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Abstract

The topology of most experimentally determined protein domains is defined by the relative arrangement of secondary
structure elements, i.e. a-helices and b-strands, which make up 50–70% of the sequence. Pairing of b-strands defines the
topology of b-sheets. The packing of side chains between a-helices and b-sheets defines the majority of the protein core.
Often, limited experimental datasets restrain the position of secondary structure elements while lacking detail with respect
to loop or side chain conformation. At the same time the regular structure and reduced flexibility of secondary structure
elements make these interactions more predictable when compared to flexible loops and side chains. To determine the
topology of the protein in such settings, we introduce a tailored knowledge-based energy function that evaluates
arrangement of secondary structure elements only. Based on the amino acid Cb atom coordinates within secondary
structure elements, potentials for amino acid pair distance, amino acid environment, secondary structure element packing,
b-strand pairing, loop length, radius of gyration, contact order and secondary structure prediction agreement are defined.
Separate penalty functions exclude conformations with clashes between amino acids or secondary structure elements and
loops that cannot be closed. Each individual term discriminates for native-like protein structures. The composite potential
significantly enriches for native-like models in three different databases of 10,000–12,000 protein models in 80–94% of the
cases. The corresponding application, ‘‘BCL::ScoreProtein,’’ is available at www.meilerlab.org.
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Introduction

Many protein structures have been determined using experi-

mental techniques such as X-ray crystallography and Nuclear

Magnetic Resonance (NMR) spectroscopy. Of the approximately

69,000 protein structures deposited in the Protein Data Bank

(PDB) as of August 2011, X-ray crystallography [1] contributed

88% and nuclear magnetic resonance (NMR) [2] contributed

almost all of the remaining 12% [3]. Although the number of

experimentally determined protein structures grows, challenges

still exist. Membrane proteins are hard to express, crystallize and

are usually too large to be studied by NMR [4]. Some proteins

evade atomic detail structure determination in isolation and adopt

their biologically relevant structure only in the context of a

complete biomolecular assembly, e.g. a virus or macromolecular

machine [5].

The biological importance of these proteins justifies large efforts

to collect limited experimental datasets that describe their

structure. Often these data restrain the topology of the protein,

i.e. the relative placement of secondary structure elements (SSEs).

For example, electron density maps of medium resolution (4–10 Å)

obtained by X-ray crystallography or cryo-Electron Microscopy

(cryo-EM) [6–9] display the location of secondary structure

elements but omit loop regions and side chains. Small-Angle X-

ray Scattering (SAXS) and Small-Angle Neutron Scattering

(SANS) display the overall shape of the protein topology [5,10].

NMR spectroscopy of large and/or membrane proteins often

yields distance and orientation restraints for atoms in the backbone

of SSEs which are easier to label, assign, and interpret. Site-

Directed Spin Labeling Electron Paramagnetic Resonance (SDSL-

EPR) spectroscopy is applied to interrogate the relative positioning

of SSEs relating the information from the tip of the non-natural

and flexible spin label back onto the protein backbone [11,12].

Lastly, cross-linking experiments interpreted with mass spectrom-

etry yield typically distance restraints that again focus on the

relative position of SSEs [13]. To facilitate construction and

evaluation of protein structural models from such limited datasets

a tailored energy function that only evaluates the relative

positioning of SSEs in topologies would be of great value. Ideally,

this energy function should predict the free energy of all states an

amino acid sequence can access, and the lowest free energy should

be associated with the native structure [14]. In principle, the free

energy of a protein structure and its native conformation can then

be derived with sufficient sampling of the potential energy surface

using molecular mechanics force fields (e.g. CHARMM [15] or

AMBER [16]). This approach is often computationally prohibitive

and sometimes suffers from inaccuracies in the potential energy

function. It has been shown that these potentials do not always

distinguish native-like from incorrect structures [17].
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An alternative approach constructs scoring functions whose

global energy minimum coincides with the native conformation for

a database of experimentally determined protein structures of

different sequence. Early versions of such knowledge-based or

statistical potentials were based on contact frequencies [18] and

likely exposure states of amino acid types [19]. Since then, a large

variety of such potentials have been developed (for a review see

[20]), and their applicability to fold recognition (threading) [19]

and protein folding [21] was demonstrated. The underlying

assumption that the knowledge based distribution of features is a

BOLTZMANN-like distribution can be challenged, e.g. for amino acid

pair distances [22]. This is particularly true in protein structure

prediction, where the reference state is dependent on the type and

density of sampling used [23].

Knowledge based energy functions employ probability theory,

and in particular BAYES’ theorem, to circumvent the assumption of

a Boltzmann distribution [22]. Shen and Sali derive a Discrete

Optimized Protein Energy (DOPE) from a sample of native

structures based entirely on probability theory [20]. The potential

achieves enrichments between 3 and 9 for the identification of

native structures in a set of models [24]. Protein structure

prediction with ROSETTA uses a low resolution knowledge-based

scoring function consisting of an amino acid environment term

defined by the burial of an amino acid and an amino acid pair

interaction potential defined by all amino acid pair distances [21].

It further includes a secondary structure packing potential for a-

helix packing and b-strand pairing in b-sheets. A dot product

captures hydrogen bonding in b-strand pairing. This potential uses

the loop length connecting two SSEs as an additional dependent

variable [25].

The energy function developed herein works off the hypothesis

that interactions between SSEs define the core of the protein

structure and are the major contributor to the stability of the

protein fold, at least for a large fraction of folded proteins. In turn,

the majority of stabilizing interactions in the protein structure is

present in SSE-only models. Further, it is hypothesized that these

stabilizing interactions can be more accurately predicted as

flexibility is reduced in the backbone of SSEs when compared to

loop regions or amino acid side chains. The expected higher

accuracy in placing the SSEs will result in a higher accuracy of the

energetic evaluation. As a result, a smoothened energy landscape is

expected that can be searched more readily as it is devoid of noise

introduced by inaccurately placed loop regions and side chains.

The advantages of reduced conformational search space and

smoothened energy landscape pair nicely with the above-

mentioned settings with limited experimental data, since most

experimental restraints relate to SSEs and can thus still be

employed in protein folding. It is expected that models constructed

and evaluated with this energy function can be readily completed

through established protocols for the construction of loops and side

chains. For example, loops can be modeled using fragment

replacement, cyclic coordinate descent [26,27], or kinematic loop

closure [28]. Side chains are added using dead end elimination or

Monte Carlo sampling of rotamer libraries as implemented for

example in SCWRL [29] or ROSETTA [30].

The present manuscript introduces a comprehensive knowl-

edge-based energy potential for proteins which is based on a

simplified representation of the protein including only SSEs, i.e. a-

helices and b-strands. The hypothesis is that for the majority of

well-structured domains the assembly of the SSEs in three-

dimensional space defines the domain topology, i.e. fold. Based on

the amino acid Cb atom coordinates within the SSEs (Ha2 atom

for Glycine) we define an amino acid pair potential, an amino acid

environment potential, a secondary structure element packing

potential, a b-strand pairing potential, a loop length potential, a

radius of gyration potential, a contact order potential, and a

secondary structure formation potential. Separate penalty func-

tions forbid amino acid clashes, SSE clashes and loop distances

that cannot be bridged. The overall energy potential is a linearly

weighted consensus scoring function. These weights balance the

individual terms to evaluate the native-likeliness of the SSE

arrangement and the three dimensional placement of the amino

acids in the context of the fold. While the scoring function is

specialized to evaluate the loop-less protein topology as defined by

the SSEs, it can be applied to full chain protein models as well.

