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Abstract

Recently, a novel CXCL12-binding receptor, has been identified. This CXCL12-binding receptor commonly known as CXCR7
(CXC chemokine receptor 7), has lately, based on a novel nomenclature, has received the name ACKR3 (atypical chemokine
receptor 3). In this study, we aimed to investigate the expression of CXCR7 in leukemic cells, as well as its participation in
CXCL12 response. Interesting, we clearly demonstrated that CXCR7 is highly expressed in acute lymphoid leukemic cells
compared with myeloid or normal hematopoietic cells and that CXCR7 contributed to T-acute lymphoid leukemic cell
migration induced by CXCL12. Moreover, we showed that the cellular location of CXCR7 varied among T-lymphoid cells and
this finding may be related to their migration capacity. Finally, we hypothesized that CXCR7 potentiates CXCR4 response
and may contribute to the maintenance of leukemia by initiating cell recruitment to bone marrow niches that were once
occupied by normal hematopoietic stem cells.
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Introduction

Chemokine receptors belong to the superfamily of heptahelical

G protein-coupled receptors (GPCRs) and are involved in a vast

array of physiological events [1–3]. Among 18 known chemokine

receptors, lies CXCR4 whose cognate ligand is CXCL12.

CXCL12 is well known to represent the major chemokine for

initiating stem cell migration [4,5]. The majority of cytokines that

mediate stem cell migration do so via modulation of either

CXCL12 or CXCR4 [6]. Thus, the CXCL12/CXCR4 axis has

been identified as the central axis for stem cell mobilization from

the bone marrow and for homing to ischemic tissues [5–16]. To

date, most studies addressing the involvement of chemokines and

their receptors in leukemic cell tropism have concentrated on the

interaction of CXCL12 and its receptor CXCR4. Given that bone

marrow (BM) stromal cells are major producers of CXCL12

[17,18] and that CXCR4 expression is thought to be higher in

BM-residing blasts than in circulating blasts, CXCL12/CXCR4

interactions are likely to facilitate the retention of blasts in the BM

[18,19]. Recently, another CXCL12-binding receptor has been

identified. This receptor is more commonly known as CXCR7 but

lately, based on a novel nomenclature, has received the name

ACKR3 [3,4,14,15,20–23]. It has high affinity to CXCL12 and

CXCL11, however, unlike chemokine receptors (GPCRs),

CXCR7 is an atypical chemokine receptor and is not Gi-

protein-coupled and does not affect Ca+2 mobilization

[3,4,15,23–25] due to modifications in the Asp-Arg-Tyr-Leu-

Ala/Ile-Val (DRYLA/IV) motif [26,27,28], but may act as a b-
arrestin-biased receptor [23,29,30] and/or as a chemokine

scavenging receptor for CXCL12 and CXCL11 [16,29,31]. In

human tissues, CXCR7 expression has been described in active

tumor-associated endothelial cells (ECs) and in many types of

tumors, and has been shown to be essential for the survival and

growth of tumor cells [3,11,15,20,23,32,33]. Growing evidence

indicates a role for CXCR7 in cancer cell proliferation and

migration, however little is known as to the contribution of this

binding receptor to CXCL12– mediated effects [14,22,34,35–37].

It is widely accepted that all CXCR7-dependent signaling may

depend on different cellular contexts and types. Direct signaling

and/or chemokine responses of CXCL12 and CXCL11 through

CXCR7 have been shown to be b-arrestin protein coupled and to

activate kinase phosphorylation, leading to increased motility and

chemotaxis [23,26,38].

The relative expression levels of CXCR4 and CXCR7 could be

critical in determining cell response to CXCL12 [14]. Hetero-

dimerization between CXCR4 and CXCR7 has been postulated

to be a mechanism for modulating CXCR4 function

[14,25,30,35,39]. Furthermore, co-expression of CXCR7 with

CXCR4 resulted in the modulation of CXCR4-mediated Gi

activation and signaling. In addition, Décaillot et al. demonstrated

that the CXCR4-CXCR7 complex constitutively recruits b-
arrestin leading to increased cell migration of CXCR4-expressing

breast cancer cells [3]. Given that CXCL12/CXCR4 signaling is

deregulated in patients with myelodysplastic syndromes (MDS)

and leukemias [26] and the recent discovery of CXCR7 as an

additional receptor for CXCL12, the aim of the present work was

to investigate CXCR7 expression and function in MDS and
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leukemias, and to elucidate whether CXCR7 affects CXCR4

response to CXCL12 in these malignances.

