPDH (Pre-Developed TaqMan Assay Reagents Control Kit)

was used as reference for quantitation. Data was analyzed using

SDS 2.3 software.

Flow cytometry
Apoptosis was monitored by annexin V-FITC staining and flow

cytometry. Primary MM cell viability was determined by trypan

blue exclusion. MM cell death was also monitored by 7-AAD

staining (0.5 mg/mL at 37uC for 30 min). Cell death of MM cells

co-cultured with HS-5 stromal cells was determined by monitoring

the percentage of 7AAD+ cells in the GFP+ gated population (i.e.,

myeloma cells labeled with GFP) by flow cytometry.

Clonogenic assays
Colony-forming ability was evaluated using a previously

described soft agar cloning assay [30]. In brief, U266 cells, with

or without HS-5 cells, were treated with 400 nM

CEP389167.5 mM PD184352 for an additional 48 h, after which,

cells were washed free of drug and plated in soft agar for 21 days.

Colonies, consisting of groups of .50 myeloma cells, were then

scored for each condition. In this system, the morphology of

myeloma cell colonies with or without HS-5 cells was identical,

and clearly distinguishable from HS-5 colonies. In addition,

colonies were stained with 0.1% crystal violet for 3 hrs and images

captured by digital camera (Model: Power shot A640). To confirm

myeloma cell colony-forming ability of cells co-cultured with HS-5

cells, the colony-forming ability of GFP+ U266 cells was monitored

by fluorescence microscopy; colonies were defined as clusters of

.50 green fluorescent protein–positive (GFP+) cells. Within the

same field, bright field images were captured for all colonies,

including HS-5 cells.

Statistical analysis
Values represent the means 6 SD for at least 3 separate

experiments performed in triplicate. Significance of differences

between experimental variables was determined using the

Student’s t test. Median dose effect analysis [44] of apoptosis

induction by PD184352 and CEP3891 administered over a range

of concentrations at a fixed ratio was performed to assess

synergism using the software program Calcusyn (Biosoft, Fergu-

son, MO) according to the manufacturer’s instructions. CI values

less than 1.0 indicate synergism.

Results

Simultaneous inhibition of Chk1 and MEK1/2 down-
regulates Mcl-1 and effectively induces apoptosis in MM
cells

Because UCN-01 displays off-target effects towards multiple

proteins including PKC, CDKs, and PDK1 [45], a newer

generation of more specific Chk1 inhibitors (e.g., CEP3891) have

recently been developed [29]. U266 cells exposed to 400 nM

CEP3891 (48 h) experienced minimal toxicity, while combined

treatment with a sub-toxic concentration of the MEK1/2 inhibitor

PD184352 (7.5 mM) synergistically increased cell death (Fig. 1A
and Fig. S1A), with combination index values less than 1 over a

range of concentrations by Median Dose Effect Analysis (inset).

Dose response analysis yielded consistent results (Fig. S1B, C).

Similar interactions also occurred in multiple other MM cell lines,

including H929, MM1.S, MM1.R, and 8226 (Fig. S1D–F).

Exposure of U226 cells to CEP3891 down-regulated Mcl-1, an

event enhanced when combined with PD184352, accompanied by

increased Bax mitochondrial translocation, cytosolic release of

cytochrome C and Smac (Fig. 1B), and cleavage of caspase-3 and

PARP (Fig. S1G). Similarly, Mcl-1 down-regulation and

increased caspase 3 cleavage following combined treatment were

observed in several other MM lines e.g., 8266, H929, MM1.S, and

OPM2 (Fig. S2A). Interestingly, qRT-PCR revealed that while

PD184352 modestly increased mRNA levels of Mcl-1, CEP3891

alone or in combination partially but significantly reduced Mcl-1

mRNA levels at 6, 16, and 42 h in U266 cells, compared to

untreated control (Fig. 1C and Fig. S2B). However, inhibition of

protein translation by CHX or proteasomal degradation by MG-

132 had a little effect on Mcl-1 down-regulation by CEP3891 in

combination with PD184352 (Fig. 1D and Fig. S2C). On the

other hand, exposure to PD184352 markedly up-regulated Bim

(Fig. S1G), as described earlier [40]. Together, these results raise

the possibility that whereas CEP3891 down-regulates Mcl-1 and

PD187352 up-regulates Bim, the anti-MM activity of this

combination regimen may involve cooperative effects of these

two events.

Ectopic overexpression of Mcl-1 fails to protect MM cells
from the MEK/Chk1 inhibition strategy

To assess effects of simultaneous MEK/Chk1 inhibition on MM

cells overexpressing Mcl-1, U266 cells ectopically expressing Mcl-1

(U266/Mcl-1) were employed. In contrast to pronounced resis-

tance of U266/Mcl-1 cells to bortezomib (P,0.01 vs empty vector

control U266/EV), the CEP3891/PD184352 regimen induced

equivalent apoptosis in both cell lines (P.0.05, Fig. 1E).