Results and Discussion

Bayes’ Theorem is Applied to Derive a Comprehensive
Knowledge-based Potential

In deriving the present knowledge-based potential we use BAYES’

theorem to estimate the probability of a structure given the

sequence. This strategy follows previously described approaches

[21,25] in expanding this probability into a series of terms that

desribe certain aspect of the protein structure. This strategy avoids

the requirement of a BOLTZMANN-like distribution of states in the

databank:

P structDseqð Þ~P structð Þ|P seqDstructð Þ| 1

P seqð Þ

where seq is the amino acid sequence and struct the protein’s

three dimensional structure. This approach separates the proba-

bility for a given sequence to fold into a certain structure into two

terms. The probability of the structure, P structð Þ, describes the

relative arrangement of SSEs in space independent of their

sequence. The probability of the sequence given this SSE

arrangement, P seqDstructð Þ, evaluates placement of specific amino

acids into these SSEs. For the protein folding problem the

probability of the sequence P seqð Þ is a constant. The terms

P structð Þ and P seqDstructð Þ will each be expressed as a product of

multiple contributing terms Pi Xð Þ.

The Inverse Boltzmann Relation Converts Probabilities
into an Approximation of Energy

The collected probabilities Pi Xð Þ are converted into a free

energy approximation using:

Ei Xð Þ~{RT| ln
pi,observed Xð Þ

pi,background Xð Þ

� �

Where Ei Xð Þ is the energy function for X – being the feature

observed, R – the gas constant, T – temperature, pi,observed Xð Þ –

the probability with which that feature was observed and

pi,background Xð Þ – the probability to observe that feature by

chance. The normalization with pi,background Xð Þ ensures that

favorable states receive a negative energy, unfavorable states a

positive energy. The energy unit RT is arbitrarily defined as 1

BCL energy unit (BCLEU).

The most direct approach computes the total energy as sum of

all individual contributions. One disadvantage of this strategy is

that double-counting of contributions through several energy

terms is difficult to entirely prevent. Other features of protein folds

i.e. side chain hydrogen bonding or backbone interactions of loop

residues will be ignored as they are not or only incompletely

captured by the geometric features observed. To account for part
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of these inaccuracies, each energy term is scaled by an individual

weight. This weight will be optimized to distinguish native-like

from non-native models for a database of proteins.

E~
X

i
wi|Ei Xð Þ

Another disadvantage of knowledge based potentials is the

difficulty to assign an energy penalty to states not observed in

protein structures. Typically small pseudo-counts are added which

result in a positive energy. However, if a state is not observed at all,

the energy assigned through a pseudo-count is arbitrary. To

address this shortcoming, penalties for forbidden geometries are

split into separate energy terms. Thereby the weight optimization

procedure can assign a weight for these penalties independent

from other contributions to the energy function.

While this approach is inherently imperfect it proved effective in

the past. The resolution of protein models evaluated with the

present energy function is too low to unambiguously distinguish

native-like from non-native models based on energy alone. The

objective of the energy function is to enrich for native-like

topologies which can be done effectively in the presence of its

inherent inaccuracies.

Ensure Continuous Differentiability of All Geometric
Parameters and Energy Potentials

Traditionally some geometric parameters observed contain step

functions. An example is the number of neighbors within a given

distance cutoff which is often used as a measure of solvent

exposure [25,31]. To avoid discontinuities at the cutoff, a

continuously differentiable transition function is often introduced

into the definition of a feature:

transz x0,x1,xð Þ~

xƒx0,0

x[ x0,x1ð Þ,1
2

cos
x{x1

x1{x0
p

� �
z1

� �
x§x1,1

8>><
>>:

trans{ x0,x1,xð Þ~

xƒx0,1

x[ x0,x1ð Þ,1
2

cos
x0{x

x1{x0
p

� �
z1

� �
x§x1,0

8>><
>>:

In Figure 1A an example of

trans{ x0,x1,xð Þ~trans{ 4,11:4,xð Þ is shown, which is used to

smooth the neighbor count (described below). The difference

between trans{ and transz is that the first is a step-up, the latter

is a step-down as a function of x. We demonstrated in the past that

such a transition function allows for a neighbor count measure that

is not only continuously differentiable but also more accurately

approximates solvent accessible surface area [31].

Amino Acid Environment Potential
This energy potential captures the preference of an amino acid

to be buried and engage in a hydrophobic interaction in the

protein core or to be exposed and interact with the solvent.

P seqDstructð Þ%P
i

P aai Deið Þ

In order to measure burial, a function that counts the neighbors

of an amino acid was used (Figure 1A):

ei~NC aaið Þ~
X

i{jj jw3

trans{ rlow,rhigh,rij

� �

Weighing the actual neighbor count between rlow and rhigh

smoothens the potential and enables gradient based minimiza-

tions. The thresholds have been optimized for a high correlation of

the neighbor count value with the MSMS solvent accessible

surface area (SASA) approximation implemented in the molecular

visualization package VMD [32]. The lower threshold is set to

4.0 Å, the upper threshold to 11.4 Å [31]. A minimal sequence

separation of three residues reduces the bias introduced by

sequence proximity. This step is particularly necessary to

accurately determine exposure at the end of SSEs. In SSE-only

protein models amino acids at the end of SSEs would otherwise

have an artificially low neighbor count. The background

probability distribution is the normalized sum of all normalized

amino acid exposure distributions. Neighbor count bins that were

empty or had one raw count were assigned a constant repulsive

energy value of 18 BCLEU (Figure 1B).

Amino Acid Pair Distance Potential
P seqDstructð Þ is proportional to the amino acid pairs observed

for a given distance.

P seqDstructð Þ% P
iz12vj

P aai,aaj Drij

� �

In order to define the interactions, statistics for the Cb-atom

distance between pairs of amino acids aai,aaj

� �
have been

collected. For Glycine, the Ha2 hydrogen position was used

(Figure 2A). Distances have been collected between 0 and 20 Å in

bins of size 1 Å. Amino acid pairs have been considered if they

had a sequence separation of at least 12 residues iz12vjð Þ in

order to reduce the bias introduced by sequence proximity. For

each bin the energy was approximated using the inverse

BOLTZMANN relation. The expected background probability is

estimated through the frequency of seeing aai or aaj with any

other amino acid at distance rij . Distance bins that had fewer than

five raw counts were assigned a constant repulsive energy value of

18 BCLEU (Figure 2). Note that a separate penalty will forbid very

close distances not observed in protein structures. These would

result in clashes of side chain atoms if implicitly present.

Loop Length Potential
SSEs are connected by loop or coil regions whose coordinates

are not explicitly considered in the present approach to score

protein folds. However, there are preferences for loops of a certain

length ds to bridge a certain EUCLIDEAN distance dE (Figure 3A).

