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Abstract

The developmental significance of the frequently encountered white matter signal abnormality (WMSA) findings on
MRI around term-equivalent age (TEA) in very preterm infants, remains in question. The use of conventional
qualitative analysis methods is subjective, lacks sufficient reliability for producing accurate and reproducible WMSA
diagnosis, and possibly contributes to suboptimal neurodevelopmental outcome prediction. The advantages of
quantitative over qualitative diagnostic approaches have been widely acknowledged and demonstrated. The purpose
of this study is to objectively and accurately quantify WMSA on TEA T2-weighted MRI in very preterm infants and to
assess whether such quantifications predict 2-year language and cognitive developmental outcomes. To this end, we
constructed a probabilistic brain atlas, exclusively for very preterm infants to embed tissue distributions (i.e. to
encode shapes, locations and geometrical proportion of anatomical structures). Guided with this atlas, we then
developed a fully automated method for WMSA detection and quantification using T2-weighted images. Computer
simulations and experiments using in vivo very preterm data showed very high detection accuracy. WMSA volume,
particularly in the centrum semiovale, on TEA MRI was a significant predictor of standardized language and cognitive
scores at 2 years of age. Independent validation of our automated WMSA detection algorithm and school age follow-
up are important next steps.
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Introduction

Very preterm infants are at high risk for neurodevelopmental
impairments. By school age, 30-50% of them exhibit cognitive
impairment [1,2]. Many preterm infants develop functional
deficits even in the absence of visible brain injury on cranial
ultrasound. While brain MRI is more sensitive than cranial
ultrasound, the full significance of certain imaging findings
remains in question. In particular, the significance of white
matter signal abnormality (WMSA) on conventional T2-
weighted MRI at around term-equivalent age (TEA) [3] as a
predictor of later cognitive impairment remains unclear [4].

A few studies with neurodevelopmental follow-up have
observed a significant negative association between WMSA
and developmental quotient at 18 months corrected age [5,6]
and intelligence quotient at 9 years of age [7]. Kidokoro et al.

[4] also found a significant association with cognitive scores but
only in preterm infants with WMSA severe enough to render
the periventricular crossroads regions invisible. Conversely,
others have not observed an association with any impairment
[8-11]. Considering its high incidence of up to 75% [3], WMSA
may represent a prematurity-related developmental
phenomenon. Multiple crossing fibers and a high content of
hydrophilic extracellular matrix in anterior and posterior
periventricular white matter regions may contribute to the high
signal intensity observed on T2-weighted MRI and lower
anisotropy on diffusion MRI [12,13].

The limited progress in resolving the above question can
partly be attributed to the use of conventional qualitative MRI
readings. Such an approach remains subjective and lacks
sufficient reliability for accurate and reproducible WMSA
diagnosis [14] and may therefore contribute to suboptimal
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neurodevelopmental outcome prediction. The advantages of
quantitative over qualitative diagnostic approaches have been
widely acknowledged and demonstrated [6,15-18].

For T2-weighted sequences without fluid attenuation, the
signal intensity distribution of WMSA greatly overlaps with that
of cerebrospinal fluid (CSF), making the distinction between
them difficult [18,19]. To overcome this known difficulty, we
propose a probabilistic atlas-guided WMSA detection and
quantification method. In the context of this work, we define a
probabilistic atlas, as a pairing of anatomy template (an
averaged anatomy image from a set of normalized anatomy
images in common reference space) and its corresponding
tissue probability maps (averaged gray matter (GM), white
matter (WM), and CSF segmentations from a set of normalized
manual segmentations in common reference space). The atlas
that embeds tissue distributions (i.e. encodes shapes, locations
and geometrical proportion of anatomical structures) is utilized
to guide WMSA detections.