Interestingly, as shown in Fig. 1F, CEP3891 alone or in

combination clearly down-regulated Mcl-1, while PD184352 up-

regulated Bim presumably via ERK1/2 inactivation, together

markedly increasing PARP cleavage in both empty vector control

(U266/EV) and U266/Mcl-1 cells. Similar results were obtained

in 8226 cells ectopically overexpressing Mcl-1 (Fig. S2D, E).

These findings argue that Mcl-1 over-expression, which confers

marked resistance to bortezomib, does not confer cross-resistance

to the MEK/Chk1 inhibitor regimen.

Increased binding of Bim to Mcl-1 is associated with
release of Bak from Mcl-1 following combined Chk1/
MEK1/2 inhibitor treatment

In view of evidence that in addition to the relative protein levels

of pro-and anti-apoptotic Bcl-2 family proteins, interactions

between these agents may also be involved in determination of

Overcoming Mcl-1-Mediated Resistance in Myeloma
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cell fate [46], associations between Mcl-1 and Bim or Bak were

then examined. PD184352+/2CEP3891 increased the amount of

Bim co-immunoprecipitating with Mcl-1, presumably due to Bim

up-regulation, accompanied by dissociation between Mcl-1 and

Bak (Fig. 2A, B). Similar phenomena were also observed in Mcl-

1-overexpressing cells (Fig. 2C, D). Moreover, combined

treatment induced activation of both Bak and Bax in parental

U266 cells (Fig. 2E) as well as in their counterparts ectopically

Figure 1. Combined treatment with CEP3891/PD184352 down-regulates Mcl-1 and induces apoptosis in MM cells including those
ectopically over-expressing Mcl-1. (A) U266 cells were co-exposed to 400 nM CEP389167.5 mM PD184352 for indicated interval, after which cell
death was monitored by flow cytometry. Values represent the means and SD for three separate experiments performed in triplicate (* P,0.01 or **
P,0.001). U266 cells were treated (48 h) with a range of concentrations of CEP38916PD184352 at a fixed ratio (6:1), after which median dose effect
analysis was used to characterize the nature of the interaction (inset). (B) U266 cells were treated with 400 nM CEP38916PD184352 at the indicated
concentrations for 16 h, after which subcellular fractions were prepared as discribed in meterial and method. Western blot analysis was performed
using the indicated primary antibodies. WCL, whole cell lysate; S-100, cytosol; pellet, mitochondria-enriched fraction; Cyto c = cytochrome c. For these
and all subsequent Western blot analyses, each lane was loaded with 20 mg of protein; blots were stripped and re-probed with a-tubulin (a-tub) or b-
actin (b-act) antibodies to ensure equal loading and transfer; two additional studies yielded equivalent results. (C) U266 cells were treated with
400 nM CEP389167.5 mM PD184352 for 16 and 42 h, after which real-time qRT-PCR was performed to quantify Mcl-1 mRNA. Values represent the
means and SD for three separate experiments. (D) U266 cells were incubated with 400 nM CEP389167.5 mM PD184352 in the presence or absence of
300 nM MG-132 (16 h, upper) or 1 mM CHX (3, 6, and 16 h, lower), after which protein levels of Mcl-1 were assessed by Western blot analysis. (E) U266
cells were stably transfected with a construct encoding human full-length Mcl-1 or empty vector (EV). Following treatment with 500 nM
CEP389167.5 mM PD184352 for 48 h, the percentage of dead cells was determined by flow cytometry. In parallel, empty-vector and Mcl-1 over-
expressing U266 were treated with 5 nM bortezomib as a control. Values represent the means and SD for three separate experiments performed in
triplicate. (F) Alternatively, cells were subjected to Western blot analysis using the indicated primary antibodies. CF, cleavage fragment.
doi:10.1371/journal.pone.0089064.g001

Overcoming Mcl-1-Mediated Resistance in Myeloma

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e89064



expressing Mcl-1 (Fig. 2F). Release of Bak from Mcl-1 also led to

its activation in 8226 cells ectopically over-expressing Mcl-1 (Fig.
S2F). To test the possibility that Mcl-1 may also be disabled

through Noxa up-regulation, as reported in the case of bortezomib

[47], Western blot analysis was performed to monitor Noxa

expression in various MM cell lines. However, in contrast to

findings involving bortezomib, these studies revealed no clear

induction of Noxa following exposure to PD184352 alone or in

combination with CEP3891 (Fig. S3A). These findings support

the notion that the MEK/Chk1 inhibitor regimen up-regulates

Bim and increases binding of Bim to Mcl-1, leading to Bak release

from Mcl-1, followed by Bak and Bax activation. Collectively,

these findings provide another mechanism, in addition to Mcl-1

down-regulation, that may contribute to circumvention of Mcl-1-

dependent drug resistance.