Materials and Methods

Bone Marrow and Peripheral Blood Cells
Bone marrow (BM) samples, collected from 12 healthy donors,

39 MDS, 23 Acute Myeloid Leukemia (AML) and 11 from Acute

Lymphoblastic Leukemia (ALL) patients, classified based on the

World Health Organization (WHO) system (range 20–85 years,

median age 62.5 years), were analyzed. All patients that attended

the clinic between 2006 and 2011, with a confirmed diagnosis of

MDS, AML or ALL and who where untreated at the time of the

study were included. Peripheral blood samples were collected from

4 healthy donors. All healthy controls and patients provided

informed written consent and the study was approved by the ethics

committee of the University of Campinas. Patients’ characteristics

are described in Table 1.

Cell Lines and Antibodies
The human cell lines used in this study were U937, P39, K562,

KG -1, Daudi, Raji, MOLT4 and Jurkat. All cell lines were

obtained from ATCC, Philadelphia, PA. The cells were cultured

in RPMI 1640 (Gibco–Invitrogen), supplemented with 100 mg/
mL streptomycin, 63 mg/mL penicillin and 1 mL fungizone

(Gibco-Invitrogen) in the presence of 10% heat inactivated fetal

bovine serum (FBS; Vitrocell Embriolife) in a humidified

atmosphere at 37uC in 5% CO2 and used between 5 and 15

passages.

The mAb anti-CXCR7 (ab72100) was from Abcam apl

(Cambridge, MA, USA), mAbs anti-Op18 (sc-55531) and anti-E-

cadherin (sc-8426) and the polyclonal antibodies anti-Fusin (sc-

6190), anti-b-actin (sc-1616) and anti-GAPDH (sc-32233) were

from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The anti-

rabbit-HRP and anti-goat-HRP secondary antibodies were from

KPL (Kierkegaard & Perry Laboratories, Inc; Gaithersburg, MD,

USA) and AlexafluorH 488-conjugated anti-rabbit, AlexafluorH
633-conjugated anti-goat and AlexafluorH 555-conjugated anti-

mouse secondary antibodies were from Molecular ProbesH
(Leiden, The Netherlands). (PE) anti-human/mouse CXCR7

clone 8F11-M16 and (PE) mouse IgG2b, k isotype ctrl were

acquired from Biolegend (San Diego, CA, USA).

Flow Cytometry
Expression of CXCR7 in U937, P39, K562, KG -1, Daudi,

Raji, MOLT4 and Jurkat cells was evaluated by FACS analysis.

Table 1. Clinical characteristics of patients.

Characteristics Value

Age y, median (range) 62.5 (20–85)

Sex, n

Male/Female 37/36

WHO classification, n

RCDU 0

RCMD 21

RARS 2

RAEB1 8

RAEB2 8

AML 23

T-ALL 7

B-ALL 4

RCDU indicates refractory cytopenia with unilineage dysplasia; RCMD, refractory
cytopenia with multilineage dysplasia; RARS, refractory anemia with ring
sideroblasts, RAEB1/2, refractory anemia with excess blasts 1/2.
doi:10.1371/journal.pone.0085926.t001

Figure 1. Schematic model of flow cytometric analysis. A) An FSC/SSC gate and anti-CD45+/SSC was created around the viable lymphocyte
population for further analysis of CD3+CD4+, CD3+ CD8+ subsets and CD19+ cells. B) An FSC/SSC and anti-CD45+/SSC gates were created around the
viable granulocyte population for further analysis of CD14+ cells and CD16+ cells.
doi:10.1371/journal.pone.0085926.g001
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Briefly, 16106 cells were collected, washed with phosphate-

buffered saline (PBS), incubated with 10 mg/mL anti-CXCR7 for

20 min, at room temperature, in the dark, and then resuspended in

200 mL of 1% paraformaldehyde. For intracellular staining, the

cells were fixed with 100 mL of 4% paraformaldehyde (10 min,

room temperature), permeabilized with 100 mL of permeabilizing

solution containing 0.2% BSA, 0.1% azide, 0.5% saponin

dissolved in PBS and then labeled and resuspended as described

above. Fluorescence cell analysis was performed with a FACSCa-

libur (Becton–Dickinson, CA, USA).

To evaluate the expression of CXCR7 in definitive (adult)

human leukocyte subsets, peripheral blood was collected, eryth-

rocytes were lysed and the remaining cells were stained with the

conjugated mAb (Pe-Cy5) anti-CD45, (FITC) anti-CD14, (APC)

anti-CD16, (APC) anti-CD3, (FITC) anti-CD4, (FITC) anti-CD8

and (FITC) anti-CD19. An FSC/SSC gate was created around the

viable lymphocyte population for further analysis of CD19+ cells,

CD3+CD4+ and CD3+ CD8+ subsets (Figure 1A). FSC/SSC and

anti-CD45+/SSC gates were created around the viable granulo-

cyte population for further analyses of CD14+ and CD16+ cells, as

designed in Figure 1B. Data acquisition was performed using a

FACScalibur Flow Cytometer (Becton Dickinson, Franklin Lakes,

Nj) and analyses were carried out using CellQuest and BD

FACSDiva software (Becton Dickinson, Franklin Lakes, Nj).