Atlas-guided analysis methods are usually characterized by
how the atlases are generated and how the knowledge
regarding atlases can be carried forward to target images. The
atlas can be constructed using manual/semiautomatic/
automatic segmentations of an individual or a group of
individuals [20-27]. Our proposed atlas is constructed using a
set of manual parcellations of brains, which are optimal and
reproducible. We endeavor to reduce bias toward a specific
subject and characterize the variability of a similar age
population (extremely low birth weight [ELBW, birth weight
≤1000 g] infants) by utilizing anatomical averaging. We are
aware of the differences in performance resulting from different
spatial normalization procedures despite use of the same atlas
and subject [28]. Large deformation diffeomorphic metric
mapping (LDDMM) [29] is well suited to our needs for forward
warping an individual subject to an atlas as well as backward
warping the atlas to the same subject. Due to the reciprocal
nature of the LDDMM, the transformation can be reliably
accomplished in either direction [30,31].

In this work, we constructed a probabilistic brain atlas,
exclusively for very preterm infants and then guided with this
atlas, we proposed a fully automated WMSA detection and
quantification method using clinically available T2-weighted
images. Computer simulations and experiments on clinical MRI
data presented very high detection accuracy. Finally, in a
prospective cohort of ELBW infants, we demonstrated a
significant correlation between objectively quantified WMSA
volumes and language and cognitive developmental scores on
the third edition of the Bayley Scales of Infant and Toddler
Development at two years of age.

Methods

Ethics Statement
The Children’s Memorial Hermann Hospital (CMHH) and The

University of Texas Medical School at Houston joint institutional
review board (IRB) approved the study. Written informed
consent for each infant was obtained prior to enrollment in the
study. The consent was approved by IRB and signed by each

subject's parent or guardian prior to enrollment and
participation in the study.

Subjects
The study population was derived from a cohort of 50 ELBW

infants without any major congenital anomalies, cared for in the
NICU of Children’s Memorial Hermann Hospital from 2007 to
2009. Their mean (standard deviation [SD]) gestational age
was 25.5 (1.6) with a range of 23 to 30.1 weeks; birth weight
was 750.8 (143.1) grams with a range of 468 to 1000 grams;
and the postmenstrual age at MRI was 38.7 (2.3) with a range
of 34.1 to 43.9 weeks. Nineteen MRI scans were randomly
selected for atlas construction from the cohort study. Their
mean (SD) gestational age was 25.8 (1.8) with a range of 23.4
to 30 weeks; birth weight was 724.2 (148.4) grams with a range
of 489 to 1000 grams; and post-menstrual age at MRI was 38.1
(2.1) weeks with range of 34.1 to 41.7 weeks.

MRI acquisition
All infants were imaged with a 3 T Philips scanner using a

dual-echo fast-spin-echo sequence with use of an eight-
channel SENSE-compatible phased array receive head coil.
The imaging parameters used were: TE1 = 8.75ms; TE2 = 175
ms; TR = 10,000 ms; flip angle = 90°; FOV = 180×180 mm2;
the imaging matrix = 256×256 mm2; slice thickness = 2 mm. In
this study, T2-weighted images (corresponds to TE2) were
used to construct the atlas and perform the analysis. All infants
were transported to the MRI scanner by an experienced
neonatal transport nurse after feeding, swaddling and
placement of silicone ear plugs (E.A.R. Inc., Boulder, CO) and
Natus MiniMuffs (Natus Medical Inc., San Carlos, CA) to
facilitate natural sleep and attenuate MRI noise. Sedation was
not used for any of the cases. All scans were completed under
the supervision of a neonatal research nurse and a
neonatologist experienced in neonatal MRI. All MRI scans were
read by a neuroradiologist using a standardized reporting tool.