Bortezomib-resistant MM cells displaying increased Mcl-1
expression do not display cross-resistance to the MEK/
Chk1 inhibitor regimen

Parallel studies were performed in bortezomib-resistant U266

cells (PS-R) generated by continuously culturing in progressively

increasing bortezomib concentrations. These cells displayed

pronounced resistance to bortezomib (Fig. 3A) in association

with up-regulated Mcl-1 protein (inset) and mRNA levels

compared to parental U266 cells (Fig. S3B). Notably, these cells

were fully sensitive to combined treatment with CEP3891/

PD184352 (Fig. 3B, P.0.05 vs U266 cells). Moreover, the

combination was highly synergistic (CI,0.5) in bortezomib-

resistant cells over a range of drug concentrations (inset).

Furthermore, exposure to CEP3891 alone or in combination with

PD184352 also clearly reduced Mcl-1 mRNA (16 h, Fig. 3C; 6 h,

Figure 2. The PD184352/CEP3891 regimen increases Bim/Mcl-1 binding, releases Bak from Mcl-1, and triggers Bak/Bax activation.
(A) and (B) U266 (A) and H929 (B) cells were exposed to 500 nM CEP38916PD184352 (7.5 mM for U266; 2.5 mM for H929) for 42 h; (C) and (D) U266
cells over-expressing Mcl-1 and their EV controls were treated as described for U266 in panel 2A. After treatment, cells were lysed in 1% CHAPS buffer
and immunoprecipitated (IP) using anti-Mcl-1 (C) or anti-Bak (D) antibodies, followed by Western blot (WB) analysis using anti-Bim, anti-Bak, or anti-
Mcl-1 antibodies as indicated. WCL were loaded to monitor Bim levels. (E) and (F) Alternatively, following 24 h treatment, IP was performed to
monitor conformational change of Bax and Bak using anti-Bax 6A7 or anti-Bak Ab-1 (for IP), and anti-Bax or anti-Bak (for WB) in parental U266 cells (E)
and their counterparts ectopically expressing Mcl-1 (F). For all IP assays, IPs without cell lysate (-lysate) and/or with IgG (instead of primary antibodies)
were carried out as controls; 200 mg protein per condition were employed for IP; IgG levels are shown to ensure equal loading of IP antibodies.
doi:10.1371/journal.pone.0089064.g002

Overcoming Mcl-1-Mediated Resistance in Myeloma
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Fig. S3C, P,0.01 vs untreated control) and protein levels

(Fig. 3D) in PS-R cells. Moreover, PS-R cells displayed sharply

reduced basal Bim levels compared to their parental counterparts.

Of note, PD184352 alone or in combination with CEP3891

restored Bim expression. In association with these actions, the

combination clearly increased PARP cleavage in both drug-naı̈ve

and bortezomib-resistant cell lines (Fig. 3D). Lastly, as observed in

U266 cells (Fig. 2A), PD1843526CEP3891 also increased Bim

binding to Mcl-1 (Fig. 3E) and released Bak from Mcl-1, leading

to Bak activation (Fig. 3F), accompanied by Bax mitochondrial

translocation, and cytosolic release of cytochrome c and Smac in

PS-R cells (Fig. S3D). Analogous results were observed in another

bortezomib-resistant cell line, OPM2/V10R [39] (Fig. S4A–D).

Together, these findings argue that the CEP3891/PD184352

regimen transcriptionally down-regulates and functionally disables

Mcl-1, and raise the possibility that these events may contribute to

the activity of this strategy in bortezomib-resistant MM cells.

Chk1/MEK1/2 inhibition prevents Mcl-1 up-regulation
and circumvents drug resistance induced by growth
factors

A link exists between growth factors and Mcl-1 expression in

microenvironment-mediated drug resistance to chemotherapeutic

agents in MM cells [15,17,48]. Consequently, the effects of the

MEK/Chk1 inhibitor regimen were examined in MM cells in the

presence of growth factors or stromal cell-conditioned medium.