Real-time RT-PCR Analysis
Total BM cells of individuals (healthy donors, MDS, AML and

ALL patients) and U937, P39, K562, KG -1, Daudi, Raji,

MOLT4 and Jurkat cells were submitted to RNA extraction using

TrizolH, following the manufacturer’s instructions (Invitrogen,

Carlsbad, CA, USA). The reverse transcription reaction was

performed using ReverdAidTM First Strand cDNA Synthesis Kit,

according to the manufacturer’s instructions (MBI Fermentas, St.

Leon – Rot, Germany). Expression of CXCR7 mRNA was

detected by Maxima Sybr Green qPCR Master Mix, following the

manufacturer’s instructions (MBI Fermentas, St. Leon – Rot,

Germany) in the ABI 7500 Sequence Detection System (PE –

Applied System) using specific primers: forward 59-GGC TAT

GAC ACG CAC TGC TA-39, reverse 59-CTC ATG CAC GTG

AGG AAG AA-39. HPRT and GAPDH were used as endogenous

controls and the primers were respectively: forward 59-GAA CGT

CTT GCT CGA GAT GTG A-39, reverse 59-TCC AGC AGG

TCA GCA AAG AAT-39 and forward 59-GCA CCG TCA AGG

CTG AGA AC-39, reverse 59-CCA CTT GAT TTT GGA GGG

ATC T-39. Three replicates were run on the same plate for each

sample and a negative ‘‘No Template Control’’ was used for each

Figure 2. CXCR7 has higher expressed in ALL. Quantitative expression of CXCR7 mRNA in patient cells relative to healthy donor cells and among
different patient groups. Real time RT-PCR was performed on cDNA from the samples of patients with hematopoietic malignancies or from bone
marrow samples from healthy donors. Each dot indicates the relative CXCR7 expression for each patient. Horizontal lines represent medians. mRNA
expression levels of CXCR7 were normalized by HPRT and GAPDH endogenous control. A) CXCR7 mRNA was highly upregulated in BM samples from
ALL patients compared to normal hematopoietic cells samples (P,0.0001) and to MDS and AML patients samples (P,0.0001). There was no
significant difference in CXCR7 expression among patients with MDS, AML, and normal hematopoietic cells. B) Among ALL-diagnosed patients, CXCR7
expression was more pronounced in the T-ALL subtype; Mann-Whitney test.
doi:10.1371/journal.pone.0085926.g002

Figure 3. CXCR7 positively correlates with the percentage of
blasts in the bone marrow. Correlation of log-transformed relative
expression of CXCR7/HPRT-GAPDH and the percentage of blasts in the
bone marrow of MDS, AML and ALL patients showed CXCR7 expression
levels to be positively correlated with bone marrow blast counts
(P = 0.004). Two-tailed Spearman’s correlation. The number of individ-
uals is shown in the figure.
doi:10.1371/journal.pone.0085926.g003
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primer pair. Relative levels of gene expression were quantified

using the equation, 22DDCT [40].
CXCR7 Silencing in MOLT4 and Jurkat Cell Lines
MOLT4 and Jurkat cells were transduced with lentivirus-

mediated shRNA cop GFP control (sc-108084) or lentivirus-

mediated shRNA targeting CXCR7 (sc- 94573-V) from Santa Cruz

Biotechnology (Santa Cruz, CA, USA) and are herein named

shControl and shCXCR7 cells, respectively. Briefly, 26105

MOLT4 and Jurkat cells were transduced with lentiviral particles

by spinoculation and were selected using 0.3 mg/mL and 0.75 mg/
mL of puromycin, respectively, for 2 weeks. The efficiency of

CXCR7 silencing was verified by western blot using a specific

antibody for CXCR7.

In vitro Treatment of Cell Lines with Antagonist of
Receptor CXCR4 (AMD3100)
MOLT4 (shControl and shCXCR7) and Jurkat cells (shControl

and shCXCR7) were incubated with 1.25 mg/mL AMD3100

(Sigma-AldrichH, St. Louis, MO) for 1 hour and then submitted to

transwell migration assay.