This is a sequence-independent score contributing to P structð Þ.
Note that the requirement that two SSEs can be physically linked

with a fully extended loop is controlled by a separate loop closure

penalty (read below).

P structð Þ% P
ivj

P dE SSEi,SSEj

� �
DdS SSEi,SSEj

� �� �

BCL::Score—A Novel Protein Energy Potential
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dS SSEi,SSEj

� �
Sequence distance between last residue of

SSEi and first residue of SSEj

dE SSEi,SSEj

� �
EUCLIDEAN distance between end of main

axis of last fragment of SSEi and beginning of main axis first

fragment of SSEj .

The background probability is set to P dE SSEi,SSEj

� �� �
%d2

E

(Figure 3B). For short sequence distances it is favorable that the

EUCLIDEAN distance is short. Long EUCLIDEAN distances are

forbidden by a constantly increasing positive energy which is a

result of the pseudo count divided by the square of the EUCLIDEAN

distance. EUCLIDEAN distances below 4 Å are generally possible but

are only preferred for loops of length 0 and 1 which occur in the

database for bent and kinked SSEs. There is a nearly linear

dependency between the sequence separation and the EUCLIDEAN

distance for up to 7 residues in the loop. The maximally possible

EUCLIDEAN distance increases linearly to a distance of approxi-

mately 32 Å at 10 residues. EUCLIDEAN distances longer than 32 Å

are rarely observed in this database of globular proteins. As loops

Figure 1. Amino acid neighbor count environment potential. A shows the transition function that is used between the lower and upper
threshold in which the weight for the neighbor being considered drops from 1 (4 Å) to 0 (11.4 Å) using half of a cosine function. B shows the
neighbor count energy potential for all 20 amino acids with their three letter code.
doi:10.1371/journal.pone.0049242.g001

Figure 2. Amino acid pair distance potentials. In A the idealized structure of 1ubi with Cb and Ha2 atoms is shown with the distances between
ILE 32 and LEU 56 (4.7 Å) and between LYS 11 and GLU 34 (8.3 Å). B shows selected amino acid pair distance potentials for Trp-Trp as an example for
p-stacking interaction, ILE-LEU as an example for vdW apolar interaction, ARG-GLU as an example for Coulomb attraction, and Arg-Lys as an example
for Coulomb repulsion.
doi:10.1371/journal.pone.0049242.g002

BCL::Score—A Novel Protein Energy Potential
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get longer, the range of EUCLIDEAN distance they bridge becomes

wider.

b-Strand Pairing Potential
This potential evaluates the pairing of two b-strand SSEs to

form a b-sheet contact.

P structð Þ% P
ivj

P pair SSEi,SSEj

� �
DSSEi,SSEj

� �

To compute pair SSEi,SSEj

� �
both strands are decomposed

into overlapping fragments of three amino acids (Figure 4E). A b-

sheet contact then is defined as a series of l pairs of aligned

fragments. The distance d and torsion angle H between each pair

of fragments is evaluated (Figure 4A). Further, a weight wbb{pair is

used to distinguish a planar arrangement of two b-strands (b-

strand pairing) from an opposing arrangement (b-sheet packing,

Figure 4D, for details see Methods). l is limited to the number of

fragments in the shorter SSE.:

pair SSEi,SSEj

� �
~ P

1vkvl
P dk,Hk,wk,bb{pair

� �

dk shortest, orthogonal distance in fragment pair k

Hk torsion angle at shortest, orthogonal distance in

fragment pair k

wk,bb{pair weight that decreases as the arrangement deviates

from planar b-strand pairing

The potential represents the likelihood of observing a given

distance between the center of two b-strand fragments and a given

twist of two b-strand fragments (Figure 5A) with respect to each

other. Note that the potential omits explicit evaluation of

backbone hydrogen bonds to keep the energy landscape smooth.

The background probability is assumed to be proportional to d

since the chance to find a second b-strand by chance in a parallel

arrangements grows approximately linearly with the distance of

the object, similar to the girth of a circle.

Secondary Structure Element Packing Potential
While b-strand pairing is defined by backbone hydrogen bonds,

SSE packing is driven through side chain interaction. As a result,

distance and torsion angles are less tightly controlled which is why

we treat both potentials separately. Aside from this separation,

SSE packing potentials have been derived in a fashion similar to

the b-strand pairing potential.

P structð Þ% P
ivj

P pack SSEi,SSEj

� �
DSSEi,SSEj

� �

To compute pack SSEi,SSEj

� �
both SSEs are decomposed into

overlapping fragments of three amino acids (b-strands) and five

amino acids (a-helices, Figure 4E). A contact then is defined as a

series of l pairs of aligned fragments. The distance d and torsion

angle H between each pair of fragments is evaluated (Figure 4,

Figure 5B–D).

pack SSEi,SSEj

� �
~ P

1vkvl
P dk,Hk,wk,pack

� �

dk shortest, orthogonal distance in fragment pair k

Hk torsion angle at shortest, orthogonal distance in

fragment pair k

wk,pack weight that decreases if b-sheets in the packing

interact via their edge

The term wk,pack is dependent on the types of SSEs in the

packing. For the helix-helix interaction, waa{pack~1. For helix-

strand interactions, wab{pack decreases from 1 if the face of the b-

strand points away from the a-helix. For b-sheet packing,

wbb{pack~1 decreases from 1 if the b-strands don’t face each

other (Figure 4D, details in Methods). The background probability

Figure 3. Loop closure potential. A describes two b-strands connected by a loop characterized by the Euclidean distance between the two ends
and the number of residues in the loop connecting those two ends. B describes the derived energy potential, where the energy is a function of the
number of residues in the loop and the Euclidean distance between the ends of the main axes.
doi:10.1371/journal.pone.0049242.g003
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is assumed to be proportional to d. The resulting potentials plot

energy with respect to distance and twist angle.

Contact Order Score
Using the assembly of SSEs to describe the topology of a protein

enables the optimization protocol to sample topologies with many

non-local contacts. One measure for the complexity of the

topology is the contact order. Contact order CO is defined as

the average sequence separation of all amino acids in contact,

conventionally identified by the closest heavy atom distance

between two amino acids, = 8 Å [33]. In this score, the Cb-Cb

distance is used. A larger contact order constitutes a more complex

topology. The contact order score is added to restrain the models

constructed to a likely contact order range. To ensure compara-

bility we normalize the square of the contact order with the

sequence length to compute NCO~CO2=length. For native

proteins, NCO is largely independent of sequence length being in

the range of 0.25 to 0.60 (Figure S1). An energy term (Figure 6A)

was added based on the hypothesis:

P structð Þ%P NCOð Þ

Radius of Gyration Potential
The square of the radius of gyration is proportional to en energy

term that describes the compactness of the fold [21]. It is

computed as the mean square distance of all Cb atom coordinates

(Ha2 for Glycine) to their mean position:

R2
gyr~

1

n

Xn

i~1

ri{rmeanð Þ2

The term e{R2
gyr can directly be used to estimate P structð Þ if

sequence length is constant [34]. To enable the energy function to

compare proteins of variable length e.g. during the assembly from

SSEs, we introduce a normalized radius of gyration

NRgyr~R2
gyr=length. For native proteins, NRgyr is largely

independent of sequence length being in the range of 0.8 to 2.0

(Figure S2). An energy term (Figure 6B) was added based on the

hypothesis:

P structð Þ%P NRgyr

� �

Extended a-helical coil-coiled structures as well as protomers

that form obligate oligomers were removed prior to obtaining this

statistic.