Addition of IL-6 or IGF-1 to culture medium induced discernible

Mcl-1 up-regulation in MM cells (Fig. 4A and Fig. S4E) and

significantly protected cells from dexamethasone lethality

(Fig. 4B). In contrast, these growth factors conferred no

protection against combined treatment with CEP3891/

PD184352 (Fig. 4B). Moreover, CEP3891/PD184352 blocked

IL-6- and IGF-1-induced Mcl-1 up-regulation, and induced

increases in PARP cleavage in either the presence or absence of

these growth factors (Fig. 4C and Fig. S4E). Moreover,

conditioned medium derived from human BM stromal HS-5 cells

also clearly up-regulated Mcl-1 (Fig. 4D), and significantly

blocked dexamethasone-induced cell death (Fig. 4E, F) as

reported earlier [20,49]. However, conditioned medium was

unable to diminish CEP3891/PD184352 lethality in H929

(Fig. 4F), U266 (Fig. S4F), or 8226 cells (Fig. S5C, P.0.05 in

each case).

Stromal cells fail to prevent Mcl-1 down-regulation and
MM cell death induced by MEK/Chk1 inhibition

To assess effects of interactions with stromal cells on MM cell

responses to the MEK/Chk1 inhibitor regimen, MM cells stably

expressing luciferase in co-culture with HS-5 cells were used to

monitor MM cell viability. Co-culture with HS-5 cells significantly

rescued U266 cells (luc+) from lethality of dexamethasone or

melphalan (Fig. 5A), as reported earlier [42]. In sharp contrast,

MM cells co-cultured with HS-5 did were, if anything (P,0.05),

more sensitive to combined treatment with CEP3891/PD184352

(Fig. 5B), reflected by diminished bioluminescent signals propor-

tional to the reduced number of viable cells [11]. Moreover,

following CEP3891/PD184352 exposure, fluorescence microsco-

py revealed a marked increase in 7-AAD uptake (red) by GFP-

expressing U266 cells (green) in the presence of HS-5 cells

(Fig. 5C). This finding was further validated quantitatively by flow

cytometry (Fig. S4F). Similar data were obtained in luciferase-

expressing H929 cells (Fig. S5A, B) or GFP-labeled 8226 cells

(Fig. S5C, D). Importantly, analogous phenomena were also

observed in luciferase-expressing bortezomib-resistant PS-R cells

(Fig. S5E). Finally, co-treatment with CEP3891/PD184352

markedly suppressed colony formation of U266 cells in either

the presence or absence of HS-5 cells (Fig. 5D and Fig. S6A–C).

Expression of Mcl-1 and Bim were then examined in MM cells

treated with CEP3891/PD184352 in the presence of HS-5-

conditioned medium or HS-5 cells. Notably, CEP3891/PD184352

largely blocked Mcl-1 up-regulation induced by both HS-5 cells

and conditioned medium, while up-regulating Bim expression,

accompanied by increased caspase-3 cleavage (Fig. 5E and S6D).

Collectively, these findings suggest that MM bone marrow

microenvironmental factors are ineffective in protecting MM cells

from the MEK/Chk1 inhibitor regimen.

MEK/Chk1 inhibition down-regulates Mcl-1 and induces
cell death in primary MM samples

Lastly, the effects of this regimen were tested in primary MM

samples. Co-exposure to CEP3891 and PD184352 resulted in

significant increases in cell death in CD138+ MM cells isolated

from 8 of 9 primary samples analyzed (Fig. 6A), but exerted

minimal toxicity toward their CD1382 counterparts (Fig. 6B).

Notably, in one sample (#13) in which a sufficient number of

CD138+ cells were available for Western blot analysis, combined

treatment induced marked Mcl-1 down-regulation, associated with

caspase-3 and PARP cleavage in CD138+ cells (Fig. 6C).

Interestingly, CD1382 cells exhibited minimal basal Mcl-1 level

and little evidence of PARP or caspase-3 cleavage after drug

treatment. Mcl-1 down-regulation following combined treatment

was validated in two additional CD138+ samples (Fig. 6C lower

and Fig. S6E). Moreover, the lack of toxicity of the regimen to

non-neoplastic cells was also observed in normal human CD34+

cells (Fig. S6F). These findings raise the possibility that the MEK/

Chk1 inhibitor regimen may act selectively against MM cells.

Discussion

Mcl-1 has been implicated in the development of diverse

malignancies, including those of hematopoietic origin such as

MM, mantle cell lymphoma, and acute myelogenous leukemia

[3,50,51]. In particular, it plays an important role in the survival of

MM cells [4,5,10], as well as in the development of resistance to

proteasome inhibitors such as bortezomib [7–9], a class of agents

that are highly active as first-line treatment for patients with MM.

Moreover, Mcl-1 up-regulation has been linked to microenviron-

mental stromal cell-related drug resistance in MM [17,48].