Western Blot
Equal amounts of protein of total extracts obtained from cell

lines were submitted to SDS – PAGE and Western Blot analysis

Figure 4. Higher expression of CXCR7 in T-acute lymphoid leukemia lines MOLT4 and Jurkat. A) Western blot analysis of CXCR7 protein
levels in myeloid (U937, P39, K562 and KG-1), B-lymphoid (Daudi, Raji) and T-lymphoid (MOLT4 and Jurkat) cell lines. Total cell extracts were blotted
with antibodies against CXCR7 (42 kDa), CXCR4 (42 kDa) or b-actin (42 kDa), as a control for equal sample loading, and developed with the ECL
Western Blot Analysis System. CXCR7 protein was detectable in all acute leukemia cell lines; however CXCR7 was more expressed in the T-acute
lymphoid cell lines MOLT4 and Jurkat when compared to other cell lines. CXCR4 proteins levels were homogeneous in all cell lines analyzed. B)
Quantitative expression of CXCR7 mRNA in leukemic cells lines. mRNA expression levels of CXCR7 were normalized by HPRT and GAPDH endogenous
control. CXCR7 mRNA was more expressed in T-acute lymphoid cell lines MOLT4 and Jurkat when compared to other cell lines.
doi:10.1371/journal.pone.0085926.g004

Table 2. Flow cytometry analysis of CXCR7 expression in
acute leukemia cell lines.

A. Myeloid

U937 5%

P39 12%

K562 ,3%

KG1 ,10%

B. Lymphoid

Daudi 10%

Raji 54%

MOLT4 98%

Jurkat 95%

Panel A. Myeloid cell lines. Panel B. Lymphoid cell lines. Results are presented as
percent of positive cells.
doi:10.1371/journal.pone.0085926.t002

CXCR7 Expressed ALL Potentiates Response to CXCL12
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Figure 5. Different localizations of CXCR7 in MOLT4 cells and in Jurkat cells. CXCR4 has the same cellular localization (cell surface and
intracellular) in both cell lines. (A–B) Confocal micrographs of MOLT4 and Jurkat cell lines displaying CXCR7 (green) and CXCR4 (red) staining using

CXCR7 Expressed ALL Potentiates Response to CXCL12
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with specific antibodies and ECLTM Western Blot Analysis System

(Amersham Pharmacia Biotech, UK Ltd., Buckinghamshire,

England). Quantitative analyses of optical intensity protein bands

were determined with Un-Scan-it gel – Version 6.1.

Confocal Florescence Microscopy
Confocal imaging was carried out using primary antibodies

against CXCR7, CXCR4, E-cadherin, Op18 and Alexafluor 488-

conjugated anti-rabbit, Alexafluor 633-conjugated anti-goat and

Alexafluor 555-conjugated anti-mouse secondary antibodies.

MOLT4 and Jurkat cells were immobilized on cover slips

previously treated with poly-L-lysine (1 mg/mL), fixed with 4%

paraformaldehyde-PBS for 15 min and permeabilized in PBS-

0.5% Triton-X-100 for 10 min. The cells were blocked with 3%

skimmed milk-PBS and then incubated with the indicated primary

(overnight, 4uC) and secondary (2 h, room temperature) antibod-

ies. Slides were mounted using the ProLong Gold antifade reagent

with DAPI (Molecular ProbesH, Leiden, The Netherlands) and

636 oil immersion objectives. Appropriated markers for membrane and cytoplasm were used to confirm the localization of these receptors: E-
cadherin and Op18 present (yellow), respectively, in the membrane and in the cytoplasm. CXCR7 showed colocalization with these proteins in both
cell lines; however CXCR7 was located mainly on the cell surface of MOLT4 cells; unlike, in Jurkat cells, where CXCR7 presented an intracellular and
cell surface localization. CXCR4 had same cellular distribution (cell surface and intracellular) in both cell lines. (B) Flow Cytometry, a more quantitative
method, confirmed the results observed in confocal microscopy because showed that less than 2% of MOLT4 cells versus 67% of Jurkat cells
displayed intracellular CXCR7.
doi:10.1371/journal.pone.0085926.g005

Figure 6. Lentivirus-mediated shRNA targeting CXCR7 effectively silenced CXCR7 in MOLT4 and Jurkat cells. A) Quantitative expression
of CXCR7 mRNA in cells relative to the shControl cells. mRNA expression levels of CXCR7 were normalized by HPRT and GAPDH endogenous control.
Results were analyzed using 22DDCT. CXCR7 mRNA expression was reduced in MOLT4 cells (41%) and Jurkat cells (63%) when compared with
shControl cells. (B) Western blotting analysis of shControl and shCXCR7 cell extracts. The membrane was blotted with antibodies against CXCR7 (42
kDa) or GAPDH (37 kDa), as a control for equal sample loading, and developed with the ECL Western Blot Analysis System. The bar graphs represent
the band intensity of CXCR7 protein expression corrected for loading differences based on the corresponding GAPDH bands (UN-SCAN-IT software).
Protein levels of CXCR7 were also reduced in MOLT4 cells (63%) and Jurkat cells (74%) when compared with shControl cells.
doi:10.1371/journal.pone.0085926.g006
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examined in the National Institute of Science and Technology on

Photonics Applied to Cell Biology (INFABIC) at the University of

Campinas, using a Zeiss LSM 780-NLO confocal on an Axio

Observer Z.1 microscope (Carl Zeiss AG, Germany). Images were

collected using 102461024 image format and 636optical zoom.