Very preterm infant probabilistic atlas creation
All 19 ELBW infants randomly chosen for the atlas creation,

had varying degrees of WMSA ranging from only in the frontal
and/or occipital periventricular white matter up to signal
abnormalities covering two-thirds of the cerebral WM. The
procedures for atlas creation were similar to the general
concept for creating an adult/neonatal group-averaged atlas: 1.
Extrameningeal tissues were manually stripped and brain
tissues (CSF, WM and GM) were manually parcellated using
ANALYZE 8.1 software (Biomedical Imaging Resource, Mayo
Clinic, Rochester, MN), as previously described in detail in [19];
2. T2-weighted images and tissue parcellation maps were then
resliced to 1 mm isotropic resolution; 3. Out of all candidates, a
representative single-subject image with the brain size/shape
fitted to general very preterm infant brains at TEA was
selected; 4. Each subject scan was non-linearly normalized to
the representative subject using LDDMM to create an averaged
anatomy image, which worked as a tentative template for the
next step; 5. Each subject was again nonlinearly normalized to
the tentative template using LDDMM to create the desired
averaged anatomy template; and 6. The resultant nonlinear
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transformation matrices were applied to the corresponding
manual parcellation maps to create the averaged tissue
probability maps. All normalization was performed using
DiffeoMap (www.mristudio.org, Johns Hopkins University). The
atlas is available to interested researchers upon request.

WMSA regions
When it was first reported in preterm neonates [3],

hyperintense WMSA was called diffuse excessive high signal
intensity on T2-weighted imaging and defined as “excessive”
high signal intensity within the periventricular or subcortical WM
that was not limited to the normal distribution of periventricular
crossroads (also called layers, anterior caps, and posterior
arrowheads). However, the boundaries of these crossroads
regions are not well defined. Furthermore, diffusion
abnormalities within high signal intensity regions of the centrum
semiovale appear to be pathologic and associated with lower
developmental quotient [6]. Therefore, in addition to subcortical
WM and centrum semiovale, we included anterior and posterior
periventricular WM in the regions of our interest. In this work,
we will investigate the relationship of outcomes with WMSA
regional volumes defined at level of the 1. Entire WM; 2.
Periventricular WM – on slices beginning with the first
appearance of the frontal horns and ending with the last
images of the midbody of the lateral ventricles; and 3. Centrum
semiovale – defined as the two axial slices above the last slice
of the midbody of the lateral ventricles.

Probabilistic atlas-guided WMSA detection
Voxels with values greater than or equal to α SD above the

mean of cerebral tissues (WM and GM) were defined to be
WMSA, following the same strategy used in [18]. The cut-off
threshold α was determined using computer simulations.
Simulated preterm infant T2-weighted brain images with
isotropic spatial resolution were constructed based on a normal
anatomical model [32,33] combined with manually drawn
synthetic WMSA regions (as shown in the first column in Figure
1.) by a neonatologist with more than a decade of experience
in perinatal brain injury and MRI research. In contrast to adult
brains, the intensity of WM is higher than that of GM.
Heuristically, we set the mean values of CSF, WM, GM and
WMSA to be 400, 260, 190 and 340 respectively. Different
levels of Rician noise and multiplicative slowly-varying field of
intensity non-uniformity (INU) with a complex shape and range
of 0.9 to 1.1 (20% level) were imposed. Without loss of
generality, we minimized the possible errors that spatial
normalizations may cause by not varying brain sizes/shapes of
each random Monte Carlo realization. WMSA detections using
various α ranging from 1 to 1.8 were conducted and the one
that facilitated maximum accuracy rates was considered to be
optimal, irrespective of the level of noise, the optimal α was 1.4.

Cerebral tissue segmentation is achieved by incorporating
membership function from unified segmentation [34] with the
anatomical information obtained by adapting very preterm
infant probabilistic brain atlas to fit individual brain. More
specifically, let S be a set of voxels/locations in a brain image
and xi (i∈S) be the corresponding intensities. The aim of the
proposed algorithm is to segment images into different tissue

regions (background, WM, GM, and CSF), say ωj, j = 1 to 4.
We denote μunified(ωj|xi) as membership function derived using
the generative unified model provided in SPM (Wellcome
Department of Cognitive Neurology, London, UK). Briefly,
unified tissue segmentation requires the images to be
normalized with tissue probability maps (refer to the section of
very preterm infant probabilistic atlas creation). Spatial
normalization is through non-linear deformation, which is
modelled with a linear combination of non-linear 3D discrete
cosine transforms basis functions. After normalization, these
maps represent the prior probability of different tissue classes
being found at each location in an image. Bayes rule can then
be used to combine these priors with tissue type probabilities
derived from voxel intensities to provide the posterior
probability. In this unified segmentation model, intensity
inhomogeneity correction was included in the mixture of
Gaussian by extra parameters that account for smooth intensity
variations. Partial volume artifact was controlled by assuming
that the intensity distribution of each class may or may not be
Gaussian (i.e. mixture of Gaussians). Typical numbers of
Gaussians are three for grey matter and two for white matter,
two for CSF and five for everything else.