Targeting Mcl-1, a short half-life protein [6], induces rapid

apoptosis in MM cells, even with continuous expression of other

anti-apoptotic proteins [3,4]. Therefore, the central regulatory role

of Mcl-1 as a survival and proliferation checkpoint factor makes

this protein an attractive target for therapeutic intervention in MM

[3,5]. Because Mcl-1 abundance is reciprocally regulated by gene

expression at multiple levels (e.g., transcriptional, translational) as

well as proteasomal degradation [5,6], various strategies have been

employed to suppress its expression, including the use of

transcriptional, translational, and deubiquitinase inhibitors

[21,23,52]. In addition, phosphorylation influences interactions

between Mcl-1 and pro-apoptotic proteins (e.g., Bim and Bak),

thereby modifying its anti-apoptotic functions [53,54]. The present

results demonstrate for the first time that a strategy combining

Chk1 with MEK1/2 inhibitors effectively kills MM cells, including

those exhibiting Mcl-1 up-regulation and acquired resistance to

bortezomib, as well as MM cells cultured in the presence of

microenvironmental factors known to confer resistance to standard

chemotherapeutic agents. They also raise the possibility that this

combination regimen may act synergistically due to cooperative

Overcoming Mcl-1-Mediated Resistance in Myeloma
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effects including down-regulation of Mcl-1 (by the Chk1 inhibitor

CEP3891) and disabling of Mcl-1 anti-apoptotic functions (e.g.,

sequestration of Bak) in association with Bim up-regulation and

increased Bim/Mcl-1 binding (by the MEK1/2 inhibitor

PD184352). However, while the contribution of these events to

the activity of this regimen in Mcl-1-overexpressing, bortezomib-

resistant cells appears plausible, an alternative explanation e.g.,

that this regimen acts by triggering one or more Mcl-1-

independent cell death pathways cannot presently be excluded.

Efforts to investigate this possibility are currently underway.

The mechanism by which CEP3891 reduced expression of Mcl-

1 remains to be fully elucidated, but appears to involve, at least in

part, inhibition of gene transcription. On the other hand,

interruption of the MEK1/2/ERK1/2 pathway by PD184352 is

known to up-regulate Bim through a post-translational mechanism

[40,55]. Together, these actions may act in concert to attenuate

Mcl-1 anti-apoptotic functions. The balance between Mcl-1 and

Bim levels has been identified as a critical determinant of MM cell

fate [56]. In this context, Bim up-regulation by MEK1/2

inhibition increased the amount of protein available for binding

to Mcl-1, an event reported to disrupt Mcl-1 function [34].

Indeed, the current strategy increased the amount of Bim bound to

Mcl-1, accompanied by release of Bak from Mcl-1 and activation

of Bak and Bax. Consistent with these results, recent studies

indicate that alterations in the associations/interactions between

pro- and anti-apoptotic proteins may play a role in determining

cell fate [32,46]. Thus, the finding that combined treatment with

CEP3891 and PD184352 was active against cells ectopically

Figure 3. Bortezomib-resistant MM cells exhibiting Mcl-1 up-regulation and Bim down-regulation does not display cross-resistance
to PD184352/CEP3891. (A) Parental U266 cells and their bortezomib-resistant counterparts (PS-R) were exposed to 20 nM bortezomib (btzmb) for
24 h, after which the percentage of apoptotic cells were determined by Annexin V staining and flow cytometry. Western blot analysis was performed
to monitor Mcl-1 protein (inset). (B) U266 and PS-R cells were treated with 500 nM CEP389167.5 mM PD184352 for 48 h, after which the extent of
apoptosis (Annexin V+ cells) was determined by flow cytometry. PS-R cells were exposed to a range of concentrations of CEP38916PD184352 at a
fixed ratio (1:15) for 48 h, after which median dose effect analysis was used to characterize the nature of the interactions using cell death (7AAD+) as
an endpoint (inset). (C) and (D) Alternatively, following treatment with 500 nM CEP389167.5 mM PD184352, real-time qRT-PCR and Western blot
analysis were performed to monitor Mcl-1 mRNA levels (16 h, C) and expression of the indicated proteins (40 h, D). (E) and (F) In parallel, following
42 h-exposure to 500 nM CEP389167.5 mM PD184352, PS-R cells were subjected to immunoprecipitation (IP) followed by Western blotting to assess
interactions between Mcl-1/Bim (E) and Mcl-1/Bak (F, upper), or Bak conformational change (F, lower). WCL was loaded to monitor protein levels. For
analyses of flow cytometry and real-time qRT-PCR, values represent the means and SD for three separate experiments.
doi:10.1371/journal.pone.0089064.g003
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expressing Mcl-1, which confers striking bortezomib resistance,

suggests that the MEK/Chk1 inhibitor strategy may effectively

circumvent Mcl-1-dependent drug resistance.