In the absence of primary antibodies, staining of secondary

antibodies (negative controls) failed to produce any significant

staining.

Transwell Migration Assay
MOLT4 (shControl and shCXCR7) and Jurkat cells (shControl

and shCXCR7) treated or not with AMD3100 (1.25 mg/mL) were

submitted to migration assay performed as previously described

[41]. Briefly, polycarbonate membranes were incubated with

1 mg/mL of poly-L-lysine in dd-water for 1 h at 37uC and then

washed twice with water. The cells were washed twice with RPMI

containing 0.1% BSA, then seeded at a density of 56105 cells into

the upper chambers of Transwell inserts (5 mM pore size, Costar

Transwell; Corning Costar Corning, NY, USA) and allowed to

migrate for 4 h. Medium with 0.1% BSA and medium or 0.1%

BSA containing CXCL12 (200 ng/mL) in the lower compartment

of the transwells were used as negative control and chemoat-

tractant, respectively, as previously described [42]. The number of

migrated cells was counted and was expressed as a percentage of

the input, i.e., the number of cells applied directly to the lower

compartment in parallel wells. The migration of cells was

normalized to 100% +/2 sd of triplicates as previously described

in our laboratory [43].

Metylthiazoletetrazolium (MTT) Assay
Cell proliferation was measured by MTT assay. MOLT4

(shControl and shCXCR7) and Jurkat cells (shControl and

shCXCR7) were serum-starved in 0.5% FBS for 12 hours. A

total of 56104 cells per well were then plated in a 96-well plate in

Figure 7. CXCR7 silencing decreases MOLT4 and Jurkat cell migration. Cell migration toward either RPMI with 0.1% BSA and RPMI or 0.1%
BSA containing CXCL12 (200 ng/mL) used as negative control and chemoattractant, respectively. After 4 h, the number of migrated cells was counted
and was expressed as a percentage of the input, i.e., the number of cells applied directly to the lower compartment in parallel wells. The migration of
cells was normalized to 100% +/2 sd of triplicates. (A) The CXCR7 silencing resulted in significant changes in MOLT4 chemotactic response
(P = 0.0159). The inhibition of CXCR4-dependent chemotaxis by its antagonist AMD3100 (1.25 mg/mL) promoted a similar effect (P = 0.0159).
Moreover, the silencing of CXCR7 plus the treatment with AMD3100 exhibited a synergistic effect in cell chemotactic capacity (P = 0.0086). (B) The
same effect was observed with Jurkat cells. The CXCR7 silencing (P = 0.0366) or the inhibition of CXCR4-dependent chemotaxis by its antagonist
AMD3100 (P = 0.019) reduced Jurkat chemotactic response. The simultaneous silencing of CXCR7 and treatment with AMD3100 also exhibited a
synergistic effect upon cell chemotactic capacity (P = 0.0191); Mann-Whitney test.
doi:10.1371/journal.pone.0085926.g007
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RPMI 10% FBS. In brief, 10 mL of a 5 mg/mL solution of MTT

were added to the wells and incubated at 37uC for 4 hours. The

reaction was stopped by using 100 mL of 0.1 N HCl in anhydrous

isopropanol. Cell growth was evaluated by measuring the

absorbance at 570 nm, using an automated plate reader. All

conditions were tested in six replicates.

UV-induced Apoptosis Assay
A total of 56105 cells of MOLT4 (shControl and shCXCR7)

and Jurkat (shControl and shCXCR7) were seeded on 6-well

plates and were exposed to a dose of 10 J/m2 for different periods

of time (0, 3 and 6 hours). Cells were then washed twice with ice

cold PBS and resuspended in binding buffer containing 1 mg/mL

PI and 1 mg/mL FITC labeled annexin-V. All specimens were

analyzed on a FACSCalibur after incubation for 15 minutes at

Figure 8. CXCR7 silencing did not modify apoptosis and proliferation of MOLT4 and Jurkat cells. To evaluate whether CXCR7 is
important in the process of cell death, control and inhibited CXCR7 cells were exposed to 10 J/m2 UV for different periods of time (0, 3, and 6 hours)
and apoptosis was detected by flow cytometry using Annexin V/PI staining method. Cell proliferation was determined by MTT assay. Results are
shown as mean 6SD of six replicates. No differences in apoptosis rate (A) or proliferation (B) were observed in MOLT4 and Jurkat cell lines.
doi:10.1371/journal.pone.0085926.g008
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room temperature in a light-protected area. Ten thousand events

were acquired for each sample.