Figure 4. SSE Fragment packing. SSE fragments are shown with their geometric packing descriptors. A a1 and a2 are orthogonal, if the shortest
connection between the main axes is orthogonal. B connection is not orthogonal, since the minimal interface length m cannot be achieved. C h is the
twist angle around the shortest connection – which is equivalent to the dihedral angle between main axis 1 – shortest connection – main axis 2. D v
is the offset from the optimal expected position for a helix-strand interaction, if it is 0u, the helix is on top of the strand, if it is 90u, the helix would
interact with the backbone of the strand. v1 and v2 are the offsets for a strand-strand packing – for omegas close to 90u, it is a strand backbone
pairing interaction dominated by hydrogen bond interaction within a sheet, if they are close to 0u, it is dominated by side chain interactions like seen
in sheet-sandwiches. E every SSE is represented as multiple fragments and the SSE interaction is described by the list of all fragment interactions,
leaving out additional fragments of the longer SSE with suboptimal packing (bottom grey helix fragment).
doi:10.1371/journal.pone.0049242.g004
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Secondary Structure Prediction Agreement
Given an amino acid sequence, JUFO [35] and PSIPRED [36]

calculate probabilities for each amino acid to be part of an a-

helical, b-strand or a coil SSE. Those prediction methods average

a per-residue accuracy of up to 80%. This fact can be used to

evaluate the per-residue assigned secondary structure for a given

protein model.

P seqDstructð Þ%P
i

P aai DSSið Þ

Figure 5. Strand pairing and SSE packing potential. Shown are all secondary structure element packing potentials with their schematic
shortest connections, twist angle and their derived potentials. A shows the b-Strand-b-Strand pairing potential with prominent distance of 4.75 Å and
angles of 215u and 165u. B shows the a-Helix-a-Helix packing with preferred packing distance of 10 Å and the preferred parallel angle of 245u and
the anti-parallel packing of 135u. C shows the b-Sheet-b-Sheet packing potential with a preferred distance 10 Å and angles of 230u and 150 u. D
shows the a-Helix-b-Sheet packing with its packing distance around 10 Å and an anti-parallel angle of 150u–180u.
doi:10.1371/journal.pone.0049242.g005

Figure 6. Contact order and square radius of gyration potential. A Fold complexity is represented by the contact order potential. The
potential is given as the likelihood to observe a contact order to number of residues ratio in the model. B Statistics for the square radius of gyration
over the number of residues were directly collected in a histogram and converted into a potential.
doi:10.1371/journal.pone.0049242.g006
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SSi secondary structure of amino acid i in the structure

Due to the inaccuracies in the secondary structure predictions, a

mean probability and standard deviation for the probability for

actual secondary structures are derived, and the error function of

the standard score is defined as the potential used:

ESS Pr ed~
X

i

{erf
pSS,i{mSS

sSS

� �

pSS,i probability of the assigned secondary structure in the

model

mSS mean probability for accurately predicted secondary

structure

sSS standard deviation for accurately predicted secondary

structure

The use of the standard score makes it possible to use different

secondary structure prediction methods, of different sensitivity and

dynamic range of probabilities. The error function projects the

standard score in a less sensitive range if probabilities strongly

disagree with the average. Parameters have been derived for

JUFO and PSIPRED (Table 1).

Amino Acid Clash, SSE Clash and Loop Closure Constraint
A difficulty with knowledge based potentials is that a

BOLTZMANN-like distribution is assumed for the dataset used from

which the potentials are derived. Although all potentials described

above are based on probabilistic theory, they are ambiguous to

geometries absent in native structures. Since no counts are

observed for these geometries the associated energies would be

infinitely high. However, while the energy will be elevated it will

not be infinite. The precise penalty for such non-native features

remains difficult to evaluate. Often one pseudo count for every

observation is added (according to the rule of succession, ‘‘LAPLACE

rule’’) giving all non-observed events an equally high penalty. The

precise penalty for such non-native features is difficult to

determine. To enable fine-tuning of the energy penalties in

regions of non-observed events separate energy components are

introduced. This procedure allows an independent choice of a

weight changing the penalty amplitude in ‘‘structurally forbidden’’

regions. The procedure has a second advantage: vdW (van der

Waals) repulsion is affiliated with steeply rising energies over a

small change in distance. A separate potential allows for a finer

binning of these penalty potentials when compared to the

attractive counter-parts.

Amino acid pair clash. For the amino acid pair distance

potentials, all occurring amino acid pair distances within protein

structures have been calculated. They were binned with a

resolution of 0.05 Å for each amino acid type pair. The first bin

with counts.1, when iterating from shorter distances to larger

distance, was determined to be the minimum permitted distance.

Using this threshold, a ‘‘penalty’’ function is defined:

P structDseqð Þ% P
ivj

P aai,aaj Drij

� �

EAAclash~
X
ivj

trans{ m aai,aaj

� �
{1A,m aai,aaj

� �
,rij

� �

m aai,aaj

� �
Shortest allowed distance for amino acid type

pair

rij Distance between amino acid pair

This term is complementary to the amino acid pair distance

potential. If the distance between two amino acids is below the

allowed distance for this pair of amino acid types, a positive energy

penalty is applied, with a maximum at 1 Å below the allowed

distance. A matrix of minimal distances for all amino acids types is

depicted in the Figure S3.

SSE clash. Although the amino acid clash potential suffices in

‘‘detecting’’ clashes of side chains in the packing of SSE, it does not

penalize special cases of overlapping SSEs. An example for these

kinds of topologies is when one b-strand is positioned on top of

another b-strand but offset by one amino acid. Cb atoms point in

opposite directions avoiding any clash while backbone atoms are

not explicitly modeled. To prevent such situations a clash term

that is based on the packing SSE fragments was derived. From

unoccupied bins in the SSE packing and pairing potentials

(Figure 5) minimal distances between two SSE fragments have

been defined as a-helix/a-helix 4 Å, a-helix/b-strand 4 Å, b-

strand/b-strand 3 Å:

P structð Þ% P
i,j,k,l

P d Fi,k,Fj,l

� �
DFi,k,Fj,l

� �

ESSEclash~
X

ivj,k,l

trans{ m SSEi,k,SSEj,l

� �
{1A,m SSEi,k ,SSEj,l

� �
,di,j,k,l

� �

m SSEi,k,SSEj,l

� �
Minimal allowed distance for aligned

fragment pair k and l of SSEs i and j

di,j,k,l Length of shortest connection between the two SSE

fragments

This term is complementary to the SSE packing and b-strand

pairing potential. If the distance between two SSE fragments is

smaller than m SSEi,k,SSEj,l

� �
, a positive energy is the result. The

full positive energy is reached if the distance is 1 Å below the

allowed distance for that pair of SSE types.