We then propose to include an atlas-guided anatomy
mislabelling correction into the model via individual tissue
probability maps, μatlas(ωj|xi), whose generation is illustrated in a
flowchart shown in Figure 2. The final segmentation μij is
determined by a joint probabilistic membership function,

μij=
μuni f ied

p ω j xi ⋅μatlas
q ω j xi

∑c=1
4 μuni f ied

p ωc xi ⋅μatlas
q ωc xi

where p and q are two parameters controlling their
respective contribution.

Validation
By superimposing ground-truth and automated detections,

four different pixel categories are generated: a (the number of
correct detections that a voxel is negative), b (the number of
incorrect detections that a voxel is positive), c (the number of
incorrect detections that a voxel is negative), and d (the
number of correct detections that a voxel is positive). Seven
metrics are used: true positive rate = d / (c + d); true negative
rate = a / (a + b); false positive rate = b / (a + b); false negative
rate = c / (c + d); precision = d / (b + d); accuracy = (a + d) / (a
+ b + c + d) and Dice = (2 × precision × true positive) /
(precision + true positive) [45].

Language and cognitive developmental outcomes
All discharged ELBW infants were administered a

standardized Bayley Scales of Infant and Toddler Development
III (BSID-III) at 2 years of age. One infant died after discharge.
Forty-seven of the remaining 49 infants (96%) returned for
follow-up. However nine of these infants had to be excluded:
seven exhibited behavioral problems and could not be tested
for one or both Bayley scores; one infant had excessive motion
artifacts; and one infant had severe encephalomalacia.
Therefore, 38 ELBW infants were available for full analyses.
The BSID-III language and cognitive subtests (on a scale of 50
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to 150, with a mean of 100 and 150 indicating the most
advanced development) were administered by a masked,
certified examiner. All examiners are blinded to imaging
findings during assessment. Bayley motor and behavioral
scales were not administered to study infants. Standardized
motor function was tested but was not included in our analyses
because of the low incidence of cerebral palsy and resulting
inadequate study power.

Statistical analysis
The relationships between continuous variables of

objectively quantified WMSA volumes vs. BSID-III language
and WMSA volumes vs. BSID-III cognitive scores were
identified using both Pearson correlation and simple linear
regression analyses. Assumptions of both analyses were
tested and met.

We use Pearson correlation coefficient r to measure the
linear correlation between the two variables, giving a value
between 1 and −1, where 1 is total positive correlation, 0 is no
correlation, and −1 is negative correlation. In addition, we use

linear regression to model the relationship between the two
variables by fitting a linear equation. A linear regression line
has an equation of the form Y = a + bX, where b is the slope of
the line and a is the intercept. When b = 1 and a = 0, a perfect
agreement can be said to exist between two variables.
Coefficient of determination, denoted R2 (0≤R2 ≤1) is used to
describe how well the regression line fits the observed data.
The larger the R2, the better the fit.

In bivariate analyses, we tested the influence of sex,
gestational age, and postmenstrual age at MRI scan, one at a
time with WMSA volume and associated them with cognitive
and language scores. Two-sided P values of <0.05 were
considered to indicate statistical significance. No corrections
were made for multiple comparisons [46].