Statistical Analysis
The comparison of the relative expression of CXCR7 among

different patient groups, among peripheral blood leukocyte subsets

and the results of migration assays were analyzed using Mann-

Whitney test. Two-tailed Spearman’s correlation coefficient was also

used. These tests are available in GraphPad Prism version 5.0. P

value ,0.05 was considered statistically significant.

Results

CXCR7 mRNA has a Higher Expression in BM Samples of
ALL Patients
We investigated the CXCR7 gene expression profile on a sample

of patients with hematopoietic malignancies in comparison to

bone marrow samples from healthy donors. Interestingly, CXCR7

mRNA was highly upregulated in BM samples from ALL patients

compared to normal hematopoietic cell samples (0.68 [0.17 to

14.1] versus (vs.) 700.2 [600.1 to 809.8], P,0.0001) and to MDS

and AML patient samples, respectively (700.2 [600.1 to 809.8]

versus (vs.) (0.73 [0.04–15.5]; 1.33 [0.03–8.65], P,0.0001). There

was no significant difference in CXCR7 expression among patients

with MDS, AML, and normal hematopoietic cells (Figure 2A).

Among ALL-diagnosed patients, CXCR7 expression was more

pronounced in the T-ALL subtype (T-ALL; 742.2 [629.9 to 793.3]

versus (vs.) B-ALL; 637.9 [600.1 to 809.8]; median [minimum –

maximum]) (Figure 2B). Noteworthy, we found CXCR7 expression

levels to be positively correlated with bone marrow blast counts

(P= 0.004) (Figure 3).

CXCR7 Protein and Gene are More Expressed in Acute T-
lymphoid Leukemia Cell Lines
We verified the CXCR7 protein expression levels in myeloid

cell lines (U937, P39, K562 and KG-1), B-lymphoid (Daudi, Raji)

and T-lymphoid (MOLT4 and Jurkat) cell lines using two methods

(Western Blot and Flow Cytometry) and we observed that CXCR7

protein was detectable in all acute leukemia cell lines, CXCR7

however, was more expressed in the T-acute lymphoid cell lines

MOLT4 and Jurkat (Figure 4A and Table 2) when compared to

other cell lines. This result corroborated the higher gene

expression levels found in ALL patients, mainly in the T-ALL

subtype. On the other hand, CXCR4 proteins levels were

homogeneous in all cell lines analyzed. Furthermore, we observed

the CXCR7 gene expression levels by Real-Time RT-PCR and

these were similar to the CXCR7 protein expression levels which

were more expressed in T-acute lymphoid cell lines MOLT4 and

Jurkat when compared to other cell lines, however we noticed a

minor difference in the expression of CXCR7 between the B-ALL

and T-ALL lines. (Figure 4B).

CXCR7 has Different Cellular Distribution in T-acute
Lymphoid Leukemia Cell Lines
As T-acute lymphoid leukemia cells showed higher CXCR7

expression (gene and protein levels), MOLT4 and Jurkat cell lines

were chosen to continue the study. Cellular localizations of both

CXCL12 receptors, CXCR4 and CXCR7, were investigated in

MOLT4 and Jurkat cell lines by fluorescence and confocal

microscopy analysis and also by flow cytometry. Cells were

permeabilized in order to enable the detection of internalized

receptors. Confocal microscopy analysis evidenced altered cellular

distribution of CXCR7 in MOLT4 and Jurkat cell lines: using

appropriate markers, E-cadherin and Op18, as membrane and

cytoplasm markers, respectively, CXCR7 was observed to be

colocalized with both markers in both cell lines, however CXCR7

was located mainly on the cell surface of MOLT4 cells (5A); unlike

Jurkat cells, where CXCR7 presented an intracellular and cell

surface localization (Figure 5B). CXCR4 had same cellular

distribution (cell surface and intracellular) in both cell lines. These

results were confirmed by flow cytometry, a more quantitative

method, which showed that less than 2% of MOLT4 cells versus

67% of Jurkat cells displayed intracellular CXCR7 (Figure 5C).

CXCR7 Silencing Decreases T-acute Lymphoid Cell
Migration, but does not Modify Proliferation and
Apoptosis
To observe the role of both receptors in the chemotaxis of and

MOLT4 and Jurkat cells, we performed CXCR7 silencing in these

cells. Cells were stably transduced with lentivirus-mediated shRNA

targeting CXCR7 (shCXCR7) or lentivirus-mediated shRNA cop

GFP control (shControl). After selection using puromycin, CXCR7

mRNA and CXCR7 protein levels were determined by real-time

RT-PCR and Western Blot, respectively. The reduction in CXCR7

mRNA levels and protein levels were normalized to shControl

cells. CXCR7 mRNA demonstrated a reduction of 41% and 63%,

respectively, in MOLT4 and Jurkat cell lines (Figure 6A).