Loop closure constraint. In order to guarantee the possi-

bility to close loops it proved necessary to add a steep penalty if the

EUCLIDEAN distance between ends of SSEs becomes too long. In

contrast to the loop length potential, the loop closure constraint

only considers SSEs adjacent in sequence. The EUCLIDEAN distance

Table 1. Mean and standard deviation of predicted probabilities.

mss helix sss helix mss strand sss strand mss coil sss coil

JUFO 0.67 0.21 0.58 0.24 0.59 0.18

PSIPRED 0.76 0.20 0.71 0.27 0.73 0.21

For secondary structure prediction (JUFO and PSIPRED) and secondary structure type, the predicted probabilities are averaged and a standard deviation is derived.
doi:10.1371/journal.pone.0049242.t001
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between the terminal C atom and the starting N atom of the

following SSEs dCN is evaluated.

s dCN is generally shorter than d lim
CN~2:11Az2:56|

loop length. This relation was obtained by selecting the EUCLIDEAN

distance for a loop length, which is the 5th percentile of the longest

distances. For lengths between one and twenty amino acids in the

databank, a linear regression was fitted (Figure S4). We evaluate

therefore DdCN~dCN{d lim
CN :

P structð Þ% P
n{1

i
P DdCN,i DSSEi,SSEiz1ð Þ

ELoopClosure~
Xn{1

i

transz 0A,1A,DdCN,ið Þ

This potential is complementary to the loop length potential. It

forbids loops that cannot be closed because of too large EUCLIDEAN

distances. Additionally, it measures the distance between the two

atoms that are the anchors for the loop, while the loop length

potential is using a more crude estimation for the ends of the SSEs

using only the tips of the fragment main axes.

53 Protein Model Sets have been Generated Using
Rosetta, a BCL Perturbation Protocol and a BCL Folding
Protocol

In order to benchmark the performance of the knowledge-based

energy potentials, 53 diverse proteins have been selected and

structural models were generated computationally using three

methods: (1) Using ROSETTA de novo protein structure prediction. (2)

Removing loops from native structures and applying systematic

perturbations to the structures. The sets of perturbations were

chosen to generate models with preserved native-like topologies.

(3) Re-assembling the SSEs present in the native structures leading

to protein models of various arrangements and topologies. Details

on the protocols are described in the Methods section.

The rationale for usage of three separate sets of protein models

was to maximize diversity in the models thereby maximizing

generalizability of the scoring function. The identification of

native-like structures was based on three measures: (1)

RMSD100,8 Å (Ca root mean square deviation normalized to

a protein length of 100 residues, see [37]), (2) CR12.20% (contact

recovery over 12 residues, see accompanying manuscript) and (3)

GDT_TS.25% [38]. The percentage of native-like models varies

between 0 and 99.5% for the protein model sets. Only model sets

with percentage of native-like models between 1% and 99% have

been used for the analysis in a ten-fold cross validation calculation

of enrichments. The cross validation subsets have been generated

by randomly removing models so that each subset contained 10%

correctly folded models and 90% incorrect models.

Enrichment is a Good Measure to Evaluate the
Performance of an Energy Potential

Figure S5 shows a representative RMSD100-energy plot of a set

of protein models that was prepared to contain 10% of native-like

models below an 8 Å RMSD100 cutoff. The 8 Å cutoff is based on

the observation that two protein models typically share the same

topology below that measure. The horizontal line denotes the best

10% of the models with respect to the scoring function used.

Models that are below the RMSD100 cutoff are positives Pð Þ, and

if they are below the energy of the best 10% by energy, they are

considered as true positives TPð Þ. If the model has a high energy

despite being correct by the RMSD100, it is considered a false

positive FPð Þ. FN – false negative and TN – true negative are

defined similarly. The optimal result would be to have empty FN
and FP quadrants, because this would indicate that the energy

function would be completely accurate in identifying native-like

models by RMSD100. The enrichment is now defined by the ratio

of true positives within the 10% native-like models TPzFNð Þ
divided by the initial ratio of native-like models (defined by the

RMSD100 cutoff) to the total number of models

TPzFNzFPzTNð Þ.

enrichment~
TP

TPzFP
� PzN

P

For the following benchmark PzNð Þ=P~10 is set, limiting the

maximal enrichment to 10. An enrichment of 1 corresponds to no

improvement. Enrichment values smaller than 1 suggest that the

score deselects native-like SSE arrangements.

Benchmark Enrichment of Native Like Structures Through
Potentials

Table 2 contains enrichments for the 53 protein sets from three

different methods each, and the various scores. Note that the

number of proteins considered can be smaller than 53 if the

number of native-like models was insufficient to confidently

determine enrichment (read above). Statistical significance was

established by computing the average enrichment over 10 cross-

validations, subtracting the expected mean of 1.0 (for a non-

discriminating potential), and dividing the result by the standard

deviation of the enrichment over of the 10 cross validation sets (Z-

score). The percent of model sets that are enriched by a statistically

significant factor are reported (Z-score.1.0, Table 2). In

comparison to the balanced performance of the consensus scoring

with an optimized weight set (Table 3), individual components of

the scoring function generally discriminate well against random

models for the BCL folded and perturbed structures but do

perform worse for ROSETTA folded models. This observation is

attributed to the fact that ROSETTA folded models will generally

score well in the BCL::Score energy function due to the similarity

of the two scoring schemes. The amino acid pair distance, amino

acid neighbor count and the SSE packing potentials achieve

enrichments greater than 1.0 for nearly all the protein sets. The

secondary structure prediction scores using PSIPRED secondary

structure probabilities enrich ROSETTA and perturbation model

sets, which have varying SSE content. BCL folded models cannot

be discriminated, since the secondary structure is constant. The

consensus scoring function enriches significantly (67% of ROSETTA,

77% of perturbation model sets for RMSD,8 Å). No statistically

significant improvement for BCL folded models is observed. We

attribute this to the fact that these models were subject to

BCL::Score energy evaluation during folding creating a circular

dependence. Considering the performance with respect to

GDT_TS.25%, for the three different models sets, 80%, 94%

and 83% have a significant enriched model set for ROSETTA as well

as BCL perturbed and folded model sets.

BCL::Score Potentials Recapitulate Expected Amino Acid
Interaction Preferences

The scoring function was developed for protein models

consisting of disconnected, idealized SSEs. The absence of

atomic-detail in the SSE-only protein models inherently prevents

BCL::Score—A Novel Protein Energy Potential
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unambiguous identification of the native conformation in a set of

models. Nevertheless, the amino acid pair potential and the amino

acid environment potential both select for native-like arrange-

ments of amino acids. The environment potential follows the

expected trend preferring around three neighbors for the

negatively charged Glutamate residue but around eleven neigh-

bors for the apolar Valine. For Glycine two minima are observed –

very few and very many neighbors. This is somewhat counter-

intuitive as Glycine prefers exposed positions in loop regions.

However, the potential P aai Deið Þ reflects the probability of

encountering a specific amino acid type given a certain exposure

value, rather than the most probable exposure for a given amino

acid type. In densely packed positions with an extremely high

number of neighbors only Glycine will fit giving it the high

probability for such positions. Positions with neighbor counts

above twelve are rare in folded proteins and should therefore be

disfavored when predicting protein structures. However, this fact

will be represented by P structð Þ and is correctly omitted in

P seqDstructð Þ. Leucine and Isoleucine are expected to interact

favorably in the pair potential due to vdW attraction, which is

reflected by the negative energies for short distances (Figure 2B).