Interpretation of the impact of Bim/Mcl-1 binding has differed

in the literature, possibly reflecting cell type- and stimulus-

dependent phenomena. For example, in Jurkat leukemia cells,

disruption of Bim/Mcl-1 binding has been postulated to contrib-

ute to granzyme B-mediated apoptosis [57]. Moreover, bortezo-

mib has been reported to induce apoptosis in myeloma cells by

dissociation of Bim/Mcl-1 complexes, most likely through Noxa

induction [47]. In contrast, an increase in the Bim/Mcl-1

association has been associated with enhanced apoptosis in

leukemia cells co-exposed to BH3 mimetics and MEK1/2

inhibitors [35]. Moreover, rescue of fibroblasts from serum

deprivation-induced cell death by growth factors has been

attributed to Bim/Mcl-1 dissociation due to ERK1/2 activation

[33]. In this context, the interaction between Bim and pro-survival

Bcl-2 family proteins (e.g., Mcl-1) is regulated by ERK1/2-

dependent phosphorylation of Bim [34]. This phenomenon has

been attributed to promotion of Bim degradation following its

release from Mcl-1, as well as preservation of Mcl-1 anti-apoptotic

actions [33,34]. The present findings are compatible with the latter

mechanism in that an increased binding between Mcl-1 and Bim

was associated with release of Bak from Mcl-1, even in cells over-

expressing Mcl-1. Together, these results suggest that as in the case

of MEK1/2 inhibition [33,34], increased Bim/Mcl-1 association is

likely to play a pro-apoptotic role in the ability of this regimen to

circumvent Mcl-1-dependent drug resistance in MM cells.

The bone marrow microenvironment, composed of BMSCs,

stromal factors (including cytokines and growth factors), and

Figure 4. PD184352/CEP3891 attenuates Mcl-1 up-regulation and drug-resistance induced by growth factors. (A) U266 cells were
cultured in serum-free medium for 6 h, followed by addition of IL-6 (100 ng/ml) or IGF-1 (400 ng/ml) for 2 h and 18 h, after which cells were lysed
and subjected to Western blot analysis to assess expression of Mcl-1. (B) U266 cells were treated with 400 nM CEP3891+7.5 mM PD184352 or 50 mM
dexamathasone (Dex) for 40 h in either the presence or absence of IL-6 or IGF-1. After treatment, the percentage of dead cells was evaluated by flow
cytometry (** P,0.01 vs. without IL-6 or IGF-1). (C) After pre-incubation with either IL-6 or IGF-1 for 1 h, U266 cells were exposed to 400 nM
CEP3891+5 mM PD184352 for 4 h, after which Western blot analysis was performed to monitor Mcl-1 expression and PARP cleavage. (D) MM.1S,
H929, RPMI8226, and U266 cells were serum-starved for 6 h, and then cultured for an additional 24 h in either fresh 10% FBS medium as a control or
conditioned medium (CM) derived from HS-5 cell cultures, after which Western blot analysis cells was performed to assess Mcl-1 expression. (E) U266
cells stably expressing GFP were pre-cultured with HS-5 cells or in the presence of HS-5 CM for 48 h, followed by treatment with 50 mM
dexamathasone for an additional 40 h. After treatment, the percentage of dead (7AAD+) cells in the GFP+ population was determined by flow
cytometry. (F) H929 cells were exposed to 6 mM dexamathasone or 400 nM CEP3891+2.5 mM PD184352 for 38 h in the presence of HS-5 CM, after
which the percentage of apoptotic (Annexin V+) cells was determined by flow cytometry. For panels 4E and F, Ctrl = 10% FBS medium. For flow
cytometry, values represent the means 6 SD for three separate experiments.
doi:10.1371/journal.pone.0089064.g004
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extracellular matrix proteins, is essential for the survival and