Densitometry analysis of the Western Blot assay, by gel analysis

software (UN-SCAN-IT), showed a 63% and 74% reduction of

protein levels in MOLT4 and Jurkat cells, respectively (Figure 6B),

after silencing of CXCR7. In addition, we performed the

inhibition of CXCR4-dependent chemotaxis with the antagonist

AMD3100 (1.25 mg/mL). Transwell-chemotactic assay revealed

that in both MOLT4 and Jurkat cell lines, there was a significant

reduction in shCXCR7 cell migration compared to shControl cells

Figure 9. High CXCR7 expression of peripheral blood and bone
marrow lymphocytes. (A) CXCR7 is expressed in peripheral blood
leukocytes, however an increase in CXCR7 cell surface expression was
observed in lymphocytes compared to monocytes and neutrophils. This
difference was more apparent and significant when the cells were
permeabilized (lymphocytes vs. monocytes, P = 0.0265 and lymphocytes
vs. neutrophils, P = 0.0286) showing that the localization of this receptor
is mainly intracellular in B-lymphocytes, CD4+ T-lymphocytes and CD8+

T-lymphocytes; Mann-Whitney test.
doi:10.1371/journal.pone.0085926.g009
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(P= 0.0159 and P= 0.0366, respectively). The inhibition of

CXCR4-dependent chemotaxis by its antagonist AMD3100

promoted a similar effect when compared to shControl cells

(MOLT4, P= 0.0159 and Jurkat, P= 0.0119). Moreover, the

silencing of CXCR7 plus the treatment with AMD3100 exhibited

a synergistic effect in cell chemotactic capacity (P= 0.0086;

P= 0.0191 respectively; Figure 7). Moreover, shCXCR7 cells did

not display significant differences in proliferation rates, as

demonstrated by MTT assay, or in apoptosis induction, as

demonstrated by Annexin V positivity, suggesting that, in these

cells, CXCR7 has a mainly chemotactic-controlling role

(Figure 8A–B), and potentiates CXCR4 response.

Expression of CXCR7 in Peripheral Blood Leukocytes
We next evaluated CXCR7 protein expression in definitive

(adult) human leukocyte subsets by flow cytometry. CXCR7 was

expressed in peripheral blood leukocytes, however, an increase in

CXCR7 cell surface expression was observed in lymphocytes

compared to monocytes and neutrophils. This difference was more

significant when the cells were permeabilized (lymphocytes vs.

monocytes, P=0.0265 and lymphocytes vs. neutrophils,

P= 0.0286) showing that the localization of this receptor is mainly

intracellular in B-lymphocytes, CD4+ T-lymphocytes and CD8+

T-lymphocytes (Figure 9).

Discussion

Chemokines are considered to play a role in cancer migration

and growth. Previous studies have shown a significant correlation

between chemokine receptor status in human cancers and

prognosis and/or metastases in a variety of malignant tumors

such as T-cell leukemia (CCR4), hepatocellular carcinoma

(CCR6), gastric carcinoma (CCR7), renal cell carcinoma

(CXCR3), ovarian cancer (CXCR4), osteosarcoma (CXCR4),

colorectal cancer (CCR7 and CXCR4), and malignant melanoma

(CXCR3 and CXCR4) [22]. In this report we investigated the

expression of the novel chemokine receptor CXCR7 in myelo-

dysplastic syndromes and acute leukemias. We found that CXCR7

was expressed at higher levels in bone marrow cells from acute

leukemia patients and the highest expression observed in ALL

patients was confirmed at the protein level. The increased

expression of CXCR7 in lymphoid leukemia cells detected in this

study is a phenomenon observed in a variety of solid tumors such

as brain, prostate, lung, breast, prostatic, renal and glioma cells in

which the increased expression of CXCR7 has been positively

correlated with aggressive tumor behavior [15,33]. In agreement

with our findings of a lower CXCR7 expression in normal BM cells,

Berahovich and co-workers detected neither CXCR7 gene or

protein expression in human and mouse leukocytes [44], hence,

the biological function that CXCR7 plays could be cell type

specific [38]. Despite CXCR7 only being involved in the cell

proliferation of solid tumors [34,45], a contribution of this

receptor in migration of lymphoid leukemia cell lines was indeed

herein, unveiled. In accordance to our data, Tarnowski et al. [46]

demonstrated the participation of CXCR7 in migration/adhesion

of malignant hematopoietic cells but not in the proliferation status

of these cells. A crucial function of CXCR7 in controlling the

migration of CXCR4+ cells towards CXCL12 gradients by

sequestration of excess CXCL12, has been reported. Excess of

chemokine may result in desensitization of the chemokine receptor

and cell migration blockage. Therefore, CXCR7 sequestration of

CXCL12 could be of vital importance for the migration of

CXCR4+ cells [16,31,47,48]. Similarly, a recent paper by Cruz-

Orengo and colleagues showed that CXCR7 expression in

endothelial cells from inflamed central nervous system tissue was

essential in controlling CXCR4+ leukocyte entry into the tissue by

scavenging and controlling the CXCL12 gradient [16,49].