Arginine and Lysine with positively charged side chains are

expected to experience COULOMB repulsion when approaching

each other which is reflected by the positive energy for short Cb-

atom distances. Tryptophan pairs may engage in p-stacking

interactions, which are evidenced by a preferred Cb-atom distance

around 4 Å (b-strand pairing) and 8 Å (SSE packing). Arginine

and Lysine are both positively charged and repel each other at

close proximity as reflected by the positive energies for Cb-atom

distances smaller 10 Å. These findings imply that for reduced

SSE-only protein models a Cb-atom side chain representation (Ha2

for Glycine) is sufficient to estimate P seqDstructð Þ.

Secondary Structure Element Arrangement Determines
the Domain Topology

The preferential arrangement of SSEs in a protein domain

results from the sum of many atom-atom interactions. In the

absence of atomic-detail in SSE-only protein models, BCL::Score

knowledge-based potentials derived from P structð Þ discriminate

native-like SSE arrangements. An optimal b-strand distance

between 4.25 and 5.00 Å is observed. The optimal twist angle is

around 215u (parallel b-strand contact) and 165u (anti-parallel b-

strand contact). A twist angle of 165u is more pronounced as anti-

parallel b-strand contacts are slightly overrepresented in the

database. Two a-helices pack in a preferred angle of 245u. The

anti-parallel packing is slightly less common at around 135u.
Further, weak minima around 15u and 2165u are observed. Both

cases of packing have a preferred distance of 9–12 Å (Figure 5

Figure 5B). For a-helix-b-sheet packing, the anti-parallel case with

angles between 150u and 180u is most common as seen in the

TIM-barrel fold or other ‘‘ROSSMAN-Folds’’ [32] (Figure 5D). As

for the a-helix-a-helix packing, the optimal distance is around 9–

12 Å. b-sandwiches pack with a distance of 9–12 Å and twist

angles of 230u or 150u (Figure 5C). Twist angles lead in general to

an improved packing as the interacting side chains can reach into

gaps left by the side chains of the opposite SSE [33]. Ridges and

grooves are formed on the surface of helices. These ridges are

formed by residues usually separated by four in sequence. This

model explains the predominant packing angle of around 50u.
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Maximal Enrichment is Limited Due to the Incomplete,
Reduced Representation of Protein Structure

The maximum enrichment for any of the scores for any set of

models is never above 5 (Table S1). We attribute this finding to

two limitations of BCL::Score: Firstly, the protein models used are

incomplete. Contributions of loop and coil regions to the overall

energy are neglected resulting in inherent inaccuracies. Secondly,

amino acids are represented by their Cb-atom only. This

procedure introduces additional inaccuracies in the energetic

evaluation. As discussed in the introduction, these inaccuracies are

taken into account to enable a more rapid sampling of domain

topology specifically in a limited experimental data setting.

Subsequently protein models can be completed and refined using

higher accuracy all-atom energy functions. Nevertheless,

BCL::Score knowledge-based potentials enrich a diverse set of

decoys with enrichments up to 7 for individual proteins with

respect to the weighted consensus score (Table S1, last column).

This is a respectable achievement in particular when keeping in

mind that some of the protein models are created using an energy

function that necessarily covers some or even most aspects of the

BCL::Score knowledge-based potential (model sets 1 and 3).

Additionally, the other models start from experimental protein

structures (model set 2). Accordingly the model sets contain many

native-like features that are expected to score well with

BCL::Score.

Cb Atom is Sufficient to Approximate Side Chain Position
The amino acid pair potential and the amino acid environment

potential are both successful in discriminating for native-like

protein structures. This implies that a Cb atom side chain

representation (Ha2 for Glycine) is sufficient not only for describing

possible interactions with other amino acids as a pair potential but

also as an environment potential.

Table 4. Ranking of native structure within different decosy‘r’us model sets.

set Pdb-Chain DFIRE ROSETTA ModPipe-Pair ModPipe-Surf ModPipe-Comb DOPE BCL::Score

fisa 1fc2 254 158 491 1 453 375 480

fisa 1hdd-C 1 90 293 18 135 1 60

fisa 2cro 1 26 11 146 19 1 1

fisa 4icb 1 1 196 2 167 1 1

correct 3 1 0 1 (2) 0 3 2

fisa_casp3 1bg8-A 1 1068 1 1180 282 1 9

fisa_casp3 1bl0 1 960 4 912 86 1 246

fisa_casp3 1jwe 1 1177 1 1119 6 1 1

correct 3 0 2 (3) 0 0 (1) 3 1 (2)

lmds 1b0n-B 430 300 56 186 18 34 182

lmds 1bba 501 174 501 117 444 501 469

lmds 1fc2 501 291 325 54 222 476 501

lmds 1ctf 1 1 1 1 1 1 12

lmds 1dtk 1 9 4 1 1 1 4

lmds 1igd 1 1 1 3 1 1 1

lmds 1shf-A 1 5 24 18 7 1 2

lmds 2cro 1 2 4 28 12 1 1

lmds 2ovo 1 29 5 8 2 1 1

lmds 4pti 1 4 1 44 1 1 3

correct 7 2 (6) 3 (6) 2 (4) 4 (6) 7 3 (6)

lattice_ssfit 1beo 1 1 1 1 1 1 1

lattice_ssfit 1ctf 1 1 1 1 1 1 1

lattice_ssfit 1dtk-A 1 1 1 35 1 1 1

lattice_ssfit 1fca 1 1 1 4 1 1 1

lattice_ssfit 1nkl 1 1 1 1 1 1 1

lattice_ssfit 1pgb 1 1 1 3 1 1 1

lattice_ssfit 1trl-A 1 45 1 123 1 1 6

lattice_ssfit 4icb 1 1 1 3 1 1 1

correct 8 7 8 3 (6) 8 8 7 (8)

sum rank 1 21 10 13 6 12 21 13

sum rank 10 21 14 17 12 15 21 18

For different model sets from ‘‘decoys‘r’us’’ [39], the rank of the native structure, using different energy potentials, was determined. Ranks for DFIRE through DOPE were
copied from the ‘‘DOPE’’ publication [20]. For each different model set, the number of sets for which the native was ranked 1st was counted and reported. In brackets
ranks among the top 10 were counted as correct.
doi:10.1371/journal.pone.0049242.t004
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Enrichment was Achieved for a Diverse set of Protein
Models Regardless of the Sampling Algorithm

We tested BCL::Score potentials in conjunction with ROSETTA-

generated models (model set 1) to assess the general applicability of

the scoring approach. ROSETTA models have a complete and

defined backbone conformation. All BCL::Score potentials except

for the loop length and contact order score can enrich ROSETTA

models for native like conformations. It is expected that the loop

length potential will not enrich ROSETTA models as they have a

continuous amino acid chain. The loop length potential enriches

BCL perturbed and folded structures with a discontinued amino

acid chain. Due to the unrestrained sampling of the secondary

structure elements, loops are violated and the potential is

penalizing this arrangement. The contact order score prevents

low and highly complex folds if several SSEs are swapped or not in

close proximity. This is the case for BCL folded and perturbed

structures, where the potential helps regardless of size and SSE

composition, but unlikely in ROSETTA models which are biased

towards lower contact orders. As expected, the b-strand pairing

score contributes only for b-strand containing proteins. The radius

of gyration score performs well for proteins,150 residues, but

seems to degrade for larger proteins. It can be observed that for

GDT_TS and RMSD100 classification, the percentage drops

under 50% for the BCL perturbed structures. This is expected as

this model set was created to preserve protein size and relative

positioning of SSEs that is native-like but create non-native

topologies. We observe the best consensus function discrimination

for native like models for this model set. The weighted sum of

individual terms performs comparably over all benchmark sets and

shows that a linear combination can overcome some weaknesses of

the individual terms.