growth of MM cells as well as resistance to diverse therapies

[11,15]. Although the precise role of Mcl-1 in stromal cell-

mediated drug resistance has not yet been clearly defined, it is

known that MM cells adhere to and induce bone marrow stromal

cells (BMSCs) to secret multiple stromal factors (e.g., IL-6), which

in turn promote MM cell survival [3,5]. Mcl-1 is required for both

VEGF and IL-6-promoted MM survival and proliferation [16–

Figure 5. BMSCs fail to protect MM cells from PD184352/CEP3891 lethality. (A) and (B) U226 cells stably expressing luciferase were co-
cultured for 24 h with HS-5 cells (pre-cultured for 48 h), and then treated with either 50 mM dexamethasone (Dex) or 30 mM melphalan (Mel, A) or
400 nM CEP389167.5 mM PD184352 (B) for an additional 48 h. Bioluminescence intensity, which is proportional to the number of living cells, was
monitored to assess cell viability. Values represent the means and SD for three separate experiments performed in triplicate. UT = untreated;
RLU = relative light unit. (C) GFP-expressing U266 cells were co-cultured for 48 h with HS-5 cells (pre-cultured for 48 h) on the 4-well chamber slides,
after which cells were treated with 400 nM CEP389167.5 mM PD184352 for an additional 40 h. Cells were then stained with 7AAD and images
captured by an inverted fluorescence microscope (Olympus 1X71, 206objective) with the filters suitable for 7AAD (red) or GFP (green). In parallel,
bright field (BF) images were also captured for the same areas. (D) After treatment as described in panel 5B, GFP-expressing U266 cells were washed
free of drugs and then plated with HS-5 cells on soft agar. After incubation for 21 days, the colony-forming ability of GFP+ U266 cells was assessed
under fluorescence microscopy (Olympus 1X71, 46objective); colonies were defined as clusters of .50 GFP+ cells. Bright field images were captured
for comparison. The microscopic images are representative of three separate experiments. (E) H929 cells were treated with 300 nM CEP389162.5 mM
PD184352 for 48 h under the conditions as follows: a) 10% FBS medium as control (lanes 1–4); b) HS-5-derived conditional medium (CM, lanes 5–8);
and c) co-culture with HS-5 (lanes 9–12). In parallel, HS-5 cells alone (lanes 13–16) were treated for comparison. After drug treatment, Western blot
analysis was conducted to monitor the expression of Mcl-1 and Bim, as well as caspase 3 cleavage.
doi:10.1371/journal.pone.0089064.g005
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18]. Moreover, stromal factors (e.g., IL-6) have also been

implicated in resistance of MM cells to both conventional

cytotoxic drugs and novel targeted agents [11,49,58]. Further-

more, drug resistance conferred by various stromal factors (e.g.,

IL-6) has been related, at least in part, to Mcl-1 up-regulation in

MM cells [18,59]. Another major mechanism underlying the

cytoprotective actions of stromal factors involves activation of the

MEK1/2/ERK1/2 pathway, which leads to Bim phosphorylation

and proteasomal degradation [16,58,60]. Consequently, MEK1/2

inhibitors have been reported to overcome bone marrow stromal

factor-mediated drug resistance in MM cells [60,61]. In this

context, the MEK/Chk1 inhibitor strategy, which both down-

regulates Mcl-1 and up-regulates Bim, may act in a cooperative

manner to overcome BMSC- and stromal factor-mediated drug

resistance. Indeed, this regimen was fully active against MM cells

cultured in the presence of stromal factors (e.g., IL-6 and IGF-1),

Figure 6. The PD184352/CEP3891 regimen down-regulates Mcl-1 and induces cell death in primary CD138+ MM cells. (A) and (B)
Primary CD138+ MM cells (A) and their normal CD1382 counterparts (B) were isolated from bone marrow samples obtained from nine patients with
MM, and exposed to 500 nM CEP389165 mM PD184352 for 24 h. After treatment, cell death was examined by trypan blue exclusion. (C) Alternatively,
Western blot analysis was performed to monitor expression of Mcl-1 as well as cleavage of PARP and caspase 3 in the CD138+ and/or CD1382

populations. Each lane was loaded with 10 mg of protein. (D) A mechanistic model of circumvention of Mcl-1-dependent drug resistance by the Chk1/
MEK inhibitor regimen. Mcl-1 plays an important role in both the survival of MM cell and sensitivity to various anti-MM agents, including bortezomib,
as well as contributing to microenvironmental forms of drug resistance. A regimen combining a MEK1/2 inhibitor (MEKi) and a Chk1 inhibitor (Chk1i)
acts at multiple levels in MM cells displaying Mcl-1-dependent bortezomib resistance, including a) down-regulation of Mcl-1 through a transcriptional
mechanism; b) up-regulation of Bim and increased Bim/Mcl-1 binding, accompanied by release and activation of Bak and Bax; c) induction of MOMP
(mitochondrial outer membrane permeabilization) and apoptosis; and d) possibly alternative Mcl-1-independent mechanism(s) of action (MOAs).
doi:10.1371/journal.pone.0089064.g006
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stromal cell-derived conditioned medium, or BMSCs. Notably, the

regimen retained its ability to down-regulate Mcl-1 and up-

regulate Bim in the presence of these microenvironmental factors

that confer resistance to conventional anti-MM agents.