Our data further suggests that the presence of CXCR7 may also

be important in potentiating the migration induced by CXCL12/

CXCR4 binding in T-acute lymphoid leukemic cells. CXCR7

potentiation of CXCL12/CXCR4 signaling has been suggested

due to the heterodimerization of both receptors [6,14,31,50].

Heterodimerization of CXCR4 and CXCR7 resulted in the

attenuation of classical CXCL12-mediated Gi-activated signaling

as measured by classical Gi activation assays that monitor adenylyl

cyclase inhibition. Receptor dimerization/oligomerization has

emerged as a key paradigm in G protein-coupled receptor

(GPCRs) biology and has been implicated in almost all aspects

of GPCR function, including intracellular trafficking receptor

internalization, pharmacological inhibition, and signal transduc-

tion. Despite the challenge of ascertaining functional consequences

of receptor heterodimerization, heterodimerization has been

demonstrated to be capable of completely changing the activated

signaling pathways as well as the trafficking of the receptors [3]. In

the case of the CXCR4-CXCR7 heterodimer, Décaillot et al. [3]

observed a switch in signaling pathways that were induced

downstream to CXCL12 stimulation, a decrease in G protein-

dependent signaling, and an increase in arrestin recruitment and

signaling. Lymphocytes have been used as cell models for CXCR7

studies, the results however are contradictory [38]. An initial study

showed a high expression of CXCR7 in human T-lymphocytes

[21], supported by our data of high CXCR7 gene expression in

bone marrow and lymphoblasts of T-ALL patients, T-lymphocytes

in peripheral blood of healthy donors and CXCR7 protein in T-

acute lymphoid leukemia cell lines. However, Hartmann et al.

reported very low levels of CXCR7 in normal T-cells by flow

cytometry [11]. This difference could be related to the different

protocols used, as in Hartmann’s study the cells were not

permeabilized [11] and CXCR7 was only detected on the cell

surface. Despite its high affinity to CXCL12, the role of CXCR7

in CXCL12-dependent cell motility and chemotaxis is currently

under controversial debate. In lymphocytes, one study has

suggested that CXCL12 signals through CXCR7 on primary T-

cells and that CXCR7 co-participates with CXCR4 in lymphocyte

motility [21], whereas a second group observed no contribution of

CXCR7 in T-cell migration [21]. In agreement with this second

group, Hartmann et al. detected no effect of CXCR7-blocking

mAb or the CXCR7 antagonist CCX733 on this CXCL12-

triggered motility [11]. However, our study shows that CXCR7

contributes for T-ALL cells migration induced by CXCL12. In

addition, our results suggest that CXCR7 expression may be

important in leukemogenesis as CXCR7 expression correlated

positively with the percentage of bone marrow blasts. Herein, a

different CXCR7 cellular localization in MOLT4 and Jurkat cell

lines was observed and this localization could be related to cell

chemotactic capacity, since MOLT4 cells demonstrated a higher

migration compared to Jurkat cells. However, CXCR4 and

CXCR7 expression has been reported to have an intracellular

location in other cancers such as gallbladder and pancreas without

CXCL12 stimulation [15,23]. The low percentage of Jurkat cell

migration to CXCL12 here observed (,20%) has also been

described by Ottoson et al. [51], however, Butler et al. observed

that a higher number of cells were capable of migrating toward the

chemoattractant CCL12 [52]. Despite of a biological conclusion,

based on the comparison of different cell lines, being difficult to

assert, we found MOLT4 and Jurkat cells to be interesting models,

since both cell lines were obtained from patients with T-acute
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lymphoid leukemia and were submitted to the same experimental

conditions.

Most studies addressing the involvement of chemokines and

their receptors in the tropism of leukemic cells have focused on the

interaction of CXCL12 and its receptor CXCR4. Given that BM

stromal cells are major producers of CXCL12, and CXCR4

expression is thought to be higher on BM-residing blasts than on

circulating blasts, CXCR4/CXCL12 interactions are likely to

facilitate the retention of blasts in the BM [18]. As ALL blasts are

known to have high levels of CXCR4 and we also detected high

levels of CXCR7, this receptor could possibly potentiate the

homing and retention of these blasts in BM. Thus, an inhibition of

both receptors could decrease the homing of leukemic blasts in the

BM microenvironment and be associated with a better response

than the blocking of a single receptor [15]. Therefore, future

studies will be necessary to reach consistent conclusions regarding

the role of CXCR7 in acute lymphoid leukemia pathogenesis and

prognosis.
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