BCL::Score Ranking and Enrichment Performance in
Comparison to Other Energy Potentials

Table 4 shows the rank of the native structure for different small

decoy sets (,500 models) of the ‘‘decoys‘r’us’’ protein model sets

[39]. The ranks for the energy function in the comparison are

extracted from experiments for the DOPE potential [20].

Although BCL::Score energy potentials were not designed for full

atom protein models represented in the protein model sets, it can

rank the native first for 52% of the sets. Of the six tested energy

potentials success rates vary (24%, 40%, 48%, 52%, 84%, 84%)

placing BCL::Score somewhere in the middle. Keeping in mind,

that the other scoring functions leverage additional detail, some

even atomic detail, this is a respectable performance. BCL::Score

filters reliably models of unlikely overall topology but has difficulty

ranking models with native-like topologies. This notion is

reinforced when ranking the native structure among the top ten

models is counted as success. The BCL::Score success rate

increases to 72% compared to 48%, 56%, 60%, 68%, 84% and

84% seen for the other energy functions.

Table 5. Enrichment of native like structures within the moulder decoy set.

pdbid RMSD criteria [Å] DFIRE ROSETTA ModPipe-Pair ModPipe-Surf ModPipe-Comb DOPE BCL::Score

1bbh 3.53 7.00 7.33 5.00 8.33 7.33 8.67 4.22

1c2r 5.83 6.33 8.00 5.00 5.33 7.00 7.67 3.45

1cau 7.81 5.00 7.00 4.33 6.67 5.67 5.00 3.36

1cew 11.36 4.33 3.00 4.00 3.00 3.33 4.00 2.44

1cid 4.69 5.33 5.67 4.33 5.67 5.00 5.67 4.48

1dxt 3.52 5.33 4.33 5.00 4.67 5.33 6.67 2.93

1eaf 9.34 5.00 7.00 5.00 6.67 6.00 6.00 3.85

1gky 10.77 8.00 7.00 8.00 8.33 9.00 8.67 2.93

1lga 5.08 5.33 3.33 2.67 3.00 2.33 5.33 3.19

1mdc 3.26 7.67 6.00 4.33 6.33 6.00 7.67 4.40

1mup 4.83 8.00 6.33 7.33 7.67 7.67 8.67 4.57

1onc 3.60 7.33 6.67 6.67 7.67 7.00 7.67 4.05

2afn 5.47 4.67 6.00 5.00 5.67 6.67 4.00 3.45

2cmd 3.80 5.67 5.33 3.33 4.33 4.33 5.00 3.53

2fbj 5.06 7.33 7.00 7.00 6.67 7.33 6.33 3.71

2mta 3.52 4.00 5.00 2.67 4.33 3.67 4.33 4.20

2pna 3.89 6.33 5.33 6.33 7.33 6.67 7.33 4.05

2sim 6.13 6.67 4.67 4.00 4.00 4.00 6.00 3.36

4sbv 14.50 5.00 6.00 5.67 4.33 5.67 5.00 4.05

8i1b 4.17 5.67 5.33 4.00 4.67 5.67 5.33 3.65

Average 6.00 5.82 4.98 5.73 5.78 6.25 3.69

Median 5.67 6.00 5.00 5.67 5.84 6.00 3.68

Min 4.00 3.00 2.67 3.00 2.33 4.00 2.44

Max 8.00 8.00 8.00 8.33 9.00 8.67 4.57

For different model sets of the ‘‘moulder’’ decoy set [20], 10% enrichments were calculated. The 10% enrichment for different model sets also implies different RMSD
cutoffs. The average, median, minimum, and maximum enrichment over the model sets is reported.
doi:10.1371/journal.pone.0049242.t005
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Table 5 summarizes enrichments for the ‘‘moulder’’ decoy set

[20] for different energy potentials. BCL::Score is able to enrich all

of the model sets by a factor between 2.44 and 4.57. This

performance is clearly reduced when compared to full atom

potentials which achieve enrichments between 2.67 and 8. This

decoy set was created by threading different sequences on similar

homology models resulting in protein models with native-like

overall topologies. As a result, the strength of the BCL::Score

functions in discriminating non-native topologies is not assessed in

this experiment.

Conclusions
A knowledge-based scoring function is presented optimized for

SSE-only models. It enriches native-like topologies in diverse sets

of protein models. We expect this scoring to be beneficial for

certain settings in de novo protein structure determination: (1) When

folding large proteins with complex topology, where simultaneous

sampling of SSE arrangements and loop conformations would

create a size limit for de novo protein structure determination. The

BCL::Score potential for SSE-only models allows sampling of SSE

arrangement independent of and prior to the sampling of loop

conformations. This approach has the potential to increase the size

limit in de novo protein structure determination. (2) Limited

experimental datasets often restrain the position of SSEs, for

example density maps obtained form cryo-Electron Microscopy

[40] or EPR distance restraints [41]. We expect that the present

potential can be applied to assemble the topology of large proteins

from such datasets. In fact, an early version of BCL::Score has

been successfully applied to medium resolution density maps form

cryo-Electron Microscopy [9].

Materials and Methods

Divergent Databank of High Resolution Crystal Structures
Statistics have been derived from a divergent high resolution

subset of the protein data bank (PDB) which was generated using

the protein sequence culling server ‘‘PISCES’’ [42]. With a

sequence identity limit of 25%, resolutions up to 2.0 Å, a

maximum R-value of 0.3, sequence lengths of 40 residues

minimum only X-ray structures have been culled from the PDB.

This guarantees that similar sequences are not over represented,

introducing a bias to proteins that are amenable to crystallography

or are of higher interest in the scientific fields. All membrane

proteins have been excluded. The resulting databank has 4,379

chains in 3,409 PDB entries. This approach to create the

representative protein database might leave multiple members of

the more popular fold groups thereby over-representing certain

secondary structure packing motifs. An alternative approach

would be a non-redundant fold databank created from SCOP

[43] or CATH [44] classifications. Our rational for the first

approach is that a non-redundant fold database would not cover

the diversity of amino acid environments and interactions that are

found within similar folds of diverse sequence worsening the

statistics of the amino acid centric potentials. Further we argue

that secondary structure packing motifs are conserved beyond the

boundaries of individual folds. The statistics describing these

packing interactions should therefore not be biased by occasional

repetition of one fold group.