Multiple mechanisms of resistance to proteasome inhibitors

such as bortezomib have been described, including mutation or

amplification of proteasome sub-units, up-regulation of anti-

oxidant proteins, and overexpression of anti-apoptotic proteins,

etc. [2,62,63]. Among these mechanisms, up-regulation of Mcl-1

has often been implicated in proteasome inhibitor resistance [7,9].

For example, administration of proteasome inhibitors (e.g.,

bortezomib) induce Mcl-1 accumulation by blocking its proteaso-

mal degradation [64], thus limiting their anti-MM activity [7,8].

Consistent with these findings, MM cells ectopically expressing

Mcl-1 were highly resistant to bortezomib, while bortezomib-

resistant MM cells (e.g., PS-R cells), which acquired resistance

through continuous culture in progressively higher bortezomib

concentrations, exhibited both Mcl-1 up-regulation and Bim

down-regulation [20]. Significantly, neither of these cells displayed

cross-resistance to MEK/Chk1 inhibition. Importantly, the

MEK/Chk1inhibitor strategy was able to release Bak from Mcl-

1 in both drug-naı̈ve and bortezomib-resistant MM cells. Under

normal conditions, Bak is held in check by its inhibitory

associations with both Mcl-1 and Bcl-xL [65], while interventions

that down-regulate Mcl-1 untether Bak, leading to Bak activation

and apoptosis [24,34]. Of note, Chk1/MEK1/2 inhibition also

untethered Bak from Mcl-1, and triggered Bak activation in

bortezomib-resistant MM cells either endogenously displaying

high levels of or ectopically expressing Mcl-1.

It is noteworthy that the MEK/Chk1 inhibitor regimen also

down-regulated Mcl-1 in primary CD138+ MM cells. Interesting-

ly, basal Mcl-1 levels were not detectable in non-malignant bone

marrow CD1382 cells. It is therefore tempting to speculate that

higher basal expression of Mcl-1 in MM cells reflects the

dependence of neoplastic cells on this protein for survival. This

notion is supported by evidence that high Mcl-1 expression

discriminates between primary MM versus normal cells, and also

correlates with disease progression and clinical outcome [10]. If

validated, this mechanism could potentially account for the

preferential lethality of the regimen towards MM cells. However,

additional studies will be required to establish the basis for this

selectivity more definitively. Such studies are currently underway.

In summary, the present findings demonstrate that a strategy

combining Chk1 with MEK1/2 inhibitors is shows pronounced

activity against MM cells with acquired bortezomib-resistance or

ectopically expressing high levels of Mcl-1, an anti-apoptotic

protein which has been implicated in resistance to numerous anti-

MM agents including bortezomib [8,9] as well as in drug

resistance conferred by microenvironmental factors [15,48]. A

hypothetical model outlining these mechanisms is summarized in

(Fig. 6D). According to this model, up-regulation of Mcl-1

contributes to acquired bortezomib-resistance and the pro-survival

effects of microenvironmental factors. The MEK/Chk1 inhibitor

combination strategy acts through Mcl-1 down-regulation (e.g., by

CEP3891), as well as Bim up-regulation (e.g., by PD184352),

which increases the binding of Bim to Mcl-1 and unleashes Bak

from Mcl-1. These events act cooperatively to trigger mitochon-

drial membrane permeabilization, leading to caspase activation

and apoptosis. Finally, an additional possibility exists that the

Chk1/MEK1/2 inhibitor regimen may trigger Mcl-1-independent

cell death pathways. Collectively, these findings provide evidence

arguing for an important role for Mcl-1 in multiple forms of drug

resistance (e.g., acquired bortezomib- and microenvironmental

factor-mediated drug resistance) in MM cells. They also raise the

possibility that a strategy combining Chk1 with MEK1/2

inhibitors may be effective against various forms of Mcl-1-related

drug-resistance. Accordingly, efforts to pursue this strategy further

in humans are in development.

Supporting Information

Figure S1 The PD184352/CEP3891 regimen up-regu-
lates Bim and induces apoptosis in a dose-dependent
manner in various multiple myeloma cells.

(TIF)

Figure S2 CEP3891/PD184352 transcriptionally down-
regulates Mcl-1, while ectopic over-expression of Mcl-1
fails to prevent cell death.

(TIF)

Figure S3 PD184352/CEP3891 down-regulates Mcl-1 in
bortezomib-resistant myeloma cells.

(TIF)

Figure S4 The PD184352/CEP3891 regimen is active
against bortezomib-resistant OPM-2 cells.

(TIF)

Figure S5 The PD184352/CEP3891 regimen overcomes
BMSC-mediated drug-resistance.

(TIF)

Figure S6 The PD184352/CEP3891 regimen diminishes
the colony-forming ability of myeloma cells in the
presence or absence of stromal cells.

(TIF)
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