Results

Simulations
The proposed method was first validated on simulated

preterm infant brains with known ground-truth (manually drawn

Figure 1.  WMSA detection on simulated preterm T2-weighted brain images.   Images at three mid-axial levels show, from left
to right: noise-free images with manually drawn WMSA regions in yellow (ground truth); addition of Rician noise (SNR = 15) and INU
(20% level); and WMSA detection by our proposed method marked in yellow.
doi: 10.1371/journal.pone.0085475.g001
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WMSA). Qualitatively, Figure 1 shows that the WMSA
detection and quantification results have strong agreement with
the ground truth. In addition, quantitative comparisons
displayed in Figure 3 show very high similarity index values
and low false detection rates at each signal-to-noise (SNR,
which is the mean signal intensity divided by the standard
deviation of the noise) level.

In vivo very preterm data
Skull stripping was performed using the Brain Extraction Tool

(BET) [35]. An experienced neonatologist visually inspected the
detection results. Representative images from one ELBW
infant with WMSA detection highlighted in red are presented in
Figure 4. The automated WMSA detection closely
approximated the visually apparent signal abnormalities.

Figure 2.  A flowchart of the generation of individual tissue probability maps.  A target individual anatomy was first normalized
to the reference space formed by the very preterm probabilistic atlas using LDDMM and the resultant transformation matrix was
saved. The inverse transformation matric was applied to the tissue probability maps to create the desired target individual tissue
probability maps.
doi: 10.1371/journal.pone.0085475.g002

Figure 3.  Comparison of automated WMSA detection on simulated infant MR images with ground truth.  Quantitatively,
automated detection showed very high Dice similarity index values (left) and low false detection rates (right) at each noise level with
ground truth.
doi: 10.1371/journal.pone.0085475.g003
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Figure 4.  Automated WMSA detection at six different axial levels.  Top row: T2-weighted images; bottom row: detected WMSA
marked in red. The automated detections closely approximated the visually apparent signal abnormalities.
doi: 10.1371/journal.pone.0085475.g004

Figure 5.  Linear regression and Pearson correlation analyses of automated quantified WMSA within different WM regions
and Bayley III cognitive and language scores.  R2 denotes linear regression’s coefficient of determination and r denotes Pearson
correlation coefficient. Larger WMSA volumes correspond with both lower cognitive and language scores. WMSA regional volume
within centrum semiovale is a better predictor of Bayley scores than that within the periventricular WM regions.
doi: 10.1371/journal.pone.0085475.g005
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WMSA volume as a predictor of language and cognitive
outcomes

WMSA volume was quantified by taking the product of total
number of positive voxels in the detected binary mask by the
volume of each voxel. The mean (SD) age at follow-up of our
cohort was 23.7 (2.9) months (20.0 [2.8] months corrected
age). The cohort BSID-III language scores had a mean of 94.3
and a standard deviation of 14.0; cognitive scores had a mean
of 88.7 and a standard deviation of 17.4. Correlational
statistical analyses showed that BSID-III language and
cognitive scores were significantly (P value < 0.05) correlated
with total WMSA volume as well as WMSA within the sub-
regions of WM (Figure 5). WMSA at the level of the centrum
semiovale exhibited the strongest linear correlation with Bayley
scores, while WM in the periventricular crossroads exhibited
the weakest correlation. These relationships modeled by linear
regression are also plotted in Figure 5. In bivariate analyses,
sex, gestational age, and postmenstrual age at MRI scan were
not significant and exerted minimal influence on the beta
coefficients.

Discussions

Accurate and reproducible quantification of WMSA is critical
for determining its developmental significance and potentially
identifying high-risk preterm infants that may benefit from
neuroprotective and early intervention therapies. In this paper,
we present a fully automated atlas-guided method to detect
and quantify WMSA on conventional T2-weighted imaging.
Atlas-guided anatomic information was incorporated with
unified segmentation and the relative importance of both
components was controlled by two parameters. We assigned
equal weights to both components, recognizing that different
weighting would likely produce different results. Intuitively, if the
knowledge carried by an atlas can be precisely forwarded to a
target, μatlas should be weighted heavily; otherwise, one should
consider weighing μspm heavily. Importantly, this approach likely
contributed to our finding a significant association between
WMSA volume and short-term standardized measures of
language and cognitive development in ELBW infants.