Secondary Structure Element Packing
In order to develop statistics for the packing between two SSEs,

SSE pairs were collected from protein models in the databank. a-

helices with a length,7 residues and b-strands,5 residues have

been ignored, and a-helices or b-strands have been described as

overlapping sets of fragments of the length of 5 residues for a-

helices and 3 residues for b-strands (Figure 4A). An ideal SSE

fragment was superimposed with the backbone coordinates of the

SSE fragment from the PDB to determine the orientation

(translation and rotation in Euclidean space) of this fragment.

The main axes have been considered to be line segments; a

minimal interface length between the two SSE fragments of 4 Å

was achieved by subtracting 2 Å from each end of each SSE’s

main axis (Figure 4B). The packing between two fragments was

described by the analytically shortest connection between those

two line segments. If this connection was orthogonal, it was

considered to be a full contact. If the connection was not

orthogonal, a contact weight was defined as a function of the angle

between the main axes and the shortest connection. This angle

between 90u and 0u was then used to determine a weight between

0 and 1 using half of a cosine function and for both angles those

weights are multiplied.

wI~
cos 2a1z1

2

� �
cos 2a2z1

2

� �

The twist between the SSE fragments is defined by the dihedral

angle h between the SSE main axes (Figure 4C). The relative

offset, which is important when strand backbone hydrogen

interactions could play a role, is defined by the offset angle v
between 0u and 90u (Figure 4D). For a strand-helix packing, only

one offset angle can be defined, where an v close to 90u is not

favorable, a packing with an offset of 0u is desired, since it is

dominated by amino acid side chain interactions. The weight is

defined:

wO~
cos 2vz1

2

If two strands are involved in the interaction, it is necessary to

distinguish a strand-strand backbone hydrogen bond mediated

packing and a sheet-sheet (sandwich-like) amino acid side chain

mediated interaction. For omega values near 90u it has a strand-

strand interaction character; if the omega values are close to 0u, it

is considered to be a sheet-sandwich interaction. Two weights can

be defined:

wsandwich~
cos 2v1z1

2

� �
cos 2v2z1

2

� �

wpairing~ 1{
cos 2v1z1

2

� �
1{

cos 2v2z1

2

� �

The packing between two SSEs is represented as a list of

fragment interactions (Figure 4E), with distance and dihedral

angle. For each fragment of the shorter SSE, the interaction

weight to every fragment of the longer SSE (for identical sizes, the

SSE that comes first in sequence is the ‘‘shorter’’ one) is calculated

and the fragment pair with the highest interaction weight wI is

added to the list of packing interactions. Since this is done for

every fragment in the shorter SSE, the list will have as many

entries as the number of fragments in the shorter SSE. Every

packing interaction within this list is then considered for the

statistics using the weight as the count. During scoring, all
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interactions in the list are scored, multiplied with the respective

interaction weight and summed.

Generation of Benchmark Sets
The benchmark sets of protein models were generated using

three different methods. 53 sequences of length between ,70 up

to ,300 residues have been selected to represent diversity

regarding a-helical and b-strand content as well as sequence

length : 1AAJA, 1BGCA, 1BJ7A, 1BZ4A, 1CHDA, 1DUSA,

1EYHA, 1G8AA, 1GAKA, 1GCUA, 1GS9A, 1HYPA, 1IAPA,

1ICXA, 1IFBA, 1J27A, 1JL1A, 1K6KA, 1LKFA, 1LKIA,

1LWBA, 1M5IA, 1NFNA, 1OA9A, 1OZ9A, 1PRZA, 1ROAA,

1TZVA, 1UBIA, 1UEKA, 1VGJA, 1VK4A, 1WBAA, 1WNHA,

1WR2A, 1WVHA, 1X91A, 1XGWA, 1XKRA, 1XQOA,

2CWYA, 2E3SA, 2EJXA, 2FM9A, 2ILRA, 2IU1A, 2OF3A,

2OPWA, 2OSAA, 2YV8A, 2YVTA, 2ZCOA, 3B5OA.

Three benchmark sets were created:

a) Using ROSETTA [45] 10,000 models have been folded de novo

for each sequence. Since ROSETTA does not assign secondary

structure, DSSP [46] was used to add definitions to the

models.

b) 10,000 models each have been folded using the BCL::Fold

program. For these simulations a scoring function with

weights set to 1 was used. Further details on the folding

simulations can be gleaned from a companion manuscript

‘‘De novo prediction of complex and large protein topologies

by assembly of secondary structure elements’’ in the same

issue of this journal.

c) Additionally, 12,000 perturbed structures have been gener-

ated using the BCL::Fold program by starting with the native

SSE arrangement and applying randomly the following

perturbations to the starting structure: (1) SSE rotation and

translation; (2) SSE flip; (3) swapping two SSEs; and (4) SSE

removal.

Native-like models or positives were defined using three quality

metrics: RMSD100 cutoff of 8 Å to the native, a GDT_TS cutoff

of 25% and a contact recovery of 20% (see accompanying

manuscript). The remaining models in each set were considered

negatives or non-native-like. If there were less than 1% or more

than 99% native-like models, that set was ignored for further

analysis, since it indicates that the sampling algorithm is not

suitable for that protein’s structure, either creating too many or too

few native-like models. The ratio native-like/non-native-like is

dependent on the performance of each protocol. The maximum

enrichment a score can achieve is dependent upon this ratio. In

order to facilitate comparison of the enrichment values, random

sub-sets of models were created that contained 10% native-like

models. For this, overall ratio in the complete sets of models had to

be adjusted. The class of models over-represented with respect to

the desired 1:9 ratio (native or non-native like) was split into ten

equally large subsets. From the under-represented class random

models were added until the desired 1:9 ration of native to non-

native like models was achieved. This procedure uses all generated

models without re-using models from the over-represented class.

The enrichment values reported are the average over the ten

experiments (Table S1).

Weight Optimization
An optimized weight for the consensus scoring function was

determined to calculate the sum of the scores (Table 3). The

objective for optimizing the weight set was to maximize the sum of

the square root of enrichments. This sum is calculated over a

ROSETTA model set of 53 proteins. Each protein model set is

divided into 10 sets, of 10 % native-like models (RMSD100,8 Å)

and 90% random structures (RMSD100 $ 8 Å), while the actual

composition is randomly chosen from a set of 10,000 model

structures.

The start weighting set is set to the inverse standard deviation of

the score over the 53 * 10,000 models, so that the dynamic ranges

of the scores are scaled to the same range. For every step two

randomly chosen weights are modified randomly by adding or

subtracting 10% of the starting weight, limiting the weights to a

minimal value of 0. The minimization follows a Monte-Carlo/

Metropolis simulated annealing protocol [47,48] with 10,000

iterations maximum, terminating after 250 steps without improve-

ment of the objective.

BCL::Score Availability
All components of BCL::Score, including scoring, sampling, and

pdb parsing methods are implemented as part of the BioChemical

Library (BCL) that is currently being developed in the Meiler

laboratory (www.meilerlab.org). BCL::Score is freely available for

academic use along with several other components of the BCL

library. Details and sample command lines can be found in

Appendix S1.
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