Several studies have found that adult atlases do not form a
suitable reference space for children and neonates, due to the
considerable differences in size, geometrical proportions and
brain tissue properties [36-39]. However, there are no studies
on how well the atlases of full term neonates match very
preterm infants, and vice versa. As compared to healthy term
newborns, the brains of very preterm infants on TEA MRI
frequently exhibit WMSA, delayed cortical maturation, and
globally smaller structural and tissue volumes, even in the
absence of signs of overt perinatal brain injury [40]. With more
subjects being added to our current cohort study, this would be
an interesting topic to explore. It is also worth noting that a
dynamically time-varying atlas with dense duration coverage
may more accurately reflect the fast rate of brain structure
changes during the first few months of life [26,27,41-44].

Our studies were performed on unsedated infants who
typically fall asleep after being fed and swaddled. The ability to
now use conventional T2-weighted over multiple echo weighted

imaging helps reduce scan time, resulting in less motion
artifacts and need for sedation. Use of parallel imaging
techniques, as used in our study, is also helping greatly in this
regard. These innovations will facilitate larger multicenter
imaging studies in very preterm infants and aid in definitively
establishing the role of advanced brain MRI in this vulnerable
population. Once more cases can be added to our preterm
atlas, additional refinements such as localization of WMSA will
be necessary to fully understand the developmental
significance of WM hyperintensities in periventricular
crossroads regions versus subcortical or centrum semiovale
regions [12,13].

In our cohort of very preterm infants, we demonstrated
automatically detected WMSA volume on TEA MRI to be a
significant predictor of cognitive and language development at
2 years of age. Prior efforts to correlate WMSA with cognitive
outcomes may have failed due to the low reliability of
diagnosing WMSA qualitatively [9,14]. Our findings support the
use of objective automated techniques to accurately quantify
the lesion burden in perinatal-neonatal brain injury.
Furthermore, lesion localization appears important in
distinguishing developmentally normal from pathologic signal
abnormalities, as observed in the periventricular crossroads
and centrum semiovale regions, respectively. This also
facilitates improved outcome prediction.

The volume of WMSA in the centrum semiovale was the
strongest predictor of Bayley scores, particularly language
scores. This is consistent with findings from Krishnan et al. [6],
who reported a significant correlation between apparent
diffusion coefficient values in the centrum semiovale on TEA
diffusion tensor imaging (DTI) and developmental quotient at 2
years corrected age. In a related study from this same cohort
[47], we measured DTI microstructural measures in the
centrum semiovale and found these to be independent
predictors of cognitive/language scores at age 2. Our findings
are also consistent with several other studies that found a
relationship between WMSA and cognitive outcomes [4,5,7,48]
but not all studies [8-11]. Similar to our study, both prior studies
that used a quantitative measure of WMSA found a significant
correlation with cognitive scores [6,48] but only a fraction of the
studies that used a subjective diagnosis found a significant
association. This suggests that measurement error may be
playing a role in these variable outcomes, highlighting the need
for objective quantitative diagnosis. Longer follow-up is also
vital to assess if school-age outcome can be accurately
predicted [49]. Due to the limited cohort size, we modeled the
data using univariate regression only. For future larger studies,
many other cofactors and clinical predictors can be
incorporated to build a more complete and accurate
multivariable model. Additional larger studies with school-age
outcomes are needed to determine if WMSA in conjunction
with other predictive factors could facilitate early infancy
identification of individual infants at high risk for cognitive/
language deficits and permit more intensive early intervention
therapies.

In summary, we constructed an age-specific very preterm
infant probabilistic atlas. Guided with this atlas, we then
proposed a fully automated method for WMSA detection and
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quantification using clinically available T2-weighted images.
Computer simulations and validation using in vivo very preterm
data showed very high detection accuracy. Correlational
analyses demonstrated that WMSA volume at TEA predicted
short-term language and cognitive developmental outcomes.
Our work will facilitate population-based studies to more
accurately characterize WMSA’s long-term sequelae.
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